
Benchmark Framework with Skewed Workloads

Abstract
Concurrent data structures are essential building blocks

for applications in almost every domain. Differences among
domains make it difficult to share results, however. Some
testing frameworks model specific workloads, while others
emphasize stress tests, but there is no easy way to evaluate
if a new data structure will accelerate an application based
only on such benchmarks. A confounding factor is the huge
space of configuration options. We address these issues with
a new benchmarking tool for concurrent data structures in
Java and C++. Our tool emphasizes a declarative description
of workloads, a modular approach to defining components,
and heterogeneity throughout.

As preliminary evidence of the effectiveness of our tool, we
show that it can implement important and realistic workloads.
In doing so, it contradicts prior assumptions, by showing that
each of the three most popular trees can outperform the others.

1. Introduction
Modern applications process large volumes of data

in sophisticated ways. Due to the volume of data being
processed, the structures used for storing and organizing
that data must be able to scale under high levels of
concurrency. At the same time, the tremendous diversity
across application domains means that subtle differences in
data structure design can translate to significant differences
in performance.

Consequently, it is difficult to translate research into
practice, even when researchers share their implementations
as open-source code. Data structures are often tightly
integrated into their applications. Thus the undertaking
to replace one data structure with another in a production-
quality program is not trivial, even when the application’s
uses of the data structure exactly match its API, and the
application satisfies the data structure’s other requirements
(such as safe memory reclamation). It is not until after the
integration is complete that any performance evaluation
is possible. If the result is unfavorable, the programmer
must discern whether the data structure is not favorable for
the workload, or the integration introduced unanticipated
overheads. Often, the conclusion is that the effort was for
naught.

Concurrent data structures matter to the Operating
Systems, Programming Languages, Architecture, Database,
Cloud, HPC, and Theory communities. These communities
have fundamentally different workloads. In order to share
their data structures, it is essential that the structures can be
evaluated in a synthetic environment that can emulate the
sorts of workloads of interest to the respective communities.

Our work is a first step toward this goal. We introduce
a new benchmarking framework that is declarative and
emphasizes heterogeneity. Our approach to heterogeneity
allows the creation of novel thread interactions with a data
structure, while our declarative design ensures reproduca-
bility and enables communities to distribute workloads that
are representative of their applications’ needs.

To emphasize the significance of the problem, we present
a set of experiments that distinguish three concurrent search
trees’ performance on six synthetic workloads inspired
by the real-world behaviours. We find that despite the
similarities among the trees, each is clearly “best” for one
of the workloads. This separation makes an existential case
for the need for a community effort.

Roadmap. We start with two overview sections. In
Section 2 we discuss the existing benchmarks and their
issues and in Section 3 we pose the requirements on a
desired benchmarking suite. In Section 4, we present a
software design of our suite and provide an example on
how one can add a new workload. In Section 5, we describe
the predefined entities in our suite which one can already
use to build more sophisticated workloads. In Section 6,
we show that our framework is powerful and can induce
different behaviours of three well-known binary search
trees. Finally, we conclude in Section 7.

2. Existing Benchmarks for Concurrent Data
Structures

In this work, we consider a key-value concurrent data
structure as our target.

2.1. Microbenchmarks
The most common approach for evaluating concurrent

key-value data structures is stress-test microbenchmarks.
Two of the most popular are Synchrobench [9] and Set-
bench [6]. Figure 1 depicts the general structure of these
microbenchmarks: Each thread executes the same loop
(ThreadLoop) on each thread, which employs a pseudo-
random number generator (PRNG) to select the type of
operation to execute, and the operands to that operation. In
Synchrobench, keys are drawn from a uniform distribution.
Setbench also supports a Zipfian [11] distribution, to
simulate some keys being “hot”. In both cases, operands
are word-sized.

The motivation for such a workload is that it serves
as a “stress test,” highlighting the scalability of the data
structure when it is under heavy load. If a data structure
has lower latency at one thread, and higher throughput at
high thread counts, then it is clearly “best.” While stress
tests are an important tool for data structure evaluation,

Data
StructureThreadLoopRandom

Generator

Threads

Figure 1: Structure of Syncrobench and Setbench

they are not without flaws. First, for large key ranges, the
uniform distribution means that operations rarely contend,
even at high thread counts. Second, the lack of non-data
structure work means that essential components of the
data structure may never be evicted from the cache. Third,
the data structure is typically “warmed up” so that its size
remains roughly constant throughout the execution; this
can suppress essential behaviors, like tree rebalancing.

Still, stress-test microbenchmarks are surprisingly com-
plex. They require many parameters for defining a data
structure’s configuration (e.g., hash table size and rehash
threshold; size of B-tree nodes, split and merge thresholds,
and sorting; a number of skip list index layers). They also
require many parameters for describing the experiment
itself (how to warm up the data structure, whether threads
run for a fixed time or a fixed number of operations),
and for describing the stress workload (key range, key
distribution, operation distribution). In addition, there are
external configuration dependencies, most notably on the
allocator and memory reclamation techniques.

2.2. Benchmark Suites
In contrast to stress-test microbenchmarks, the YCSB [7]

and TPC benchmarks [1] aim to model specific workloads.
On the one hand, they provide more realism; on the other,
they afford less ability to adjust parameters and explore
the low-level aspects of a data structure’s behavior. Note
that Setbench also includes one workload each from YCSB
and TPC (specifically, from TPC-C).

YCSB is targeted primarily at cloud-scale data storage
systems, but its workloads can be extracted and applied
directly to data structures. It supports five operation: get /
insert / remove / read-modify-write of a single element,
and scan, which reads several consecutive elements. From
these it composes six default workloads, which vary in terms
of the distribution (skewed based on a Zipfian distribution
or a notion of “recency”) and the proportion of each of the
six operations. For scan, there is an additional distribution
and a target number of elements to read. The official YCSB
workloads all consider a 1KB value, consisting of 10 equal-
sized fields, and require each operation to read all 10 fields:

• update heavy (A): 50% update / 50% get, Zipf;
• read heavy (B): 5% update / 95% get, Zipf;

• read only (C): 100% get, Zipf;
• read latest (D): 5% insert / 95% get, custom “recency”
distribution;

• scan workload (E): 95% scan (target 100 elements) /
5% insert, Zipf;

• RMW workload (F): 50% read-modify-write / 50%
get, Zipf.
TPC is a suite of suites. Its workloads are more com-

plicated than YCSB workloads, modeling transactions on
data warehouses. Of particular interest to our goals are on-
line transaction processing (TPC-C) and decision support
(TPC-H) [1]. TPC-C is more popular among concurrent
data structure researchers, but fundamentally it is only
five transaction types over nine table types, and the tables
grow over time. Great effort has gone into ensuring this is a
realistic workload, but it is not instructive for data structures
used in garbage collectors, middleware, operating systems,
etc.

3. Requirements for a Concurrent Data Struc-
ture Benchmark

Stemming from experience with the above microbench-
marks and suites, we contend that there are five reasonable
requirements for a benchmarking suite:
1) Evolution: it should be easy to add new workloads and

to reuse existing workloads / code;
2) Duration: workloads should be able to run for a fixed

number of operations, a fixed time, or infinitely;
3) Heterogeneity: the benchmark should be aware of

all threads, even internal modification threads [8]; it
should allow different threads to perform different
operation mixes;

4) Realism: the behavior of the benchmark should mirror
real-world workloads, and be predictive of the behavior
that an application would experience. In particular, this
must include a robust understanding of skew, as it is
an important object of study [2, 3];

5) Exploration: it must be easy to vary parameters of the
workload and data structure.

In each dimension, we aim to exceed the state of the art,
as discussed below.
Evolution: We emphasize modularity, so that users can add
new benchmarks in a declarative fashion. In particular, we
ensure that users do not need to re-write logic for launching
threads, reading configuration, calculating statistics, etc.
Duration: Some of the past benchmarking suites tend to
support timed runs or fixed numbers of operations, not both.
They also may tightly couple the data structure warm-up
with the operation count and distribution, i.e., to ensure
that a target fraction of remove operations will succeed.
A key facet of our design is to support robust declaration
of warm-up, and to enable the user to declare the type
of execution (duration, total operation count, per-thread
operation count, infinite).
Heterogeneity: While Synchrobench is able to track a sin-
gle “maintenance” thread that executes a different workload

than the others, we find that otherwise there is limited
support for heterogeneity: in essence, there is a many-to-
one relationship between threads and workloads to execute.
By introducing a JSON-based declarative description of a
workload, we enable many-to-many mappings.
Realism: Every benchmark tries to model the real world to
some degree, so the greatest challenge is when hard-coded
decisions limit the ability to produce experiments that model
a new facet of the real world. For example, TPC-C only
supports two distributions, Uniform and NURandom (non-
uniform random). YCSB can require that all bytes of a value
are accessed by an operation, and also allows configuring
the number of bytes. TPC-C includes work between data
structure operations, which can increase realism by causing
nontrivial changes to the cache. Through modularity and
a declarative interface, we aim to support even greater
flexibility (e.g., introducing new distributions, key types,
and non-data-structure access patterns).
Exploration: Modern data structures have tuning param-
eters, and during design, it is important that developers
can modify these parameters without re-compiling their
programs. Similarly, workload designers should be able to
iterate on a workload’s configuration until its behavior
models a real-world system. Through our declarative JSON
interface, we aim to address these needs.

4. Software Design

One of the biggest challenges when designing a flexible
benchmark system is to manage complexity. Figure 1
depicts the design of a stress-test microbenchmark, such
as Synchrobench or Setbench: (1) Each thread has its
own PRNG (Random Generator) and executes the same
ThreadLoop code; (2) The ThreadLoop hard-codes how the
thread interacts with the Data Structure; (3) Command-line
arguments allow a small degree of customization of the
ThreadLoop behavior. When considering the six workloads
of YCSB, or the behavior of TPC-C, the structure is mostly
the same: the benchmark behavior is encoded in a single
ThreadLoop that is lightly parameterized.

In Figure 2, we manage the complexity of our more
flexible benchmark through a top-down design. Each thread
(gray box) is assigned its own ThreadLoop. Each Thread-
Loop, in turn, is assigned a set of configurations, which
correspond to the operations it will run (light blue box).
Each operation generates its arguments via a set of PRNGs,
distributions over those PRNGs, and mapping functions
for converting the output of a distribution into a key or
value. Note that for simplicity, we depict a tree, but it is
possible for a ThreadLoop to share a PRNG, DataMap, or
distribution among its blue boxes, and even for a read-only
DataMap to be shared among ThreadLoops.

To recap, the key entites are:
• Distribution – a distribution of a random variable
• DataMap – for converting a distribution’s output into
a key

• ArgsGenerator – creates operands for an operation

Data
StructureThreadLoop

ArgsGenerator

Random
Generator

Distribution

DistributionDistributionDataMap

Figure 2: Structure of our benchmark

• ThreadLoop – the logic for interacting with a data
structure.

In addition, a read-only GlobalParameters object stores
additional configuration.

4.1. Overview of an Execution
The benchmark initializes a ThreadLoop for each thread.

Each ThreadLoop runs for a duration or number of opera-
tions according to the GlobalParameters. In each iteration,
it chooses a query to execute next by choosing an operation,
getting a key and value from some instances of ArgsGenera-
tor, and performing the operation with that argument on the
data structure. Each instance of ArgsGenerator uses several
Distrubutions and DataMaps to generate keys for each type
of operation. By default, it takes a random variable from
a chosen Distribution and converts it into a key using a
chosen DataMap.

Prior to the execution, we support pre-filling the data
structure. We do so via the same technique: we initialize
several threads with appropriate ThreadLoops, and then
run the resulting workload until some condition is satisfied
(e.g., the data structure reaches a target size). Note that both
sequential and multithreaded pre-filling is possible. This is
important, since NUMA systems expect objects/nodes to
be distributed evenly over different sockets, which is only
achieved by threads on those sockets creating/inserting
those objects [10].

4.2. Entities
We now describe the entities in Figure 2 in greater

detail.
Distributions: The lowest-level entity is the Distribution,
which is used to simulate some random variable. It is
important to note that it generates some value from a dis-
tribution that later is translated into an appropriate key or
value by an ArgsGenerator. A Distribution’s next() method
generates a value within some range. We also provide a
MutableDistribution, which can change the random variable
in run-time by modifying the range of keys: setRange(int
range) and next(int range). Default distributions in our
benchmark include uniform, zipfian, and gaussian.
DataMaps: The DataMap is used by an ArgsGenerator
to translate an index into a key or value. We have several
implementations of a DataMap: a shuffled array, a hash,
and the identity map.
ArgsGenerators: ArgsGenerators are used to generate
keys and values for operations. In addition to specializing to

the types used by a data structure, an ArgsGenerator can be
stateful. This is important when modeling temporal locality:
a thread-private ArgsGenerator can use a distribution to
occasionally select recently accessed keys without extra
synchronization.
ThreadLoops: The ThreadLoop decides which operation
a thread should execute next. It is initialized for each
thread separately and uses the described ArgsGenerators.
Threads are not required to use the same ThreadLoop
implementation. ThreadLoop has only one main method
step() that explains how to choose an operation and
perform it during the main phase. The method step()
is called in an conditional loop by the run() method. A
programmer can override run() when more complicated
logic is needed.

The default ThreadLoop randomly chooses the
next operation using a uniform distribution and the
GlobalParameters, receives the key for the selected oper-
ation from the simplest ArgsGenerator with the uniform
distribution and the identity datamap, and executes it. Note
that ThreadLoop is also a utility class: it calculates different
statistics, for example, the number of successful operations.
This is important for the benchmark in order to compare
different data structures and check their correctness.

4.3. Entities in code
We currently provide Java and C++ versions of our

benchmark tool. While the discussion in this section is
generic, our implementations use appropriate mechanisms
(dynamic class loading, template metaprogramming, build-
time code generation) to reduce programmer effort and
avoid implementation artifacts that can perturb performance
measurement.

When the benchmark begins, it processes the JSON
configuration and initializes each ThreadLoop. This step
makes use of the builder pattern to reduce complexity. Each
ThreadLoop, in turn, builds the entities it uses. While JSON
is the primary configuration mechanism, we also support
limited overriding on the command line (e.g., for specifying
the number of threads, or changing arguments to a data
structure’s constructor).

4.3.1. Implementing a new entity. Each entity consists
of three parts: its logic, its Builder, and a Parameters object.
To give a sense for the effort involved in creating a new,
reusable entity, we present a generic ExampleEntity class.
class ExampleEntity implements Entity:

ExampleEntity(entityParameters ,
globalParameters , ...):

{...}

implementation

Then, an automated, language-specific step makes the
entity visible, e.g.,:
enum EntityType:

{...}, EXAMPLE_ENTITY

The programmer must provide a corresponding Parame-
ters class with an init function that uses the global param-
eters. This function provides all the necessary parameters
for associated Builder classes.
class ExampleEntityParameters

implements EntityParameters:
parameters

void init(globalParameters):
...

Lastly, the programmer produces a Builder class with
a build function. Please note that EntityBuilder also
provides init function that initializes all the parameters.
class EntityBuilder:

EntityType entityType
EntityParameters entityParameters
GlobalParameters globalParameters

fields setter methods

void init(globalParameters):
this.globalParameters = globalParameters
this.entityParameters.init(globalParameters)

void init(globalParameters ,
entityParameters):

this.globalParameters = globalParameters
this.entityParameters = entityParameters
this.entityParameters.init(globalParameters)

Entity build(* special parameters *):
switch (entityType):

case EXAMPLE_ENTITY:
return new ExampleEntity ({

entityParameters ,
globalParameters ,
special parameters,
...})

case {...}

4.4. Example
We now present a complete example, by adding the

skewed read-update workload from [3] in our suite. This
workload is used for testing key-value data structures
supporting three operations insert, remove, and get.

This workload is specified by five parameters:
• n, the size of the working set of keys;
• w%, the amount of updates in the total number of
operations;

• x% of get operations choose a key uniformly at random
from a random subset of keys of proportion y%, while
other get operations choose a random key from the
rest of the set;

• insert and remove operations choose a key uniformly
at random from a random subset of keys of proportion
s%.
At a high level, we choose n integer keys and name

them as set A. Then we pre-populate the index: we add a
key from A with probability 50%. Then, we choose s · n
keys uniformly at random to produce a key set U. Also,
we choose y · n keys from inserted keys to produce a key

set named R. Each process chooses an operation: with
probability 100 – w% it chooses get and with probabilities
w
2 % it chooses insert or remove. Now, the process has to
choose an argument of the operation: get it chooses an
argument from R with probability x%, otherwise, it chooses
an argument from S \ R; insert and remove operations
choose an argument from U uniformly at random.

Now, we give the full implementation.

4.4.1. Distribution. To implement this workload, we need
two distributions: a Uniform Distribution for the arguments
of update requests and a new distribution for the arguments
of read requests explained above, named as Skewed Uniform
Distribution. The Uniform Distribution is simple and is
already available in our suite. We now add the Skewed
Uniform Distribution. Together with a DataMap, it is used
to generate the keys for get operations in the ArgsGenerator.

The distribution type gets added to the corresponding
enum:

enum DistributionType:
{...}, SKEWED_UNIFORM

Then, we need to provide parameters x% and y% to
this distribution. Since, parameter y represents only the
percentage of “hot” keys, we initialize parameter hotLength,
which stores the number of “hot” keys, in init. For that,
we create a Parameters class:

class SkewedUniformParameters
implements DistributionParameters:

double HOT_SIZE = 0 // y%
double HOT_PROB = 0 // x%
int hotLength = 0

SkewedUniformParameters(HOT_SIZE , HOT_PROB):
this.HOT_SIZE = HOT_SIZE
this.HOT_PROB = HOT_PROB

void init(globalParameters):
hotLength = HOT_SIZE * globalParameters.range

We are ready to implement SkewedUniformDistribution.
Since we need to choose a value uniformly from both sets
[0, y · n) and [y · n, n), corresponding to x% and 100 – x%,
we use two different Uniform Distribution objects.

class SkewedUniformDistribution
implements Distribution:

int hotLength
double hotProb
UniformDistribution hotDist
UniformDistribution coldDist
Random random

int next ():
if (random.nextDouble () < hotProb):

return hotDist.next()
else:

return hotLength + coldDist.next()

Distribution returns only a random value, not an op-
eration argument. We will use a DataMap to transform it
into a key. To finish the implementation Distribution, we
update the build function in the DistributionBuilder.

Distribution build(int range):
switch (this.distributionType) {

case SKEWED_UNIFORM:
return new SkewedUniformDistribution(

this.distParameters.hotLength ,
this.distParameters.HOT_PROB ,
new DistributionBuilder(UNIFORM)

.build(this.distParameters.hotLength),
new DistributionBuilder(UNIFORM)

.build(range -
this.distParameters.hotLength))

case {...}

4.4.2. DataMap. Since the Distribution returns random
variables, the ArgsGenerator needs a DataMap to convert
them into keys. In this case, the keys are randomly dis-
tributed over sets of size x% and 100 – x%. The Array-
DataMap takes all keys from the entire range and shuffles
them. When given a value from a Distribution it maps it
to the corresponding element of the array.

To implement the new DataMap we perform the usual
steps: 1) add a new type into an enum; 2) implement the
DataMap interface; and 3) update a DataMapBuilder class.
Note that our new DataMap does not depend on addi-
tional parameters, so there is no need for a corresponding
Parameters class.
enum DataMapType:

{...}, ARRAY

class ArrayDataMap implements DataMap:
int[] data

ArrayDataMap(int range):
for (i = 0; i < range; i++):

data[i] = i + 1
random.shuffle(data)

int get(int index):
return data[index]

DataMap build(int range):
switch (this.dataMapType):

case ARRAY:
return new ArrayDataMap(range)

case {...}

4.4.3. ArgsGenerator. Given our Distribution and
DataMap, we can create an ArgsGenerator. The steps are:
1) announce it in the enum; 2) write the Parameters class;
3) implement an interface; and 4) update the ArgsGenera-
torBuilder class.

First, we make it visible through language-specific
tooling:
enum ArgsGeneratorType:

{...}, EXAMPLE_ARGS_GEN

Our ArgsGenerator takes three parameters, x, y, and
s, from above. x and y are used for the Skewed Uniform
Distribution and s is used for the Uniform Distribution.
Parameters x, y, and s are loaded either by parsing the
command line or by reading a JSON file.

In this case, ArgsGenerator uses separate DataMap
objects for read and update operations. However, all Args-
Generators objects should have the same DataMap instance;
this is expressed in the Parameters class.

class ExampleParameters
extends ArgsGeneratorParameters:

double x, y, s

DistributionBuilder getDistBuilder =
new DistributionBuilder(SKEWED_UNIFORM)

DistributionBuilder updateDistBuilder =
new DistributionBuilder(UNIFORM)

DataMap getDataMap
DataMap updateDataMap

void init(globalParameters):
skewParameters =

new SkewedUniformParameters(x, y)
getDistBuilder.init(globalParameters ,

skewParameters)
updateDistBuilder.init(globalParameters)

getDataMap = new DataMapBuilder(ARRAY)
.build(globalParameters)

updateDataMap = new DataMapBuilder(ARRAY)
.build(globalParameters)

This workload employs a single, stateful ArgsGenerator,
so that operations’ operands can depend on each other.
ArgsGenerator takes the index generated by the Distribution
and passes it to the DataMap to get a key.

class ExampleArgsGenerator
implements ArgsGenerator:

DataMap getData
DataMap updateData
Distribution getDist
Distribution updateDist

ExampleArgsGenerator(DataMap getData ,
DataMap updateData ,
Distribution getDist ,
Distribution updateDist)

int nextGet ():
return getData.get(getDist.next ())

int nextInsert ():
return updateData.get(updateDist.next ())

int nextRemove ():
return updateData.get(updateDist.next ())

Finally, we need to update the build() function in
ArgsGeneratorBuilder.

ArgsGenerator build ():
switch (this.argsGeneratorType):

case EXAMPLE_ARGS_GEN:
range = this.globalParameters.range;
return new ExampleArgsGenerator(

this.argsGenParameters.getDataMap ,
this.argsGenParameters.updateDataMap ,
this.argsGenParameters.getDistBuilder

.build(range),
this.argsGenParameters.updateDistBuilder

.build(this.argsGenParameters.s * range))

4.4.4. ThreadLoop. The implementation of a new Thread-
Loop again consists of four parts: 1) add a new type to
the enum; 2) write the Parameters class; 3) implement the
step() or run() methods; and 4) update build method in
the ThreadLoopBuilder class.

In this case we have only one parameter — w%, which
means the probability of an update operation. Also, our
new ThreadLoop needs only one ArgsGenerator. w can be
loaded from the command line or a JSON file.
enum ThreadLoopType:

{...}, DEFAULT

class DefaultThreadLoopParameters
extends ThreadLoopParameters:

double numWrites // w%
double numInsert
double numRemove

ArgsGeneratorBuilder argsGeneratorBuilder

void init(globalParameters):
numInsert = numRemove = numWrites / 2
argsGeneratorBuilder.init(globalParameters)

The step() method selects a next operation and
executes it. The run() method calls the step()
method while the stop flag is false. The ThreadLoopAb-
stract class implements methods: executeInsert(key),
executeRemove(key), and executeGet(key), which exe-
cute the corresponding method on the data structure and
calculate the statistics.
class DefaultThreadLoop

extends ThreadLoopAbstract:
DefaultThreadLoopParameters params
ArgsGenerator argsGen
Random rand

DefaultThreadLoop(dataStructure ,
threadLoopParameters):

super(dataStructure)
this.params = threadLoopParameters
this.argsGen = params.argsGeneratorBuilder

.build()
this.rand = new Random ()

void step ():
double coin = rand.nextDouble ();
if (coin < params.numInsert):

// 1. should we run an insert
int key = argsGen.nextInsert ()
this.executeInsert(key)

else if (coin < params.numRemove):
// 2. should we run a remove
int key = argsGen.nextRemove ()
this.executeRemove(key)

else:
//3. then we should run a get
int key = argsGen.nextGet ();
this.executeGet(key);

Finally, we need to update the ThreadLoopBuilder class.
ThreadLoop build(DataStructure <K> dataStructure):

switch (this.threadLoopType):
case DEFAULT:

return new DefaultThreadLoop(
threadNum ,
dataStructure ,

this.threadLoopParameters)
case {...}

5. Implemented Entities
In this Section, we discuss the default set of entities

provided by our suite. Our focus is on providing robust
support for benchmarking ordered and unordered sets and
maps (e.g., key-value data structures).

5.1. Distributions
Our distributions are compatible with a broad selection

of random generators, including those in the standard
library (e.g., rand, mt19937, etc.) and third-party generators
(e.g., xoshiro).
Uniform Distribution. We support a traditional uniform
distribution, as well as a MutableDistribution that does not
restrict the range of values (e.g., it can generate a random
value using random.nextInt(range)).
Standard Distributions. We include a configurable Gaus-
sian distribution, as well as a distribution based on Zipf’s
law [11].
Skewed Uniform Distribution. We also provide, by
default, the Skewed Uniform Distribution from Section 4.4.1.

5.2. DataMaps
DataMaps can combine lookup tables and code to

translate a random value to a datum of the desired type.
Identity DataMap. The Identity DataMap is a simple
identity function. To support peculiarities in some research
data structures, when given i, it returns i+1.
Array DataMap. The Array DataMap creates an array
filled with values from the entire range of keys and shuffles
them randomly. When calling the get(index) method,
returns the corresponding element from the array.
Hash DataMap. The Hash DataMap converts the index to
a key using some hash function, for example, bit shuffling.

5.3. ArgsGenerators
Default ArgsGenerator. The Default ArgsGenerator
accepts one of the existing distributions and one of the
existing datamaps as input and selects the next key based
on this distribution from the chosen DataMap.
Skewed Sets ArgsGenerator. The Skewed Sets ArgsGen-
erator (Section 4.4.3) uses two SkewedUniformDistributions
separately for read and update operations, and takes the
following parameters:

• rp% of read operations are performed on a random
subset of keys of proportion rs% where a key is taken
uniformly. All other read operations are performed on
the rest of the set.

• wp% of update operations are performed on a random
subset of keys of proportion ws% where a key is taken
uniformly. All other update operations are performed
on the rest of the set.

• inter% of keys are in the intersection of the working
sets of read and update operations.

Temporary Skewed Sets ArgsGenerator. The Temporary
Skewed ArgsGenerator allows the skew of a generator to
change over time, e.g., to model daily fluctuations in search
queries. It has two types of states:

• k-th excited state — the keys are selected using k-th
SkewedUniformDistribution, i.e., there is always a hot
set of keys.

• a dormant state — all keys are selected with the
UniformDistribution. This state happens between k-th
and k + 1-th excited states.
To support infinite execution, the excited states are

chosen in a cyclic manner, i.e., after the latest excited
state it returns to the first dormant state. The Tempo-
rarySkewedArgsGenerator uses the following parameters:

• state-count — Total number of excited states in the
workload;

• ht — Default duration of an excited state (the duration
is specified in the number of operations);

• rt — Default duration of a dormant state;
• during the i-th excited state, pi% of operations are
performed on si% of keys, and 100–pi% of operations
are performed on the rest of the set;

• hti — the duration of the i-th excited state (optional);
• rti — the duration of the dormant state after i-th excited
state (optional).

Creakers and Wave ArgsGenerator. The Creakers and
Wave ArgsGenerator models a different sort of temporal
locality: recently inserted keys are requested more often,
but become obsolete over time. Among other things, this
ArgsGenerator models YCSB workload D. The key feature
of the Creakers and Wave ArgsGenerator is the entity Wave.
The Wave is a subset of all keys from the range with a
head and a tail. It generates a new key according to the
following rules:

• nextRemove() — the Wave returns the key of the
current tail and moves this tail by one;

• nextInsert() — select the key next to the head of
the Wave, and make it the new head;

• nextGet() — select a key from the Wave according
to some specified distribution.

As a default, Wave uses the Zipfian Distribution, where
the closer the key is to the head, the greater the probability
of being selected. Since there is a limit on the range of
elements, to make the ArgsGenerator infinite the Wave
moves in a cyclic manner over a working set of keys.
Besides the Wave there is an entity called Creakers. This is
a subset of keys that are requested rarely but permanently.
This entity is needed to check how well the data structure
copes with such keys in the presence of rapidly growing
and equally rapidly discarded keys from the Wave.

The Creakers and Wave ArgsGenerator has the follow-
ing parameters:

• cp% of operations are performed on cs% of keys
(Creakers entity), and 100 – cp% are performed on
the Wave entity;

• The Wave is initialized with ws% of keys;

• c-age get operations are performed on the Creakers
entity during warmup before the benchmarking;

• c-distribution — a distribution of keys in the Creakers
entity (by default, the Uniform distribution);

• w-distribution — a mutable distribution of keys in the
Wave entity (by default, the Zipfian distribution with
α = 1).

All threads share the Wave head and tail.
When coupled with the DefaultThreadLoop, Creakers

and Wave models workload D from YCSB, but adds the
ability to execute an infinite workload instead of a fixed
number of operations. Furthermore, unlike YCSB, it achieves
this behavior with an O(1) complexity for generating argu-
ments. Similarly, prior benchmarks have tried to produce
temporal workloads by associating a “hotness” count with
each element; for infinite workloads, removal discards this
count, leading to the Creakers ultimately having the largest
counts. In contrast, our design makes the two key sets
explicit, and thus produces reliable results regardless of the
duration of the experiment.
Leafs Handshake ArgsGenerator. The Leafs Handshake
ArgsGenerator is stateful and mutable: the key selection
for an insert operation is based on the argument of the
previous remove operation. Intuitively, the closer the key
to the last removed one, the more probability that this key
will be selected for an insertion. It accepts the following
parameters:

• get-distribution — a distribution of keys for a get
operation (by default, the Uniform distribution);

• remove-distribution — a distribution of keys for a re-
move operation (by default, the Uniform distribution);

• insert-distribution — a mutable distribution of keys for
an insert operation (by default, the Zipfian distribution
with α = 1).

5.4. ThreadLoops
Default ThreadLoop. The Default ThreadLoop selects
the next operation with some fixed probability. It accepts
the following parameters:

• ui% of operations are insert operations;
• ue% of operations are remove operations;
• while 100 – ui – ue% of operations are get operations.

Temporary Operations ThreadLoop. The Temporary
Operations ThreadLoop selects the next operation depend-
ing on a time interval. It accepts the following parameters:

• temp-oper-count — a number of different intervals;
• oti — the duration of the i-th interval, as a number of
operations;

• uii% of operations are insert operations during the
i-th interval;

• uei% of operations are remove operations during the
i-th interval;

6. Separation of Binary Search Trees
In this section, we use the Java version of our bench-

mark. We consider three commonly-known binary search

tree (BST) implementations. We find that with our work-
loads, each can outperform the others. This result affirms
the importance of more robust benchmarking for concurrent
data structures.

6.1. Implementations
We take three “fastest” binary search tree (BST) imple-

mentations written in Java for Sychrobench:
• A BCCO BST by Bronson et al. [5].
• A Contention-Friendly (CF) BST by Gramoli et al. [8].
• A Concurrency-Optimal (CO) BST by Aksenov et
al. [4].
All of them are partially-external and the main differ-

ence between them is how they handle physical removal
and rotation. In the BCCO-BST a working thread always
removes nodes physically and rotates subtrees, if necessary.
In the CF-BST a working thread makes only logical removals.
However, there is a special daemon thread responsible
for physical removals and rotations. In the CO-BST a
thread performs physical removal immediately but does
not perform rotations at all.

Prior papers using the workloads from Synchrobench,
e.g., [4], suggest that CO-BST is superior, CF is the runner-
up, and BCCO is worst. Obviously, it should not be the case
on all possible workloads because: 1) CO does not make
rotations at all, leading to longer traversals; 2) CF should
perform worse on the larger trees, since the daemon thread
cannot catch up with changes. We show that it is indeed
the case: depending on the workload we can see different
relative performance.

6.2. Experimental Results
We evaluated the trees on a system with two Intel Xeon

Gold 6240R CPUs (48 cores total). We show results starting
from 16 working threads, since the high number of threads
is our focus. Each plot has three graphs: blue circles (CO),
green triangles (CF), and red crosses (BCCO). The X axis
represents the thread count, and the Y axis represents the
throughput (operations/second). Each point in plots is the
average of ten 10-seconds trials.

6.2.1. Uniform and Zipfian Workloads. Uniform and
Zipfian Workloads are the most common in publications.
We run them with the following parameters: range is 104

(for Uniform) and 105 (for Zipfian) and update ratio is 5%.
The insert ratio is equal to the remove ratio. Both these
workloads are widely accepted as “realistic”. For example, al-
locators typically have uniform access patterns, while social
networks exhibit Zipfian patterns. Unsurprisingly, Figures 3
and 4 show the same trend, with CO outperforming CF,
and CF outperforming BCCO.

6.2.2. Infinite Leafs Handshake Workload. We now
consider the Infinite Leafs Handshake workload. It is based
on the Leafs Handshake ArgsGenerator and the Temporary
Operations ThreadLoop presented in Section 5. It has three
time intervals: 1) the filling interval — there are more

16 20 24 28 32 36 40 44 48
Number of Threads

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e8

Figure 3: Uniform Workload with range 104 and update
ratio 5%

16 20 24 28 32 36 40 44 48
Number of Threads

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e8

Figure 4: Zipfian Workload with α = 1, range 105, and
update ratio 5%.

insertions than removal; 2) the read interval — there are
only read operations; 3) the cleaning interval — there are
more removals than insertions.

During the filling interval, two new neighbors are
inserted for one removed node. During the reading interval,
threads read keys uniformly at random. During the cleaning
interval, the working threads remove nodes uniformly at
random from the tree to restore its original size.

Such a workload emulates the generation of fork-join
tasks: when the task finishes it creates two new ones
working on the close identifiers, then, the tasks are in
“progress” while the read requests check their status, and,
finally, they finish. Also, such a workload can be seen as
the graph exploration algorithm.

The first experiment (Figure 5) is run with parameters:
range is 105, temp-oper-count is 3; ot0 = ot2 = 10000,
ot1 = 5000; ui0 = ue2 = 60%; ui2 = ue0 = 40%; ui1 = ue1 =
0%; get and remove distributions are uniform distributions;

16 20 24 28 32 36 40 44 48
Number of Threads

1.0

1.1

1.2

1.3

1.4

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e7

Figure 5: Infinite Leafs Handshake Workload with range
105.

16 20 24 28 32 36 40 44 48
Number of Threads

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e7

Figure 6: Infinite Leafs Handshake Workload with range
107.

insert distribution is a Zipfian distribution with α = 2. In
this configuration, the order of CF and CO switches.

In Figure 6, we use different parameters: range is 107;
temp-oper-count is 2; ot0 = ot1 = 20000; ui0 = ue1 = 90%;
ui1 = ue0 = 10%; get and remove distributions are Uniform;
and insert distribution is Zipfian with α = 0.99. In this case,
BCCO performs best, and CF worst.

In a third configuration (Figure 7) we use these param-
eters: range is 108; temp-oper-count is 3; ot0 = ot1 = ot2 =
100000; ui0 = ue2 = 80%; ui2 = ue0 = 20%; ui1 = ue1 = 0%;
get and remove distributions are Uniform; insert distribution
is a Zipfian distribution with α = 0.99. We see another
change in order, with CO best and CF worst.

From the results, it can be seen that CF-BST lags far
behind at large ranges (Figures 6 and 7), while at small
ranges it behaves about the same or better than others
(Figure 5). This happens because the daemon thread does
not catch up with remove operations and the tree has

16 20 24 28 32 36 40 44 48
Number of Threads

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e7

Figure 7: Infinite Leafs Handshake Workload with range
108

16 20 24 28 32 36 40 44 48
Number of Threads

105

106

107

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

Figure 8: Non-shuffle Wave Workload with range 106.

a longer traversal length. Also, CO-BST and BCCO-BST
behave differently at large ranges. The lower the skew
between insert and remove operations, the better CO-BST
handles the workload. This is because with more skew there
are more chances that the tree will grow non-uniformly
making the CO-BST perform poorly.

6.2.3. Non-shuffle Wave Workload. The Non-shuffle
Wave Workload is based on Creakers and Wave ArgsGener-
ator without the Creakers and with Identity DataMap. This
workload adds new keys to the edge of the tree disrupting
the balance. That leads to the performance problems of
poorly balanced trees.

This workload emulates the load on the videos in a
social network: a new video has arrived and a lot of users
watch them, while old videos are rarely accessed.

The first experiment (Figure 8) is run with parameters:
range is 106; ws = 20%; update ratio is 5%; w-distribution —
Zipfian distribution with α = 1; and cp = 0%. It gives us
the relative performance of CF-B-CO.

16 20 24 28 32 36 40 44 48
Number of Threads

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 p
er

 se
c)

1e7

Figure 9: Non-shuffle Wave Workload with range 5 · 103.

This result is again related to the fact that BCCO-BST
always rotates which is not the case of CF-BST and CO-BST.

The second experiment (Figure 9) is run with param-
eters: range is 5 · 103; ws = 10%; write ratio is 20%; w-
distribution — Zipfian distribution with α = 1; cp = 0%. It
gives us the relative performance of B-CF-CO.

This result is related to the fact that the tree size is
quite small, which is why the daemon thread in CF-BST
manages to balance the tree quickly.

6.3. Summary

As a result we obtained all six relative performances
of three data structures: B-CF-CO on Figure 9, B-CO-CF
on Figure 6, CF-B-CO on Figure 8, CF-CO-B on Figure 5,
CO-B-CF on Figure 7, and CO-CF-B on Figures 3 and 4.

7. Conclusion

In this work, we presented a new benchmarking suite
that aims to make it easier to test concurrent data structures
against a wider set of workloads and configurations. Creat-
ing new workloads takes little effort, enabling communities
to offer more representative workloads than the sorts of
stress tests that dominate the literature today. Even just a
small number of workloads sufficed to show that each of
three popular trees can be “best”, confirming the importance
of better benchmarking in this domain.

As future work, we intend to continue refining the tool,
particularly with regard to ergonomic issues that make it
easier to integrate new workloads. We also intend to release
our benchmark as open-source code, and to implement
a review process for new contributions, so that we can
continue to grow the utility of the tool and increase its
value to multiple research communities.

References
[1] “Tpc benchmarks,” https://www.tpc.org/.

[2] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan, “The
cb tree: a practical concurrent self-adjusting search tree,” Distributed
computing, vol. 27, no. 6, pp. 393–417, 2014.

[3] V. Aksenov, D. Alistarh, A. Drozdova, and A. Mohtashami, “The
splay-list: A distribution-adaptive concurrent skip-list,” Distributed
Computing, pp. 1–24, 2023.

[4] V. Aksenov, V. Gramoli, P. Kuznetsov, A. Malova, and S. Ravi, “A
concurrency-optimal binary search tree,” in Euro-Par 2017: Parallel
Processing: 23rd International Conference on Parallel and Distributed
Computing, Santiago de Compostela, Spain, August 28–September 1,
2017, Proceedings 23. Springer, 2017, pp. 580–593.

[5] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical
concurrent binary search tree,” ACM Sigplan Notices, vol. 45, no. 5,
pp. 257–268, 2010.

[6] T. Brown, A. Prokopec, and D. Alistarh, “Non-blocking interpolation
search trees with doubly-logarithmic running time,” in Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2020, pp. 276–291.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[8] T. Crain, V. Gramoli, and M. Raynal, “A contention-friendly binary
search tree,” in Euro-Par 2013 Parallel Processing: 19th International
Conference, Aachen, Germany, August 26-30, 2013. Proceedings 19.
Springer, 2013, pp. 229–240.

[9] V. Gramoli, “More than you ever wanted to know about synchroniza-
tion: Synchrobench, measuring the impact of the synchronization
on concurrent algorithms,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2015,
pp. 1–10.

[10] R. Kharal and T. Brown, “Performance anomalies in concurrent data
structure microbenchmarks,” arXiv preprint arXiv:2208.08469, 2022.

[11] D. M. Powers, “Applications and explanations of zipf’s law,” in New
methods in language processing and computational natural language
learning, 1998.

