
	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ВЫПУСКНАЯ	КВАЛИФИКАЦИОННАЯ	РАБОТА
GRADUATION	THESIS

Исследование	Алгоритмов	Построения	3-Ограниченных	Компьютерных	Сетей
Учитывающих	Нагрузку	/	Investigating	Algorithms	For	Constructing	3-Bounded

Demand-Aware	Computer	Networks

Обучающийся	/	Student	Мартынов	Павел	Михайлович	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Информатика	и	программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")

Обучающийся/Student 	 Документ
подписан
Мартынов
Павел
Михайлович
25.05.2023

	

Мартынов
Павел
Михайлович

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
21.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ЗАДАНИЕ	НА	ВЫПУСКНУЮ	КВАЛИФИКАЦИОННУЮ	РАБОТУ	/	
OBJECTIVES	FOR	A	GRADUATION	THESIS

Обучающийся	/	Student	Мартынов	Павел	Михайлович	
Факультет/институт/кластер/	 Faculty/Institute/Cluster	 факультет	 информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	 /	Educational	program	 Информатика	 и	 программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Тема	 ВКР/	 Thesis	 topic	 Исследование	 Алгоритмов	 Построения	 3-Ограниченных
Компьютерных	Сетей	Учитывающих	Нагрузку	/	Investigating	Algorithms	For	Constructing	3-
Bounded	Demand-Aware	Computer	Networks	
Руководитель	 ВКР/	 Thesis	 supervisor	 Аксенов	 Виталий	 Евгеньевич,	 PhD,	 науки,
Университет	 ИТМО,	 институт	 прикладных	 компьютерных	 наук,	 доцент
(квалификационная	категория	"ординарный	доцент")

Основные	вопросы,	подлежащие	разработке	/	Key	issues	to	be	analyzed
The	 primary	 goals	 of	 this	 article	 are	 to	 investigate	 existing	 data	 center	 load	 optimization
algorithms	and	propose	more	efficient	alternatives	for	a	similar	set	of	constraints,	namely	for	the
binary	 tree	 network	 topologies.	Our	 focus	 lies	 on	 creating	 new	 algorithms	which	 can	 alleviate
restrictions	 of	 current	methods	 and	 better	 accommodate	 real-world	 network	 demands.	We	 also
aim	 to	 enhance	 these	 algorithms	with	 various	 heuristical	 approaches.	 Ultimately,	 this	 research
seeks	 to	 introduce	 new	 efficient	 algorithms	 for	 constructing	 demand-aware	 networks,	 offering
potential	improvements	in	latency	and	efficiency.

Дата	выдачи	задания	/	Assignment	issued	on:	01.04.2023

Срок	представления	готовой	ВКР	/	Deadline	for	final	edition	of	the	thesis	17.05.2023

Характеристика	темы	ВКР	/	Description	of	thesis	subject	(topic)

Тема	в	области	фундаментальных	исследований	/	Subject	of	fundamental	research:	да	/
yes	
Тема	в	области	прикладных	исследований	/	Subject	of	applied	research:	нет	/	not

СОГЛАСОВАНО	/	AGREED:	

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
17.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись) 	 	

Задание	принял	к
исполнению/	Objectives
assumed	BY

	 Документ
подписан
Мартынов
Павел
Михайлович
17.05.2023

	

Мартынов
Павел
Михайлович

	 	 (эл.	подпись) 	 	

Руководитель	ОП/	Head
of	educational	program

	 Документ
подписан
Станкевич
Андрей
Сергеевич
22.05.2023

	

Станкевич
Андрей
Сергеевич

	 	 (эл.	подпись) 	 	

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

АННОТАЦИЯ
ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ	

SUMMARY	OF	A	GRADUATION	THESIS

Обучающийся	/	Student	Мартынов	Павел	Михайлович	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Информатика	и	программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Тема	ВКР/	Thesis	topic	Исследование	Алгоритмов	Построения	3-Ограниченных
Компьютерных	Сетей	Учитывающих	Нагрузку	/	Investigating	Algorithms	For	Constructing	3-
Bounded	Demand-Aware	Computer	Networks	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")	

ХАРАКТЕРИСТИКА	ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ
DESCRIPTION	OF	THE	GRADUATION	THESIS

Цель	исследования	/	Research	goal	
Research	and	development	of	approximate	algorithms	for	constructing	statically	optimal
computer	networks	with	binary	tree	topology.	
Задачи,	решаемые	в	ВКР	/	Research	tasks	
Research	of	the	existing	approaches	to	the	problem	in	question	and	the	adjacent	areas	of	research;
Development	of	the	algorithms	that	surpass	existing	ones	in	performance	and	quality	of	results;
Development	of	the	enhancing	algorithms	that	can	improve	existing	approximate	solutions	to
provide	better	results;	Implementation	of	the	aforementioned	algorithms;	Thorough	comparison
of	all	the	algorithms	in	question	with	respect	to	their	performance	and	quality	of	the
approximation.	
Краткая	характеристика	полученных	результатов	/	Short	summary	of	results/findings	
Developed	several	algorithms	for	the	construction	of	statically	optimal	computer	networks	for
binary	tree	network	topology,	including	the	Maximum	Spanning	Tree	algorithm	specific	to	the
problem	in	question,	as	well	as	multiple	enhancement	algorithms	and	heuristical	approaches,
leading	to	the	creation	of	the	genetic,	or	evolutionary,	algorithm.	All	of	the	described	algorithms
were	thoroughly	tested	and	compared	against	each	other	as	well	as	against	pre-existing	solutions,
demonstrating	their	predominance	in	both	performance	and	quality.	

Наличие	выступлений	на	конференциях	по	теме	выпускной	работы	/	Conference
reports	on	the	topic	of	the	thesis

1.	XII	КОНГРЕСС	МОЛОДЫХ	УЧЕНЫХ	(ОНЛАЙН	ФОРМАТ),	03.04.2023	-	06.04.2023
(Конгресс,	статус	-	всероссийский)	

Обучающийся/Student 	 Документ
подписан
Мартынов
Павел
Михайлович
25.05.2023

	

Мартынов
Павел
Михайлович

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
21.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

4

CONTENTS
INTRODUCTION. 6
1. Introduction To The Subject Area. 8

1.1. Computer Networks . 8
1.2. Demand Profile . 8
1.3. Statically Optimal Network . 9
1.4. Topological Limitations. 9
1.5. Demand Profile Limitations . 10
1.6. Examples of Certain Limited Problems . 10

1.6.1. Chain Demand Graph . 10
1.6.2. Unary Cycle Demand Graph . 10
1.6.3. Complete Demand Graph . 11
1.6.4. Complete Bipartite Demand Graph . 12

Conclusions on Chapter 1 . 12
2. Approaches to the Problem . 13

2.1. Base Approaches . 14
2.1.1. Bruteforce Algorithm . 14
2.1.2. Best For Binary Search Tree. 14
2.1.3. Best BST Over Multiple Permutations . 17
2.1.4. Greedy Algorithms . 18
2.1.5. Maximum Spanning Tree . 20

2.2. Enhancement Algorithms . 20
2.2.1. Switching . 20
2.2.2. Smashing . 23
2.2.3. Compaction . 24
2.2.4. Branch Switching. 26

2.3. Evolutionary Approach . 28
Conclusions on Chapter 2 . 30

3. Experiments . 31
3.1. Real-World Workload Description . 31

3.1.1. Social Network Workload . 31
3.1.2. Microsoft Workload . 31
3.1.3. pFabric Workload. 32
3.1.4. ProjecToR Workload. 32

5

3.2. Synthetic Workload Description . 32
3.2.1. Dense Workload . 33
3.2.2. Sparse Workload . 33

3.3. Results. 34
3.3.1. Synthetic Dense Workload Results. 35
3.3.2. Synthetic Sparse Workload Results . 35
3.3.3. Real-World Results . 35

Conclusions on Chapter 3 . 37
CONCLUSION . 45
REFERENCES . 46

6

INTRODUCTION
Modern data centers host extremely intensive data flows that provide a heavy

load onto the underlying systems, thus raising the challenging problem of optimizing
the overall load onto the links and reducing latencies between hosts. Most of the data
centers nowadays are designed with the worst-case scenario loads in mind, while
completely ignoring the actual profile of the load that they are subjected to.

The suggested theoretical representation of this problem consists of the con-
struction of the network, represented by a graph, from the provided demand profile.
For the sake of simplicity and also to incorporate inherent limitations of modern net-
works, we would limit ourselves to the binary network topologies, however, some
of the algorithms that are developed throughout the course of this work can be easily
extended to work on a 3-bounded network topologies, n-bounded network topolo-
gies or even unbounded ones.

State-of-the-art algorithms that exist at the current moment usually provide
either strive to provide the result that is optimal for some limited subset of allowed
topologies of the resulting network [2, 13], thus limiting possible solution space
tremendously, or tend to provide constant estimates for the optimality of the resulting
network, which are most of the times too large to be applied in real-life cases. In this
work, we provide a set of algorithms that both alleviate most of the constraints on
the output topologies of the networks and provide better results on real-life network
demand profiles than existing algorithms for this problem.

For example, one of the most well-known algorithms for this problem finds
an optimal solution in the solution space that is limited to binary search trees, which,
in most cases, is far from the optimal solution in an unconstrained solution space.
By alleviating this constraint we allow ourselves to access more optimal solutions.

The algorithms proposed in this work mostly consist of the base algorithm
with some heuristics applied to its output. We use the algorithm mentioned above
as the base as well as the brand-new maximum spanning tree algorithm. Heuristics
that are applied on top of the base algorithms include the algorithm that switches
vertices in the resulting network to provide more optimal results, the algorithm that
finds optimal solutions for small branches of the resulting network essentially find-
ing the best possible rearrangements of vertices and edges within them and the con-
densing algorithm that changes the main structure of the resulting network graph by

7

condensing it into several large components and finding the optimal rearrangement
for them.

We later derive an evolutionary algorithm based on the aforementioned heuris-
tics as well as subtree rearrangements, which in turn allows us to employ the power
of the simulated annealing algorithm.

8

CHAPTER 1. INTRODUCTION TO THE SUBJECT AREA
In this chapter, we define the basic definitions of the entities we are operating

on in this work aswell as describe the existing approaches to the problem in question.

1.1. Computer Networks
Computer networks are an integral part of modern information technology in-

frastructure. They allow computers and other digital devices to communicate with
each other, share resources, and access information from remote locations. A com-
puter network in a broad sense is a collection of interconnected devices such as
computers, servers, routers, switches, and other network-enabled devices that com-
municate with each other using various networking protocols.

For the simplicity of the theoretical approach to this problem, we would rep-
resent any computer network as an undirected graph, where the set of vertices V
represents hosts and the set of edges E represents all kinds of connections between
the hosts. We consider an unweighted graph even though in real life links between
different hosts can have drastically different characteristics.

1.2. Demand Profile
The demand profile of a network refers to the pattern of usage and traffic on

the network over a certain period of time. It is a characterization of the amount and
type of data that is transmitted across the network at different times of the day, week,
or month.

The demand profile can be affected by various factors such as the number
of users on the network, the type of applications being used, the time of day, and
the location of the users. The nature of the demand profile for a network can vary
widely depending on the specific network and its usage patterns. Some networks
may experience relatively constant traffic levels throughout the day, while others
may experience peaks and troughs of traffic based on specific events or user behav-
ior.

In a theoretical model, demand, or load, can be defined as a matrix M of
size n× n where n is the size of the network that it corresponds to. Value Mij

numerically denotes the amount of traffic between nodes i and j of the network —
it can be expressed in the total size of the packets that are passed from one of the
nodes to another, in the number of packets, in the percentage from the total number
of packets passed through the system, or in any other way. In the theoretical model,

9

we abstract from the actual meaning of these numbers and would just operate on
them.

An alternative way to represent the network load would be via a demand
graph, which is a weighted graph corresponding to the demand represented as a
matrix. In a general case, representation of the demand as a graph does not yield
any benefits as it would just be a fully connected graph, but in case the load is not
very sparse but rather follows some specific very heavy paths while leaving oth-
ers unsaturated, the graph is a much more optimal representation of the network’s
demand.

1.3. Statically Optimal Network
A statically optimal network is a network design that is optimized for a spe-

cific set of traffic patterns and usage requirements. In other words, the network is
designed to provide the best possible performance and efficiency for a particular set
of conditions, without considering changes in traffic patterns or usage over time.

In the theoretical model in which we are working, the statically optimal net-
work can be defined as such a network that if W is the demand graph represented
by an adjacency matrix andD is a distance matrix of the constructed network, then:(∑

0⩽i,j⩽n

Wij ·Dij

)
→ min (1)

We would refer to the value of the sum above as the cost of the network,
denoted as follows:

C(D,W) =

(∑
0⩽i,j⩽n

Wij ·Dij

)
(2)

1.4. Topological Limitations
It is obvious that the solution to the problem of finding the statically optimal

network for an arbitrary demand profile is always constant and equal to the full
graph. However, this network topology does not make a lot of sense in real-world
applications of the described problem, as we would not be able to connect all hosts
with each other as their number grows, because most of the modern computers and
servers have a very limited number of ports available on them.

10

Thus it seems natural to narrow down the set of network topologies that we are
allowed to construct in the problem of finding statically optimal networks. We pro-
ceed to describe a few of them: line topology; tree topology; binary tree topology;
and ∆-bounded topology, more specifically, 3-bounded topology.

1.5. Demand Profile Limitations
The set of constraints that we require to uphold the demand profile can also

vary. We will not extensively focus on different kinds of such limitations, however,
certain particularly interesting cases will be described in Chapter 2 of this work.

1.6. Examples of Certain Limited Problems
Let’s explore the solutions for some of the limited versions of the statically

optimal network search problem.

1.6.1. Chain Demand Graph
First, we consider a pretty simple case, in which the demand graph is a chain:

Wij ̸= 0 ⇔ i + 1 = j. As an introduction to the more general problem that
we would try to solve later, we impose the same topological limitation for the all
problems described below: the resulting network would have to be a binary tree or
3-bounded tree topology.

The optimal tree for the chain is quite obvious — it would be the same chain,
but now as a network graph. Its optimality can be easily proven — for each pair of
adjacent vertices (i.e., such that i+ 1 = j) we would have to add at leastWij to the
sum we minimize. Obviously, this is a lower bound. We can construct a graph that
achieves that sum – it would be a tree, in which only vertices with adjacent numbers
are connected. Such a graph matches the lower bound.

The case of the chain can be generalized on a so-called chain forest: a graph
that contains one or more separate chains in it. You can also perceive it as a chain
without some edges. Again, an example that achieves the lower bound can be con-
structed in a similar fashion.

1.6.2. Unary Cycle Demand Graph
This is a slightly more complicated case, in which we consider the demand

graph to be a unary cycle:

Wij =

1 , if (i+ 1) mod n = j

0 , otherwise.
(3)

11

Again, as an introduction to the more general problem that we would try to
solve later, we impose the same topological limitation for the all problems described
below: the resulting network would have to be a binary tree or 3-bounded tree topol-
ogy.

This case is a little bit more complicated. We need to “traverse” the network,
which is the tree, in the following manner — from the 1st vertex to the 2nd, then
from the 2nd to the 3rd, and so on, until we go from the n-th vertex to the 1st again.
It can easily be seen that the problem of minimizing the length of this traversal is
equivalent to the original problem.

Then, for each edge in the resulting graph, we can calculate the number of
times we traverse it by doing the following: let sets A and B be the components of
connectivity which emerges if we delete this edge, then a number of pairs of vertices
adjacent in a cycle and that are in different sets would be equal to the number of
traversals of this edge. Considering that both A and B are non-empty, we can see
that the lower bound for the number of traversals of any given edge is two. Thus we
have proven that for the cycle of n vertices, the minimal value of the sum would be
2 · (n− 1).

Again, we can construct such a graph, that it would achieve that lower bound.
If we order vertices from 1 to n (or in any shifted order) and build an arbitrary binary
search tree on them, we achieve the required result.

1.6.3. Complete Demand Graph
In this scenario, we would examine the demand graph represented by a com-

plete graph with all of the weights on the edges equal (without loss of generality,
let’s say that they are equal to 1).

Theorem 1. Optimal Network For Uniform Load The optimal network with a
tree topology for a demand graph that is a complete graph on n vertices with equal
weights is a star graph.

Definition 2. The star graph Sn of order n, sometimes simply known as an «n-
star» [16], is a tree on n nodes with one node having vertex degree n − 1 and the
other n− 1 vertices having a degree of 1.

Proof. It can be seen that there are (n−1)·(n−2)
2 pairs of vertices that have a

distance of 2 between them and n − 1 pairs that have a distance of 1. But it is
obvious that every tree has exactly n − 1 pairs that have a distance of 1 — exactly

12

pairs of vertices connected by edges. This means that the star graph has a minimum
sum of distances between all of the vertex pairs.

One can notice that we have not imposed any topological limitations on the
network in this case. However, the case of the uniform load for the network limited
to a binary tree is considered in great detail in previous research [15].

1.6.4. Complete Bipartite Demand Graph
This scenario is similar to the previous one, but we will look at the complete

bipartite graph instead of a complete graph.
Theorem 3. Optimal Network For Uniform Bipartite Load The optimal net-

work with a tree topology for a demand graph that is a complete bipartite graph
Kn,m with equal weights is constructed in the following way: we take one arbitrary
vertex from each part and connect it to all of the vertices in the other part.

Proof. As in the previous theorem, we can easily see that there could only be
n+m− 1 pairs of vertices such that distance between them is exactly 1. However,
it is a well-known fact that in a bipartite graph distance between vertices in the same
part is always odd, and between the vertices in different parts, it is always even.
Thus, we can find a lower bound for the sum of distances between all of the pairs of
vertices in this graph:

L = (n+m− 1)+2·
(
n · (n− 1)

2
+

m · (m− 1)

2

)
+3·(n ·m− n−m+ 1) (4)

It can easily be seen that the aforementioned graph exactly reaches this bound.

Conclusions on Chapter 1
With the introduction and sample cases out of the way, we can approach the

problem that would be the main case we are looking at in this work: one where the
network topology is limited to be a binary tree and there are no limitations on the
demand profile.

13

CHAPTER 2. APPROACHES TO THE PROBLEM
In this chapter, we describe the approaches we employ to tackle the problem,

starting with base approaches that are algorithms tailored to give a good initial ap-
proximation of the solution that can later be enhanced with subsequent applications
of heuristical algorithms which would be described later in this chapter.

The use of multiple algorithms to solve optimization problems is a common
approach that can provide several benefits. In many cases, a single algorithm may
not be sufficient to provide the optimal solution or may be prone to getting stuck in
local optima. By using a combination of algorithms, it is possible to overcome these
limitations and achieve a better overall solution.

The base algorithm that is used to solve the problem of finding the statically
optimal network may be chosen based on its effectiveness or its speed of conver-
gence. Once the initial solution has been obtained using the base algorithm, ad-
ditional enhancement algorithms can be applied to improve the solution. These
enhancement algorithms may include techniques such as local search or heuristic
algorithms, which refine the solution by making small adjustments to the initial so-
lution.

One may think of base and enhancement algorithms as functions that have
signatures which can be seen in the listing 1.

Listing 1 – Base and Enhancement Algorithm Signatures

Demand = List[List[int]]

AlgorithmResult = Tuple[Graph, int]

BaseAlgorithm = Callable[[Demand], AlgorithmResult]

EnhancementAlgorithm = Callable[[Demand, AlgorithmResult],
AlgorithmResult]

As one can see, the idea behind the base algorithm is to create some initial
solution for the given demand, and the idea behind an enhancement algorithm is to
take some other solution (provided by either the base algorithm or another enhance-
ment algorithm) as well as the demand profile and create a better solution on that
basis.

Overall, the use of multiple algorithms to solve optimization problems can
provide a more robust and reliable solution, as it takes advantage of the strengths of

14

different algorithms and reduces the risk of getting stuck in local optima. However, it
is important to carefully select the algorithms and use them in a coordinated manner
to ensure that they are complementary and not redundant. Different combinations
of those approaches provide different results depending on the data set they are used
for, however, the exact details of the experiments would be described in the next
chapter.

2.1. Base Approaches
In this section, we discuss base algorithms, which are the fundamental build-

ing blocks for all the algorithms that we build in this work.

2.1.1. Bruteforce Algorithm
It is worth noticing that the algorithm of finding the statically optimal network

for an arbitrary topology is NP-hard by reduction to MinLA [1].
We can try to solve the problem of finding the statically optimal network with

a binary tree topology by iterating over all possible binary trees. There are exactly
a 2n!

(n+1)! binary trees on n vertices, which is the n-th Catalan number [9].
Another approach, which is also asymptotically NP-hard is to use a SMT

solver for the problem of minimization. Several SMT solvers have this function-
ality, most notably Z3 [10], however, this approach does not seem to gain any per-
formance over the simple brute force.

There are some arguments for trying out different SMT solvers or even dif-
ferent kinds of solvers, but that falls out of the scope of this work.

2.1.2. Best For Binary Search Tree
This approach incorporates the power of dynamic programming by subseg-

ments [17] to find a truly statically optimal network whose topology represents a
binary search tree. Another way to phrase it would be: given the fixed permutation
of the nodes, find the truly statically optimal network whose topology is a binary
search network on the nodes in the order of the permutation. This approach was
briefly mentioned in another article [13], however here we explain it in detail and
give a deeper introduction to the implementation itself.

Let’s strictly formulate our problem as follows: we are given n vertices,
enumerated from 1 to n. We construct a binary search tree on those vertices and
then make a number of pair-wise requests between them. Each request takes the

15

shortest path between the vertices. Those requests are represented with a matrix
W of shape n × n, where Wuv is equal to the number of requests between u and
v. Given a matrix W , in a O(n3) time construct a binary search tree, such that(∑

u,v Wuv · d(u, v)
)
→ min.

We will solve this problem using dynamic programming on subsegments. For
each segment [l; r] we will construct such a BST that (t is the root of this tree): ∑

l⩽i,j⩽r

Wij · d(i, j)

+

 ∑
l⩽i⩽r, j /∈[l;r]

Wij · d(i, t)

→ min (5)

It is easy to notice, that for a segment [1;n]minimization of this value is equiv-
alent to minimization of

(∑
u,v Wuv · d(u, v)

)
because the second term is equal to

zero.
The base of dynamic programming would be valuesDll = 0 because for such

subtrees the inner sum (first term of the value we’re minimizing) would be equal to
zero and sum to the root (second term) would also be equal to zero because distance
from the root to the root is equal to zero.

Now let’s describe transition of dynamic programming. For a segment [l; r]
we would iterate over all of the vertices in it, constructing a BST for each of them
such that it has a root in that vertex (let’s call it t) and is minimizing the aforemen-
tioned value on that segment. Let’s prove, that the optimal tree with fixed root t is
exactly constructed of an optimal tree on a [l; t− 1] segment and an optimal tree on
a [t+ 1; r] segment, both of which are connected to t: ∑

l⩽i,j⩽r

Wij · d(i, j)

+

 ∑
l⩽i⩽r, j /∈[l;r]

Wij · d(i, t)

 (6)

Unfolding the terms we get:

16

 ∑
l⩽i,j<t

Wij · d(i, j)

+

(∑
t<i,j⩽r

Wij · d(i, j)

)

+

 ∑
l⩽i<t, t<j⩽r

Wij · (d(i, t) + d(t, j))

+

(∑
l⩽i<t

Wit · d(i, t)

)
+

(∑
t<j⩽r

Wtj · d(t, j)

)

+

 ∑
l⩽i<t, j /∈[l;t)∪(t;r]

Wij · d(i, t)

+

 ∑
t<j⩽r, i/∈[l;t)∪(t;r]

Wij · d(t, j)

(7)

Regrouping the terms we get: ∑
l⩽i,j<t

Wij · d(i, j)

+

(∑
t<i,j⩽r

Wij · d(i, j)

)

+

 ∑
l⩽i<t, j /∈[l;t)

Wij · d(i, t)

+

 ∑
t<j⩽t, j /∈(t;r]

Wij · d(t, j)

=

 ∑
l⩽i,j<t

Wij · d(i, j)

+

(∑
t<i,j⩽r

Wij · d(i, j)

)

+

 ∑
l⩽i⩽t−1, j /∈[l;t−1]

Wij · d(i, tl)

+

 ∑
t+1⩽j⩽t, j /∈[t+1;r]

Wij · d(tr, j)

+

 ∑
l⩽i⩽r, j /∈[l;t)∪(t;r]

Wij

(8)

N.B.: cases of l = t and t = r are solved in a same manner.
It can be seen that this is equivalent to two independent terms that we already

optimized via dynamic programming and another term, which is constant for a cho-
sen vertex t. It is proven then, that we find an optimal tree on this segment if we
iterate over all of the vertices on the segment and build a tree that is described above
for each of them.

17

Now, let us describe the implementation of the aforementioned algorithm: we
would iterate over lengths of segments from 1 to n, therefore considering O(n)

segments on each iteration, each of which is processed in aO(n) ·T (n) time, where
T (n) is asymptotic of building optimal BST with a fixed root. If we would store
a sum of all «outgoing» weights, i.e.

∑
i∈[l;r], j /∈[l;r]Wij , then calculating a value

that we’re optimizing would take O(1) time and calculating this new sum for a
chosen optimal value would take O(n) time, but it happens once during iteration
over subsegments, so overall asymptotic of a dynamic step would be
O(n) · O(1) +O(n) = O(n). Total asymptotic would be O(n3).

2.1.3. Best BST Over Multiple Permutations
It can be noticed that a very easy way to get better results for the problem

of finding a statically optimal binary tree for the given demand profile may be to
launch the aforementioned algorithm multiple times. To find a truly optimal result
we would have to launch this algorithm for n! times, which is, sadly, too much.
However, launching it a polynomial number of times may yield some results while
not sacrificing performance. This would be discussed in detail in the section with
experiments.

A better and deeper description of the algorithm itself can be found in listing 2.
The idea here is to achieve permuting the demand matrix without actually copying
data over, thus just creating a so-called permutation lense, which overrides the access
operator by providing the element by an index of a permutation element. By doing
this we can easily leverage the power of the already described best BST algorithm
in a section 2.1.2 in order to do this for multiple random permutations.

It is quite obvious that the time complexity of this algorithm is exactly
O(N · n3), where N is the number of iterations that this algorithm will be launched
for. If we imagine that N has some dependency from n, then we can, for example,
launch n2 iterations of the algorithm described in a section 2.1.2, thus keeping it
polynomial. The results of this technique would be explored in detail in the third
chapter of this work.

This base algorithm can be seen as the best effort to approach the really opti-
mal tree, as after going through all of the n! possible permutations for the sequence
of nodes we would eventually find the optimal solution for the problem. Obviously,
the more possible permutations we would go through, the closer we become to the
optima.

18
Listing 2 – Best BST Over Multiple Permutations

class PermuatationLense(Generic[E]):
def __init__(

self
, permutation: List[int]
, inner: List[E]
) -> ’PermutationLense’:
self.permutation = permutation
self.inner = inner

def __getitem__(
self

, index: int
) -> E:
return self.inner[self.permutation[index]]

def best_bst_over_multiple_permuatations(
demand: List[List[int]]

, how_many_permutations: int
) -> Tuple[Graph, int]:

best_tree, best_cost = None, float(’inf’)

for _ in range(how_many_permutations):
permutation = gen_random_permutation(len(demand))

demand_lensed = PermutationLense(permutation,
PermutationLense(permutation, demand))

tree, cost = find_best_bst(demand_lensed)

if cost < best_cost:
best_tree, best_cost = tree.reverse_permutation(

permutation), cost

return best_tree, best_cost

2.1.4. Greedy Algorithms
As we cannot get a good scaling effect for the best binary search tree algo-

rithm described above because it only finds an answer for some fixed ordering of
the vertices, we want to create some algorithm that would be scalable and produce
some results for any demand profile provided.

In this section, we would describe the generic family of greedy algorithms
that can be further investigated in greater detail in the following sections.

19

Let’s say that we are given a demand graph D and we start with an empty
set of edges E for the network we are constructing. Let’s choose some function
f0 : V × V → N. Among all of the vertices of the graph D we select such vertices
a and b that the value of f0(a, b) is maximal among all of such pairs (or an arbitrary
pair if there are several tied to be maximal) and add an edge (a, b) to the setE. Then
we repeat this step, now constructing a new function fi : A → N, whereA ⊂ V ×V

such that (x, y) ∈ A if and only if x and y are not connected by edges existing on
this step, pi(x) < b, and pi(y) < b, where pi(v) is a power of vertex v before i-th
step and b is a bound, 3 in our case (we can see that f0 actually also obliges these
rules). The listing 3 showcases this algorithm for the case of the single f which has
limited inputs on every step. The notion of DSU in that listing stands for a Disjoint
Set data structure [14].

Listing 3 – General Greedy Algorithm

def general_greedy(
f: Callable[[List[List[int]], int, int], int]

, bound: Optional[int] = None
, demand: List[List[int]]
) -> Set[Tuple[int, int]]:
n = len(demand)
dsu = DSU(n)
edges : Set[Tuple[int, int]] = set()

for _ in range(n - 1):
bx, by, bf = 0, 1, 0
for x, y in product(range(n), range(n)):

bound_requirement = (bound is None) \
or (len(tree.adj[x]) < bound and len(tree.adj[y])

< bound)
if x != y and not dsu.are_united(x, y) and

bound_requirement:
fv = f(demand, x, y)
if fv >= bf:

bx, by, bf = x, y, fv
edges.insert((bx, by))
dsu.unite(bx, by)

return edges

The above description is overgeneralized, but this broad definition of an al-
gorithm allows us to experiment with f . Some obvious examples of f can include:
— f(x, y) = Wxy;
— f(x, y) =

∑
iWxi +

∑
iWiy.

20

One can easily see that the algorithm above works in a
O(n · (n2 + logn+ α(n))) = O(n3) time. Obviously, this can be optimized in the
case of certain functions.

2.1.5. Maximum Spanning Tree
This algorithm spans from the aforementioned family of greedy algorithms

and is the specification with a constant function fi(x, y) = Wxy with its space nar-
rowed down to an available set of vertices. An observant reader can notice that this
is equivalent to finding a maximum spanning tree in a demand graph, which can be
done in a greatly reduced time than the asymptotic described in the previous section.

There are a plethora of well-known algorithms for finding minimum spanning
trees [3, 5, 8], which can easily be adapted to find a maximum spanning tree.

This yields a very fast algorithm, especially for sparse demand profiles. How-
ever, it should be noticed that this algorithm does not account for any of the second-
order demand effects in the profile, thus failing to capture a lot of patterns that occur
in the demand profile. However, this is a good and efficient base algorithm for future
enhancement algorithms and heuristics.

2.2. Enhancement Algorithms
In this section, we discuss the enhancement algorithms, which are meant to

be applied on top of some existing solutions produced by either base algorithms or
other enhancement algorithms.

2.2.1. Switching
The switching algorithm is the first of the enhancement algorithms that we

cover in this work. Themain idea is that we can switch two vertices in a network that
are connected by an edge if it makes the cost of the network better. The computations
required to do that are not hard and costly, which means that we can perform this
algorithm without having to sacrifice a lot of performance.

Let’s describe a procedure of doing one switch operation on a network N for
an edge (a, b). Let’s say that the components into which the network splits if this
edge is removed are called L and R. For clarification, these are the sets that the

21

below holds:

a ∈ L

b ∈ R

L ∪R = N

L ∩R = ∅

(9)

Let’s calculate a cost for the current state of the network D:

C(D,W) =
∑
i∈L

∑
j∈R

DijWij =

 ∑
i∈(L\a)

∑
j∈(R\b)

DijWij

+

+

 ∑
i1∈(L\a)

∑
i2∈(L\a)

Di1i2Wi1i2

+

 ∑
j1∈(R\b)

∑
j2∈(R\b)

Dj1j2Wj1j2

+

+

 ∑
i∈(L\a)

WiaDia

+

 ∑
i∈(L\a)

WibDib

+

+

 ∑
j∈(R\b)

WajDaj

+

 ∑
j∈(R\b)

WbjDbj

(10)

And now for the network where a and b are switched in their places (D′):

C(D′,W) =
∑
i∈L

∑
j∈R

D′
ijWij =

 ∑
i∈(L\a)

∑
j∈(R\b)

D′
ijWij

+

+

 ∑
i1∈(L\a)

∑
i2∈(L\a)

D′
i1i2

Wi1i2

+

 ∑
j1∈(R\b)

∑
j2∈(R\b)

D′
j1j2

Wj1j2

+

+

 ∑
i∈(L\a)

WiaD
′
ia

+

 ∑
i∈(L\a)

WibD
′
ib

+

+

 ∑
j∈(R\b)

WajD
′
aj

+

 ∑
j∈(R\b)

WbjD
′
bj

(11)

22

It can be noted that:

∀i ∈ (L \ a) : Dia = D′
ia − 1

∀i ∈ (L \ a) : Dib = D′
ib + 1

∀j ∈ (R \ b) : Daj = D′
aj + 1

∀j ∈ (R \ b) : Dbj = D′
bj − 1

∀i, j ̸= a, b : Dij = D′
ij

(12)

Given this, we can easily compute C(D,W)− C(D′,W):

C(D,W)− C(D′,W) =

 ∑
i∈(L\a)

∑
j∈(R\b)

(
Dij −D′

ij

)
Wij

+

+

 ∑
i1∈(L\a)

∑
i2∈(L\a)

(
Di1i2 −D′

i1i2

)
Wi1i2

+

+

 ∑
j1∈(R\b)

∑
j2∈(R\b)

(
Dj1j2 −D′

j1j2

)
Wj1j2

+

+

 ∑
i∈(L\a)

(Dia −D′
ia)Wia

+

 ∑
i∈(L\a)

(Dib −D′
ib)Wib

+

+

 ∑
j∈(R\b)

(
Daj −D′

aj

)
Waj

+

 ∑
j∈(R\b)

(
Dbj −D′

bj

)
Wbj

 =

=

 ∑
j∈(R\b)

Wbj −Waj

+

 ∑
i∈(L\a)

Wia −Wib

(13)

This value determines how much the cost changes if a and b are switched.
Thus, if we compute this value, we can make an informed decision on whether we
want to switch the vertices or not.

This is the very essence of the switching algorithm — we would call an it-
eration of the switching algorithm one passage along all of the edges in the graph.
Based on the above value formula we can compute it inO(n) time, thus the iteration
can be completed in O(n2) time.

23

Wewould later experiment with a different number of iterations for the switch-
ing algorithm, but for now, it is worth noticing that only a handful of those iterations
are sufficient to greatly improve the cost of the network.

2.2.2. Smashing
The switching is a good algorithm but it does not change the structure of the

network. The structure of the network is a graph that represents it without respect
to the ordering of the vertices, and it can easily be seen that no number of switching
iterations could change that. However, if we want to get closer to the optimal net-
work, we need to find a way to change the structure of the binary tree representing
it.

The first attempt at doing that is called branch smashing. Recalling that we
can find a truly statically optimal binary tree for some small number of vertices in a
reasonable amount of time, we can construct an algorithm that would go over each
subtree of the whole network which is of size N or less, where N is some constant
chosen ahead of time and find a truly statically optimal binary tree for each of them.

This would take a time proportional to O(N 3 · N !), which is a constant de-
pending on the parameter N , which we select ahead of time. Obviously, we would
not select any big N as we care for the algorithm’s performance.

The high-level overview of this algorithm is as follows: we would find all
of the branches with size less or equal to N that are maximal by inclusion, i.e., if
there’s a branch of size N1 ⩽ N and it has a sub-branch of size N2 < N1, then we
would only consider the first branch and not the sub-branch, and after that would
find the optimal network structure for each and any of them.

One may wonder how we can find such branches and what would be the
asymptotics of that algorithm. Conveniently, we can find all such branches by first
finding two nodes such that the path between them is the diameter of the network.
As a reminder, the diameter of a graph is the length of the shortest path between
the most distanced nodes. We can find such a pair of vertices using two depth-first
searches of a graph launched sequentially, thus leading to complexity O(n). After
that, for each of those vertices, we would root the tree on that vertex and calculate
the sizes of subtrees, remembering each one that matches the criteria. This is also
done via a series of depth-first searches and amounts for a total asymptotic ofO(n).

24

Observant readers may also question this approach for it may not always find
all the branches that match the criteria. That is true; however, this statement holds
for graphs with a diameter of at least N , which is shown by a theorem below.

Theorem 4. Finding Branches Of Size N Or Less If the graph has a diameter
of at leastN , then a depth-first search from two vertices distances between which is
equal to the diameter will find all of the branches of size N or less.

Proof. It can be seen that the only way in which we would not find some
branch in a depth-first search is when both of the starting vertices lie within that
subtree. However, that contradicts the condition that the diameter of a graph is at
leastN because the maximum distance between two vertices within a tree of sizeN
is equal to N − 1.

Overall, it can be seen that this algorithm runs inO(n+N 3·N !) time. Different
values of N are explored in detail in the chapter with experiments.

This algorithm, unlike the switching algorithm, can change the structure of the
network it is applied to, however, for large values of n the core part of the network
structure is unaffected. To tackle this issue we would try to enhance this approach
further.

2.2.3. Compaction
Compaction is a technique derived from ideas of the divide-and-conquer ap-

proach [4]. The basic idea is taken from the branch smashing algorithm but now is
applied on a global level.

To do compaction, we first split the network into a number of chunks that are
chosen ahead of time, let’s call itN , with roughly the same amount of elements while
remembering how they were connected. Then, we do compactions recursively on
the chunks, possibly rearranging the vertices inside them. Afterward, we connect
the chunks again, trying all of the possible combinations of connections between
them, possibly redrawing some edges.

The time complexity of this algorithm depends on the method we employ in
order to split the graph into chunks. The particular technique that we would tend to
use for the implementation of this algorithm would be centroid decomposition [6].
We be repetitively choosing a centroid on the subtrees to create the subgraphs with
approximately equal sizes. On each iteration we would add at least one new compo-
nent, thus bringing the complexity of splitting the tree into components toO(N ·n).
It can be seen that the algorithm for just splitting has a O(N · n logn) time com-

25

plexity because we would have to do this component splitting on each level of the
recursion. This is a usual time complexity for a lot of the divide-and-conquer algo-
rithms.

Now, let’s discuss how joining components would work. We define a notion
of connectors, which are simply the vertices in a component that previously had an
edge to a different component. Thus, for a tree that is split into N components, we
would have 2N connectors. We would now iterate over all of the possible ways to
arrange those connectors into pairs joined by an edge such that the whole tree is con-
nected. This is done by ensuring the connectivity of the tree with the help of Disjoint
Set [14] of sizeN . It is a well-known fact that there are exactly

∏N
i=1(2N − 2i+1)

ways to split 2N elements into pairs.
Thus, if we deem N as a constant, it can be seen that the algorithm described

has a time complexity of O(n logn) with an obviously enormous constant that de-
pends on N .

As this algorithm is quite hard to understand, listing 4 showcases the rough
outline of this algorithm’s implementation. This algorithm can be roughly divided
into three main stages: splitting, recursion, and connecting. Let’s go over the steps
of this algorithm in detail.

First, as we split the tree into components, we create a queue of components
to split. We would iteratively extract one element from the queue, getting an index
of the next component that we would split. Next, we find a centroid for just that
component. As a reminder, a centroid is such a vertex, that if there are n vertices in
a tree, each of the components into which the tree would be divided if we delete the
centroid would have the size of no more than n

2 . After finding a centroid, we split
the component we were looking at into two parts. We remove the edge between the
components and record it. One of the components would contain one of the subtrees
spurring from the centroid, and the other one would contain the centroid itself and
all of its other subtrees. Such a division ensures that by the Dirichlet principle sizes
of components would not differ from each other more than two times. After that, we
add newly created components to the queue and continue iterations until we have
enough components.

Secondly, we launch the same algorithm recursively from all of the compo-
nents. It will become evident after discussing the third part of the algorithm that

26

all of the invariants, such as a degree bound and absence of cycles, would hold for
those components.

The third and final stage of the algorithm is reconnecting. As we recorded all
of the previous connections between components in the first stage, now let’s call the
multiset of nodes they were connecting a set of connectors. Each instance of the
connector in the multiset tells us that the corresponding node for that connector can
be connected to some other node via an edge without exceeding its bounded degree.
Incidentally, if the node appears in a list of connectorsmultiple times, it shows us that
it is at least that much above the degree bound right now. Now we would look at all
of the possible splits of the connector nodes into pairs which would be connected by
edges in the resulting tree, select only valid splits and choose the best one. It can be
seen that the validity of a split can be checked with time complexity ofO(α(N) ·N)

as it follows from the Disjoint Set operations complexity [14]. The split is valid if
and only if all of the components are connected by edges in that split.

Overall, as we have seen, the time complexity of this algorithm with regard to
n only is O(n logn). However, if we account for the selection of N it will become
O(2N · N ! · n logn). This obviously prompts us to use very small values of N in
order to avoid imminent performance losses.

2.2.4. Branch Switching
This algorithm is mostly needed for the evolutionary approach that is de-

scribed later. This is a very effective and cheap way to change the structure of the
tree. We would examine two versions of this algorithm here: one that does not care
for the costs of the resulting tree and one that does. Both of them would be quite
simple and the differences would mostly be nominal.

The idea is very similar in shape and form to the one that inspires the switching
algorithm — what if we just switch two branches of the tree and see what comes
out of it? The first idea is just to switch them without actually checking the cost
improvement, which can be very beneficial for the evolutionary algorithm, as it
aggressively reshapes the network while being extremely fast, even though it may
make the cost worse. The second idea is to switch the branches with much more
care and precaution, by first checking whether this would improve the cost of the
network and only then switching the branches.

When discussing the algorithm itself, we may naively think that it would be
fine to just switch second vertices for two random edges in the network, but that

27
Listing 4 – Compactions Algorithm

def apply_compaction(
cut_into: int

, weights: List[List[int]]
, tree: Graph
) -> Tuple[Graph, int]:
We save a queue of components that we want to split
to_cut = deque([0])
And maintain a number of components
components = 0
As well as the assignment of components to nodes
colors = [0 for _ in range(tree.n)]

Repeat until we have the required number of components
while components < cut_into:

Choose the component which we will split;
component_to_cut = to_cut.popleft()
Find its centroid;
centroid = find_centroid(tree, component_to_cut)
Color new components and add them to the queue.
color_new_components(centroid, tree, to_cut)

Now we need to pair up all the connectors and figure out
which is best

Generate all possible splits;
possible_splits = split_into_pairs(connectors)
And check whether they are ok.
valid_splits = list(filter(check_split_correctness,

possible_splits))

best_cost, best_split = float(’inf’), None
for split in valid_splits:

cost = cost_of_split(split, tree)
if cost < best_cost

best_cost, best_split = cost, split

apply_split(best_split, tree)

return tree, best_cost

may lead to the creation of a cycle. Therefore, we first need to check the correctness
of the proposed switch.

The high-level description of the algorithm that does a branch swap without
checking for cost improvement can be found in listing 5.

28
Listing 5 – Subtree Swap Algorithm

def swap_random_subtrees(
max_sz: int

, tree: Graph) -> Graph:
First we find a random root such that it is not a leaf
root = random.randint(0, tree.n - 1)
while len(tree.adj[root]) == 1:

root = random.randint(0, tree.n - 1)

Then we find all the possible branch candidates,
by using the depth-first search and checking the sizes of

branches.
candidates = find_all_candidates(tress)

Then, if there are at least two candidates, we switch them.
if len(candidates) >= 2:

[(s1, p1), (s2, p2)] = random.sample(candidates, 2)
switch_subtrees(tree, s1, p1, s2, p2)

return tree

2.3. Evolutionary Approach
The evolutionary approach is the pinnacle of what we have designed so far,

as it is the combination of all the approaches above. The idea of the algorithm is the
following: we would continuously evolve the population of several solutions using
the enhancement algorithms eliminating some of them on each iteration.

First, we would create an initial population consisting of the applications of all
the base algorithms to the demand profile that we are provided. Afterward, wewould
continuously evolve this population by applying certain enhancement algorithms to
all members of the population and evaluating the costs of the solution, then keeping
only some amount of the best-performing solutions and discarding the rest.

Let us define signatures for initial population producers and the mutators in
order to later describe how the evolutionary algorithm itself would look like. They
are provided in a listing 6.

Now we can explore the evolutionary algorithm itself in the listing 7.
This algorithm does a very simple thing — initially, it produces some initial

results using the initial producers provided, and then for every iteration, or gener-
ation, it applies all of the available mutations to all of the solutions in the current
population and then selects a number of best ones which do not exceed the prede-

29
Listing 6 – Evolutionary Algorithm Entity Signatures

Demand = List[List[int]]

AlgorithmResult = Tuple[Graph, int]

InitialProducer = Callable[[Demand], AlgorithmResult]

Mutator = Callable[[Demand, Graph, int], AlgorithmResult]

Listing 7 – Evolutionary Algorithm

def run_mutations(
initial_producers: List[InitialProducer]

, mutators: List[Mutator]
, demand: List[List[int]]
, max_iterations: Optional[int] = None
, pop_size: Optional[int] = None
) -> Tuple[Graph, int]:

population = [producer(demand) for producer in
initial_producers]

if pop_size is None:
pop_size = len(mutators) * len(initial_producers)

if max_iterations is None:
max_iterations = -1

iteration = 0
while iteration != max_iterations:

new_pop = [mutator(demand, tree, cost) for (tree, cost) in
pop for mutator in mutators]

asc_new_pop = sorted(new_pop, key=lambda x: x[1])

if asc_new_pop[0][1] == pop[0][1]:
break

pop = asc_new_pop[:min(len(asc_new_pop), pop_size)]

iteration += 1

return sorted(pop, key=lambda x: x[1])[0]

termined population size. After a set number of generations, or when the solution
stops improving, the evolutionary algorithm stops.

There’s no easy way to determine the time complexity of this algorithm, as
it heavily depends on the set of provided initial providers and mutators, which may

30

drastically affect the performance. Specific sets of mutators would be investigated
deeply in the next chapter along with other experiments.

Conclusions on Chapter 2
We have tediously described the benefits of the approach to the problem with

the usage of base algorithms with enhancement algorithms later applied to the out-
puts of the latter. This design decision allowed us to make our solutions modular as
well as made possible the later transition to the evolutionary algorithms.

We introduced a plethora of both base and enhancement algorithms with var-
ious strong and weak sides. Among the base algorithms, we described:
— Brute-force approach;
— Algorithm for finding the statically optimal network with a binary search tree

topology;
— Algorithm for finding the statically optimal network with a binary search tree

topology on multiple permutations;
— Generalized greedy algorithm;
— Algorithm for finding the maximum spanning tree on a demand graph.

Later we described a general idea behind the enhancement algorithms, and
specifically investigated some of them:
— Switching algorithm;
— Branch smashing algorithm;
— Compacting algorithm;
— Branch switching algorithm;
— Evolutionary approach.

We would investigate all of the experiments and benchmarks and compare
these algorithms’ effectiveness for different simulated demand profiles as well as
the real-world data in the next chapter.

31

CHAPTER 3. EXPERIMENTS
In this chapter, we would discuss the experiments proving the efficiency of

the aforementioned approaches as well as compare them against each other. These
experiments are necessary, as we are only investigating approximate solutions to the
problem in question, and therefore need to prove that the proposed algorithms and
heuristics work properly.

In order to showcase the results, we would mostly refer to several data sets
that were used as test workloads and benchmarks in the previous works [7, 11, 15],
as well as several synthetically simulated workloads. All of the workloads would
be described in detail in section ??.

3.1. Real-World Workload Description
In this section we would some of the real-world provided workloads in detail,

describing their defining characteristics and important patterns within the load.

3.1.1. Social Network Workload
The Social Network data center workload has n = 100 nodes and is very

dense, which means that there are a lot of non-zero edges in the demand profile. A
network with a dense demand profile is characterized by a consistently high level of
network traffic and usage throughout the designated time period. Unlike networks
with sporadic or fluctuating demand profiles, a dense demand profile reflects a con-
tinuous and sustained flow of data and communication activities across all of its
nodes.

In a dense network, most nodes are directly connected to a large number of
other vertices. This means that the density of edges is relatively high, resulting in
a dense graph of connections within the network structure. Each vertex in a dense
network tends to have a significant number of neighbors, forming a tightly intercon-
nected network.

3.1.2. Microsoft Workload
As if the direct opposite of the previously described workload, the Microsoft

workload has n = 10000 nodes and is very sparse, thus displaying a very interesting
contrast of patterns with the latter.

In a sparse network, most vertices have a relatively low number of connec-
tions or neighbors, resulting in a sparser graph of connections within the graph struc-
ture. There are fewer edges present, and the network exhibits a more scattered or

32

dispersed connectivity pattern. However, the edges, or the connections, that are
present in this network have a very high weight or cost in terms of our problem, thus
creating an interesting and close to a real scenario where most of the traffic in the
data center flows between some very loaded hosts.

3.1.3. pFabric Workload
This workload is one of the most interesting ones as it displays patterns of

both of the network types explored above. A network that is partially sparse and
partially dense can be seen as a combination of regions or subgraphs with varying
degrees of edge density. In such a network, certain subsets of vertices or regions
exhibit a sparse connectivity pattern, while other subsets or regions display a dense
connectivity pattern.

This type of network can arise in various real-world scenarios where differ-
ent entities or communities within the graph exhibit distinct levels of interaction or
connectivity. In a partially sparse and partially dense graph, the density of edges
and connectivity can vary significantly depending on the specific subset of vertices
being considered. The sparse regions have a lower number of edges and exhibit a
more dispersed or decentralized connectivity pattern, while the dense regions have
a higher density of edges and show a more tightly interconnected network structure.

3.1.4. ProjecToR Workload
ProjecToRWorkload is derived from a project ProjecToR [12] which explores

reconfigurable computer networks, which is an area adjacent o the one we are in-
vestigating in this work. This demand profile is also highly varying as is described
in the subsection 3.1.3.

3.2. Synthetic Workload Description
In this section, we would examine the workloads which were synthetically

generated for this particular problem. Using synthetic workloads to test our solutions
and algorithms for this approximation problem results provides several benefits:
— Controlled Environment: Synthetic workloads allow you to create con-

trolled and reproducible scenarios for testing. You have full control over the
characteristics of the workload, including its size, complexity, and specific
properties. This enables us to systematically explore different aspects of the
problem space, fine-tune parameters, and analyze the behavior of the approx-
imation algorithms under various conditions.

33

— Scalability: Synthetic workloads can be generated to mimic real-world sce-
narios with varying data sizes, problem complexities, or network structures.
This allows us to test the scalability of the approximation algorithms by in-
creasing the workload size and evaluating their performance as the problem
scales. It helps identify potential bottlenecks, efficiency issues, or limitations
of the algorithms as the workload grows.

— Comparative Analysis: Synthetic workloads facilitate fair and unbiased
comparisons between different approximation algorithms. By using the same
synthetic workload to evaluate multiple algorithms, you can directly compare
their performance, efficiency, and solution quality. This allows you to make
informed decisions about which algorithm or approach is better suited for a
particular problem.
Overall, synthetic workloads offer a controlled and flexible testing environ-

ment, providing a reliable basis for evaluating and comparing the performance of
approximation algorithms. They enable researchers to gain insights into algorithm
behavior, assess scalability, and refine strategies for improving the accuracy and
efficiency of approximation solutions.

3.2.1. Dense Workload
The synthetically generated denseworkload follows the same demand patterns

as explored in a section 3.1.1. It is generated by uniformly generating each weight
in the network, as can be seen on the listing 8.

Listing 8 – Generating Dense Workload

def gen_dense_workload(
random_object: random.Random

, n: int
, max_weight: int
) -> List[List[int]]:
return [[random_object.randint(0, max_weight) if i < j else 0

for j in range(n)] for i in range(n)]

As it can be seen, each weight for the pair of vertices i and j is generated
randomly and uniformly between 0 and the specified ahead-of-time max weight.

3.2.2. Sparse Workload
On the other hand, the synthetically generated sparse workload follows the

same demand patterns as explored in section 3.1.2. It is generated by first determin-

34

ing whether there would be any demand between two hosts via a Bernoulli process,
also known as an unfair coin toss, and then uniformly generating each weight in the
network, as can be seen on the listing 9.

Listing 9 – Generating Sparse Workload

def gen_dense_workload(
random_object: random.Random

, n: int
, max_weight: int
, prob_of_demand: float
) -> List[List[int]]:
dense = gen_dense_workload(random_object, n, max_weight)

return [[element if random_object.random() < prob_of_demand
else 0 for element in row] for row in dense]

The algorithm leverages the power of a previously created algorithm for gen-
erating dense workloads 8 and then removes some elements based on the probability
of pair of nodes having a demand between them which is specified ahead of time.

3.3. Results
In this section, we will provide the results of the experiments in different for-

mats, including, but not limited to, tables, graphs, and charts. It is important to dig
deeper into the meaning of those tests by discussing the patterns that can be ob-
served in the data that we investigate as it provides us with an understanding of the
underlying demand profiles, as well as the algorithm details and specifications.

For the synthetic workloads, we would present data aggregated for 1000 runs
on randomly generated data. Columns in the table represent the following values:
— Algorithm — the name of the algorithm used;
— Mean Result — mean cost of the results of this algorithm across all runs;
— Mean Deviation from Best — mean deviation from the best result across all

runs;
— Mean Deviation from Best (%) — mean deviation from the best result across

all runs expressed in percent;
— MinimumDeviation fromBest (%)—minimum deviation from the best result

across all runs expressed in percent;
— Maximum Deviation from Best (%) — maximum deviation from the best re-

sult across all runs expressed in percent.

35

3.3.1. Synthetic Dense Workload Results
One can find the results of the described algorithms for the synthetically gen-

erated dense graph with a maximal weight of 100, and a size of 1000 in a table 1,
and results for the synthetically generated dense graph with a maximal weight of 10
and a size of 100 in a table 2.

3.3.2. Synthetic Sparse Workload Results
One can find the results of the described algorithms for the synthetically gen-

erated sparse graph with a probability of demand equal to 0.05, the maximal weight
of 10, and size of 1000 in a table 3, and results for the synthetically generated sparse
graph with a probability of demand equal to 0.1, the maximal weight of 10 and a
size of 100 in a table 4.

It can be seen, that Maximum Spanning Tree based approaches perform sub-
stantially better on sparse workloads than Best Binary Search Tree approaches. It
also showcases that sometimes the Smasher enhancement algorithm can be better
than the Switcher enhancement algorithm.

3.3.3. Real-World Results
For the real-world data sets, we would be running each of the algorithms once

and then displaying the results on a grid with time elapsed on the X axis and the cost
of the solution generated by an algorithm on the Y axis. The shorthand names of the
algorithms are displayed on top of the points on the grid, however, we would give
an explanation of what they mean here:
— BST—Best Binary Search Tree algorithm;
— MST—Maximum Spanning Tree algorithm;
— Switching over BST — Best Binary Search Tree base algorithm enhanced

with Switching algorithm;
— Switching over MST—Maximum Spanning Tree base algorithm enhanced

with Switching algorithm;
— Smashing over BST — Best Binary Search Tree base algorithm enhanced

with Smashing algorithm;
— Smashing over MST—Maximum Spanning Tree base algorithm enhanced

with Smashing algorithm;
— Swithcing& Smashing over BST—Best Binary Search Tree base algorithm

enhanced with both Switching and Smashing algorithms;

36

— Swithcing & Smashing over MST — Maximum Spanning Tree base algo-
rithm enhanced with both Switching and Smashing algorithms;

— Evolution— evolutionary, or genetic, approach.
The result for the workload 3.1.1 can be seen on the graph 1, the result for the

Microsoft workload 3.1.2 can be seen on the graph 2, the result for the pFabric work-
load can be seen on the graph 3.1.3, and the result for the ProjecToR workload 3.1.4
can be seen on the graph 4.

As an observant reader may notice that the best benchmark we can use for
this case is multiple launches of the Best Binary Search Tree algorithm on different
permutations, as it gives us a good perspective on where the truly optimal solution
should be. However, running that algorithm for a reasonable amount of permuta-
tions takes too much time and even with a logarithmic scale, it does not fit on the
graphs. As such, we have placed those results separately in a table 5. All of those
experiments have been carried out for the same amount of random permutations —
10000. One can see that the result is always worse than the evolutionary approach.

Figure 1 – Results for Social Network Workload

37

Figure 2 – Results for Microsoft Workload

Conclusions on Chapter 3
We have showcased both using the synthetically generated workloads and

real-world benchmarks, that, first of all, the Maximum Spanning Tree base algo-
rithm which we invented in this work works wondrously as a base algorithm on the
sparse workloads, moreover, it works much better than the already discovered best
binary search tree algorithm.

Also, we provided enough evidence to the fact that the proposed enhancement
algorithms work much faster than the brute-force algorithms and showcased the fact
that they are in fact superior in reliability, performance, and overall final score to
those which existed before this work in the subject area.

Graphs provided by testing on the real-world data vividly display a variety of
different algorithms that we developed throughout this work — there are ones, such
as the Maximum Spanning Tree algorithm, that work very fast and provide a rough
initial estimation, and there are ones, such as evolutionary approach, that work much

38

Figure 3 – Results for pFabric Workload

longer, but provide far better estimates than even pre-existing algorithms that work
for marginally larger time frames.

39

Figure 4 – Results for ProjecToR Workload

40
Table 1 – Synthetic Dense Workload Results For Big Graphs

Algorithm Mean
Result

Mean
Deviation
from Best

Mean
Deviation
from Best

(%)

Minimum
Deviation
from Best

(%)

Maximum
Deviation
from Best

(%)
Best
Binary
Search
Tree

1834538.40 29720.80 0.01% 0.02% 0.02%

Maximum
Spanning
Tree

2960948.90 1156131.30 0.50% 0.64% 0.82%

Best
Binary
Search

Tree with
Switcher

1811693.20 6875.60 0.00% 0.00% 0.01%

Maximum
Spanning
Tree with
Switcher

2917672.40 1112854.80 0.48% 0.62% 0.79%

Best
Binary
Search

Tree with
Smasher

1834108.80 29291.20 0.01% 0.02% 0.02%

Maximum
Spanning
Tree with
Smasher

2887767.70 1082950.10 0.45% 0.60% 0.79%

Multiple
Launches
of Best
Binary
Search
Tree

1828223.90 23406.30 0.01% 0.01% 0.02%

Genetic
Algorithm
Approach
Over Both
Base Algo-
rithms

1804817.60 0.00 0.00% 0.00% 0.00%

41
Table 2 – Synthetic Dense Workload Results For Small Graphs

Algorithm Mean
Result

Mean
Deviation
from Best

Mean
Deviation
from Best

(%)

Minimum
Deviation
from Best

(%)

Maximum
Deviation
from Best

(%)
Best
Binary
Search
Tree

183309.00 3466.90 0.02% 0.02% 0.02%

Maximum
Spanning
Tree

213318.50 33476.40 0.09% 0.19% 0.28%

Best
Binary
Search

Tree with
Switcher

180834.70 992.60 0.00% 0.01% 0.01%

Maximum
Spanning
Tree with
Switcher

209770.90 29928.80 0.08% 0.17% 0.26%

Best
Binary
Search

Tree with
Smasher

183260.20 3418.10 0.01% 0.02% 0.02%

Maximum
Spanning
Tree with
Smasher

211310.60 31468.50 0.08% 0.17% 0.26%

Multiple
Launches
of Best
Binary
Search
Tree

182674.70 2832.60 0.01% 0.02% 0.02%

Genetic
Algorithm
Approach
Over Both
Base Algo-
rithms

179842.10 0.00 0.00% 0.00% 0.00%

42
Table 3 – Synthetic Sparse Workload Results For Big Graphs

Algorithm Mean
Result

Mean
Deviation
from Best

Mean
Deviation
from Best

(%)

Minimum
Deviation
from Best

(%)

Maximum
Deviation
from Best

(%)
Best
Binary
Search
Tree

77675.10 28397.90 0.40% 0.58% 0.74%

Maximum
Spanning
Tree

63325.40 14048.20 0.17% 0.28% 0.48%

Best
Binary
Search

Tree with
Switcher

70422.70 21145.50 0.27% 0.44% 0.60%

Maximum
Spanning
Tree with
Switcher

62952.70 13675.50 0.16% 0.27% 0.47%

Best
Binary
Search

Tree with
Smasher

77082.00 27804.80 0.38% 0.57% 0.73%

Maximum
Spanning
Tree with
Smasher

62409.40 13132.20 0.16% 0.26% 0.45%

Multiple
Launches
of Best
Binary
Search
Tree

75187.30 25910.10 0.37% 0.53% 0.71%

Genetic
Algorithm
Approach
Over Both
Base Algo-
rithms

49277.20 0.00 0.00% 0.00% 0.00%

43
Table 4 – Synthetic Sparse Workload Results For Small Graphs

Algorithm Mean
Result

Mean
Deviation
from Best

Mean
Deviation
from Best

(%)

Minimum
Deviation
from Best

(%)

Maximum
Deviation
from Best

(%)
Best
Binary
Search
Tree

16869.20 2567.40 0.11% 0.18% 0.23%

Maximum
Spanning
Tree

20276.30 5974.50 0.25% 0.42% 0.56%

Best
Binary
Search

Tree with
Switcher

15655.10 1353.30 0.03% 0.10% 0.16%

Maximum
Spanning
Tree with
Switcher

19915.50 5613.70 0.24% 0.39% 0.54%

Best
Binary
Search

Tree with
Smasher

16779.30 2477.50 0.11% 0.17% 0.23%

Maximum
Spanning
Tree with
Smasher

19863.50 5561.70 0.22% 0.39% 0.51%

Multiple
Launches
of Best
Binary
Search
Tree

16384.40 2082.60 0.09% 0.15% 0.22%

Genetic
Algorithm
Approach
Over Both
Base Algo-
rithms

14417.00 0.00 0.00% 0.00% 0.00%

44

Table 5 – Multiple Permutations Over Best Binary Search Tree

Workload Name Time Elapsed Solution Cost Evolutionary
Algorithm

Solution Cost on
the Same
Workload

Social Network 3h 34m 37891 37011
Microsoft 4h 11m 195388 188066
pFabric 4h 35m 354595 350758

ProjecToR 8h 43m 2097061 2044430

45

CONCLUSION
The research concluded with significant findings regarding the problem of

constructing statically optimal computer networks with a binary tree topology. The
use of base algorithms followed by enhancement algorithms presented a successful
approach to the problem. The study introduced a variety of these algorithms, each
having its unique strengths and weaknesses.

We have introduced the Maximum Spanning Tree algorithm, which demon-
strated excellent performance, particularly with sparse workloads, outperforming
even the best binary search tree algorithm that was previously known. Addition-
ally, we’ve introduced a plethora of enhancement algorithms that were proven to be
superior to brute-force algorithms in terms of reliability, performance, and overall
quality of the approximation.

This layered approach of base and enhancement algorithms was not only ef-
ficient but also modular, facilitating the transition to evolutionary algorithms. Fur-
thermore, an evolutionary approach, though time-consuming, provided superior es-
timates compared to existing algorithms operating within similar time frames. It
vastly outperformed the brute-force solution previously known in both the perfor-
mance and quality of the result.

The real-world data testing illustrated the versatility of the developed algo-
rithms, contributing to a comprehensive solution for the problem of constructing
statically optimal computer networks with a binary tree topology. Thus, the research
effectively pushed the boundaries of current practices, introducing new, effective
approaches to this problem.

46

REFERENCES
1 Avin C., Mondal K., Schmid S. Demand-Aware Network Designs of Bounded

Degree. — 2017. — arXiv: 1705.06024 [cs.DC].

2 Avin C., Schmid S. Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. — 2018. — arXiv: 1807.02935 [cs.NI].

3 Bader D. A., Cong G. Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs // 18th International Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. — 2004. — P. 39–.

4 Bentley J. L., Haken D., Saxe J. B. A general method for solving divide-and-
conquer recurrences // ACM SIGACT News. — 1980. — Vol. 12, no. 3. —
P. 36–44.

5 Chazelle B.Aminimum spanning tree algorithm with inverse-Ackermann type
complexity // J. ACM. — 2000. — Vol. 47. — P. 1028–1047.

6 Frederickson G. N., Johnson D. B. Generating and searching sets induced by
networks: Preliminary version // Automata, Languages and Programming: Sev-
enth Colloquium Noordwijkerhout, the Netherlands July 14–18, 1980 7. —
Springer. 1980. — P. 221–233.

7 Jupiter Evolving: Transforming Google’s Datacenter Network via Optical Cir-
cuit Switches and Software-Defined Networking / L. Poutievski [et al.] // Pro-
ceedings of ACM SIGCOMM 2022. — 2022.

8 Karger D. R., Klein P. N., Tarjan R. E. A randomized linear-time algorithm to
find minimum spanning trees // J. ACM. — 1995. — Vol. 42. — P. 321–328.

9 Koshy T., Salmassi M. Parity and Primality of Catalan Numbers // The Col-
lege Mathematics Journal. — 2006. — Vol. 37, no. 1. — P. 52–53. — ISSN
07468342, 19311346. — URL: http://www.jstor.org/stable/
27646275 (visited on 05/07/2023).

10 Moura L. de, Bjørner N. Z3: An Efficient SMT Solver // Tools and Algo-
rithms for the Construction and Analysis of Systems / ed. by C. R. Ramakr-
ishnan, J. Rehof. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
— P. 337–340. — ISBN 978-3-540-78800-3.

47

11 PFabric: Minimal near-Optimal Datacenter Transport / M. Alizadeh [et al.]
// SIGCOMM Comput. Commun. Rev. — New York, NY, USA, 2013. —
Aug. — Vol. 43, no. 4. — P. 435–446. — ISSN 0146-4833. — DOI: 10.
1145/2534169.2486031. — URL: https://doi.org/10.1145/
2534169.2486031.

12 ProjecToR: Agile Reconfigurable Data Center Interconnect / M. Ghobadi [et
al.] // Proceedings of the 2016 ACMSIGCOMMConference.— Florianopolis,
Brazil : Association for Computing Machinery, 2016. — P. 216–229. — (SIG-
COMM ’16). — ISBN 9781450341936. — DOI: 10.1145/2934872.
2934911. — URL: https : / / doi . org / 10 . 1145 / 2934872 .
2934911.

13 SplayNet: Towards Locally Self-Adjusting Networks / S. Schmid [et al.]
// IEEE/ACM Transactions on Networking. — 2016. — Vol. 24, no. 3. —
P. 1421–1433. — DOI: 10.1109/TNET.2015.2410313.

14 Tarjan R. E., Leeuwen J. van. Worst-case Analysis of Set Union Algorithms
// J. ACM. — 1984. — Vol. 31. — P. 245–281.

15 Toward Self-Adjusting k-ary Search Tree Networks / E. Feder [et al.]. — 2023.
— arXiv: 2302.13113 [cs.NI].

16 Harary F.Graph theory. — Addison-Wesley, MA : Princeton University Press,
1994. — 284 p.

17 Iskandarov I. Z.,Nurmetova B. B., Sobirov B. I.DYNAMICPROGRAMMING
BY SUBSEGMENTS. — 2022. — URL: https://cyberleninka.ru/
article/n/dynamic-programming-by-subsegments.

