
Brief Announcement: Self-adjusting Networks1

based on SkipList2

Anonymous author3

Anonymous affiliation4

1 Algorithms5

In this Section, we give the description of networks based on SkipList and SplayList.6

SkipList is a search data structure where each node has some height and they are linked7

with the neighbours on each level.8

SplayList is the self-adjusting version of the SkipList: we go from the head to the9

target node and increment the counters; if the counters satisfy some condition we either10

increase or decrease the height of the corresponding node.11

▶ Algorithm 1 (SkipListNet). Suppose we are asked the routing request between u and v (for12

simplicity, u < v). Our algorithm performs two phases: 1) go to the left and up until we get13

the next key bigger than v; 2) do the search request for v there. The example of the request14

is shown on Figure 1.15

This is the static algorithm, i.e., the network does not change.16

Figure 1 The route between the nodes 1 and 8.

Now, we consider the algorithms based on the SplayList.17

▶ Algorithm 2 (SimpleSplayListNet). Suppose we are asked the routing request between u18

and v (for simplicity, u < v). In our algorithm, we traverse from u to the root node,19

increment counters, check all adjusting conditions, and update the network if necessary.20

Then, we traverse from the root to v, increment counters, check the conditions, and update21

the network if necessary.22

▶ Algorithm 3 (TreeSplayListNet). Suppose we are asked the routing request between u and23

v (for simplicity, u < v). We traverse from u to the common ancestor to the left (in the24

terms of SkipList) of u and v and then to v. On these paths, we update the counters and25

check the adjusting conditions. Finally, we go from the common ancestor to the root and26

update the counters by 2.27

Both, SimpleSplayListNet and TreeSplayListNet serve requests with the static-optimal28

cost.29

Now, we present a structure that has more links that before. In the worst case it has30

O(n log n) links instead of O(n) in algorithms before.31

▶ Algorithm 4 (SkipParentChildNet). The structure of this network is a little bit more in-32

volved than before. At first, we introduce LeftRightSplayNet. For that we split the keys33



2 Brief Announcement: Self-adjusting Networks based on SkipList

into two equal halves and build the SplayList on both parts: the right one is the usual34

SplayList, while the left one is the SplayList but from right to the left, i.e., the root is the35

rightmost node. Then, suppose we need to make a routing request from the left half to the36

right half — we use the search request in the left SplayList and, then, the search request37

in the right SplayList.38

Now, we are ready to present the general structure. Unfortunately, LeftRightSplayNet39

works only for the requests from the left part to the right part, but we could have re-40

quests on the two nodes in one part. For that, we go recursively on both parts and build41

LeftRightSplayNet on them, and so on. Thus, if we need to pass a routing request between42

u and v, we go to the node in the structure tree that contains both u and v but in different43

halves and serve the request.44

This algorithm works a little better than the previous ones.45

Now, we introduce a random data structure: we perform adjustments only once in c46

requests.47

▶ Algorithm 5 (ProbabilityTreeSplayListNet). This algorithm is based on TreeSplayListNet48

(Algorithm 3). Suppose we are asked the routing request between u and v (for simplicity, u49

< v). With probability 1
c we perform the algorithm from TreeSplayListNet (Algorithm 3)50

with updates of the counters and adjustments. In all other cases, we perform the simple51

up-down algorithm from SkipListNet (Algorithm 1).52

If calculated and proven properly, this algorithm is also static-optimal.53

2 Experiments54

Experiments were performed on: 1) the real-life workloads Facebook, HPC and ProjectTor;55

2) the synthetic ones: the uniform and the workload with temporal locality 0.5.56

As one can see on the table, the best average length of the paths is achieved by the57

randomized algorithm.58

Table 1 The comparison of the average length of requests.

– Facebook HPC ProjectToR Uniform Locality 0.5
SkipListNet 19.62 10.13 8.81 7.94 14.35

SimpleSplayListNet 18.52 19.05 5.45 13.38 19.84
TreeSplayListNet 17.46 16.18 4.68 11.86 18.14

SkipParentChildNet 15.92 12.33 4.15 9.07 14.19
ProbabilityFrontTreeSplayListNet 12.36 8.0 2.65 5.76 10.23


	1 Algorithms
	2 Experiments

