
	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ВЫПУСКНАЯ	КВАЛИФИКАЦИОННАЯ	РАБОТА
GRADUATION	THESIS

Обобщенный	подход	для	самоподстраивающихся	деревьев	поиска	/	Generic	self-
adjusting	tree	approach

Обучающийся	/	Student	Сластин	Александр	Андреевич	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Информатика	и	программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")

Обучающийся/Student 	 Документ
подписан
Сластин
Александр
Андреевич
16.05.2023

	

Сластин
Александр
Андреевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
16.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ЗАДАНИЕ	НА	ВЫПУСКНУЮ	КВАЛИФИКАЦИОННУЮ	РАБОТУ	/	
OBJECTIVES	FOR	A	GRADUATION	THESIS

Обучающийся	/	Student	Сластин	Александр	Андреевич	
Факультет/институт/кластер/	 Faculty/Institute/Cluster	 факультет	 информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	 /	Educational	program	 Информатика	 и	 программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Тема	ВКР/	Thesis	topic	Обобщенный	подход	для	самоподстраивающихся	деревьев	поиска	/
Generic	self-adjusting	tree	approach	
Руководитель	 ВКР/	 Thesis	 supervisor	 Аксенов	 Виталий	 Евгеньевич,	 PhD,	 науки,
Университет	 ИТМО,	 институт	 прикладных	 компьютерных	 наук,	 доцент
(квалификационная	категория	"ординарный	доцент")

Основные	вопросы,	подлежащие	разработке	/	Key	issues	to	be	analyzed
Technical	 specification:	 It	 is	 required	 to	 develop	 a	 general	 approach	 for	 creating	 self-adjusting
data	 structures	 which	 support	 the	 execution	 of	 queries	 typical	 for	 ordered	 sets:	 insert,	 delete,
contains	 and	 additionally	 range-queries.	 The	 data	 structures	 must	 have	 an	 asymptotical
complexity	 of	 queries	 that	 depends	 on	 the	 number	 of	 accesses	 to	 its	 elements,	 i.e.,	 frequently
accessed	elements	should	be	faster	to	access	and	show	better	performance	on	skewed	workloads
and	our	data	structures	should	have	better	performance	on	skewed	workloads	in	compare	to	their
original	 counterparts.	 Moreover,	 it	 is	 required	 to	 compare	 the	 resulting	 self-adjusting	 data
structures	with	their	original	versions,	as	well	as	with	existing	self-adjusting	solutions,	e.g.	splay-
tree.

Contents:	The	thesis	should	contain	the	description	of	an	approach	for	creating	self-adjusting	data
structures,	 theoretical	proofs	of	asymptotics	complexity.	It	should	also	contain	 the	experimental
comparison	of	self-adjusting	versions	with	the	original	ones	as	well	as	with	existing	solutions.

Goal	of	 the	project:	Develop	of	 a	 generic	 approach	 to	 create	 self-adjusting	version	of	ordinary
data	structures	that	provide	interface	of	an	ordered	set.

Tasks	of	 the	project:	 to	create	generic	 self-adjusting	 tree	approach	and	apply	 it	 for	well-known
classic	search	trees;	to	calculate	the	complexity	of	new	data	structures;	to	implement	created	data
structures	 and	 to	 compare	 classic	 search	 trees	 and	 existing	 self-adjusting	 solutions,	 with	 the
created	ones.

Форма	представления	материалов	ВКР	/	Format(s)	of	thesis	materials:	
software	code,	presentation,	explanatory	note

Дата	выдачи	задания	/	Assignment	issued	on:	01.10.2022

Срок	представления	готовой	ВКР	/	Deadline	for	final	edition	of	the	thesis	24.05.2023

Характеристика	темы	ВКР	/	Description	of	thesis	subject	(topic)

Тема	в	области	фундаментальных	исследований	/	Subject	of	fundamental	research:	да	/
yes	
Тема	в	области	прикладных	исследований	/	Subject	of	applied	research:	нет	/	not

СОГЛАСОВАНО	/	AGREED:	

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
16.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись) 	 	

Задание	принял	к
исполнению/	Objectives
assumed	BY

	 Документ
подписан
Сластин
Александр
Андреевич
16.05.2023

	

Сластин
Александр
Андреевич

	 	 (эл.	подпись) 	 	

Руководитель	ОП/	Head
of	educational	program

	 Документ
подписан
Станкевич
Андрей
Сергеевич
22.05.2023

	

Станкевич
Андрей
Сергеевич

	 	 (эл.	подпись) 	 	

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

АННОТАЦИЯ
ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ	

SUMMARY	OF	A	GRADUATION	THESIS

Обучающийся	/	Student	Сластин	Александр	Андреевич	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M34391	
Направление	подготовки/	Subject	area	01.03.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Информатика	и	программирование
2019	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Бакалавр	
Тема	ВКР/	Thesis	topic	Обобщенный	подход	для	самоподстраивающихся	деревьев	поиска	/
Generic	self-adjusting	tree	approach	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")	

ХАРАКТЕРИСТИКА	ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ
DESCRIPTION	OF	THE	GRADUATION	THESIS

Цель	исследования	/	Research	goal	
Develop	a	generic	approach	to	create	self-adjusting	version	of	ordinary	data	structures	that
provide	interface	of	an	ordered	set.	
Задачи,	решаемые	в	ВКР	/	Research	tasks	
to	create	generic	self-adjusting	tree	approach	and	apply	it	for	well-known	classic	search	trees;	to
calculate	the	complexity	of	new	data	structures;	to	implement	created	data	structures	and	to
compare	classic	search	trees	and	existing	self-adjusting	solutions,	with	the	created	ones.	
Краткая	характеристика	полученных	результатов	/	Short	summary	of	results/findings	
I	developed	a	generic	approach	for	creating	self-adjusting	data	structures,	applied	it	to	the	classic
data	structures	and	proved	the	complexities	of	the	resulting	structures.	As	the	result,	implemented
self-adjusting	versions	showed	better	performance	comparing	with	original	ones	on	skewed
workloads.	

Обучающийся/Student 	 Документ
подписан
Сластин
Александр
Андреевич

	

Сластин
Александр

16.05.2023 Андреевич
	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name

and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
16.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

CONTENTS
INTRODUCTION. 5
1. The introduction into Self-Adjusting Ordered Sets . 7

1.1. The Ordered Set . 7
1.2. The Static-Optimality . 8
1.3. The Splay Tree . 8
1.4. The B-Tree. 10
1.5. The Interpolation Search Tree . 10
1.6. The Range queries . 11
Conclusions on Chapter 1 . 11

2. Generic Self-Adjusting Tree Approach. 12
2.1. The Tree Structure. 12

2.1.1. Formal definitions . 12
2.1.2. Construction of Ideal Tree. 15
2.1.3. Parameterization Analysis. 19

2.2. Operations . 24
2.2.1. Update operations . 24
2.2.2. Expected Time Analysis . 27
2.2.3. Search . 30
2.2.4. Range queries . 32

2.3. Concurrent lock-free extension . 34
Conclusions on Chapter 2 . 34

3. Experiments and results . 35
3.1. Graphs structure . 35
3.2. x/y workloads . 35
3.3. zipf workload . 37
Conclusions on Chapter 3 . 38

CONCLUSION . 39
REFERENCES . 40

4

INTRODUCTION
Whenever it is necessary to use efficient sequential data structures, the choice

usually falls on hash tables or balanced search trees [6] for their optimal worst-case
guarantees. These data structures assume that every element has the same proba-
bility to be accessed, in other words, the data access distribution is uniform. How-
ever, in many real workloads, the frequency of accesses to different elements are
not uniform. This fact is well-known, and is modelled in several industrial bench-
marks, such as TPC-C [9], or YCSB [4], where the generated access distributions
are heavy-tailed, e.g., following a Zipf distribution [13]. In that case, there are se-
quential self-adjusting data structures holding static-optimality property, which lim-
its their efficiency to the efficiency of the best offline data structure for the given
access sequence. However, in practice, e.g., as a database index, the software engi-
neers usually use non-self-adjusting multiway trees such as B-Trees [2] or Interpo-
lation Search Trees [8]. At the same time, they lack the properties that self-adjusting
data structures hold, for example, static-optimality. The existing well-known self-
adjusting data structures such as CBTree [5], Splay Tree [12], and its multiway
variation, K-ary Splay Tree [3] are inferior in efficiency to the mentioned above
non-self-adjusting multiway trees even on skewed workloads.

Our goal is to describe a generic approach to build self-adjusting data struc-
tures from the non-self-adjusting known structures. The main function that we
need to use is the construction of our self-adjusting data structures from the list
of pairs: (key, number of accesses). Designed data structures should provide sig-
nificant performance benefits over an original, non-self-adjusting, tree designs as
well as existing self-adjusting solutions on skewed workloads, and should have a
static-optimality property for a large class of access distributions. Moreover, our
self-adjusting data structures support range queries, allowing us to get a segment of
existing keys, and effectively calculate some function on a segment of keys. In this
work, using our approach, we create self-adjusting versions of the well-known data
structures: Interpolation Search Tree (later referred to as IST) and B-Tree, as well
as we propose a new data structure — Self-Adjusting Log Tree.

We defined several targets:
— Describe a generic approach for designing self-adjusting data structures,

which exports an interface of an ordered set, apply it for well-known clas-

5

sic search trees and create a new data structure using it. This task includes a
theoretical analysis of time complexities and memory.

— Extend designed data structures to support range queries for getting some seg-
ment of keys and for calculating some function on the segment of keys. This
target includes a theoretical analysis of time complexities and memory.

— Experimentally compare the existing self-adjusting and classic, non-self-
adjusting solutions with the new ones, presented in this work, on different
workloads. This target includes an implementation of described data struc-
tures and a tool that executes the experiments and visualizes the results. Also,
we need to analyze the obtained results.
The thesis is structured as follows:

— In Chapter 1, we give an introduction to the field of self-adjusting data struc-
tures. We define an ordered set, describe the static-optimality theorem, briefly
describe data structures on top of which, we build our self-adjusting imple-
mentations and describe range queries supported by our created self-adjusting
data structures. We finish the chapter with the description of related work and
analysis of existing solutions.

— In Chapter 2, we describe a generic approach for creating self-adjusting data
structures and consider some specific parameterizations of this approach.
Then, we analyse time and memory complexities for building such trees and
then for the operations’ they support, including range queries. Next we prove
the static-optimality property for our data structures. Finally, we briefly de-
scribe how to transform our self-adjusting trees into concurrent lock-free trees.
We finish the second chapter with the comparison of the theoretical results.

— In the last Chapter 3, we present the results of experiments. In these exper-
iments we compare the original search trees and existing self-adjusting so-
lutions with the created self-adjusting data structures on different workloads
and briefly describe them.

6

CHAPTER 1. THE INTRODUCTION INTO SELF-ADJUSTING
ORDERED SETS

In this chapter, we provide the general information about the common inter-
face and properties that we desire to obtain for our designed self-adjusting trees.
Also, we describe the original versions of the data structures on top of which we
create our solutions and consider existing self-adjusting trees, especially their re-
building heuristic.

1.1. The Ordered Set
The ordered set is a data structure that provides the following operations:

a) contains(key) — returns an information if the key exists in the data
structure or not.

b) find(key)—returns the value of an element with such a key, if it exists
in the data structure, or null, otherwise.

c) insert(key, value)—adds the pair of a key and a value to the data
structure if the key is not already present.

d) delete(key)— removes a pair with that key from the data structure if it
exists.
Until we consider range queries, find operation is an obvious modifications

of contains operation (for range queries we also need to propagate modifica-
tions from node’s ancestors), so at the beginning we will focus only on contains,
insert and delete operations.

We say that a contains(key) operation is successful (returns true) if
the requested key is found in the data structure and was not marked as deleted; oth-
erwise, the operation is unsuccessful. An insert(key) operation is successful
(returns true) if the requested key was not present upon insertion; otherwise, it
is unsuccessful. A delete operation is successful (returns true) if the requested
key is found and was not marked as deleted, otherwise, the operation is unsuccess-
ful. As suggested, in our implementations, the delete operation does not phys-
ically delete the object from the lists — instead, it just marks it as deleted. From
here and then, without loss of generality, we assume that each object consists of a
key-value pair. We thus use the terms object and key interchangeably.

7

1.2. The Static-Optimality
One of the important properties of self-adjusting data structures is the static-

optimality. The Splay Tree [12] is one of the oldest data structures that satisfies it.
For the Splay Tree the following theorem was proven in [12]:

Theorem 1. If every element is accessed at least once, then the total access
time is O

(
m+

n∑
i=1

q(i)× log
(

m
q(i)

))
, where n is the number of elements in the data

structure, q(i) is the number of accesses made to the i-th element andm is the total

number of accesses to all elements (m =
n∑

m=1
q(i)).

Note, that if we are given the requests in advance, the best static data structure
has exactly this complexity due to the information theory results. More precisely,
the total access time for any fixed tree is Ω

(
m+

n∑
i=1

q(i)× log
(

m
q(i)

))
by a standard

theorem from the information theory [1].
We want our data structures to hold this static-optimality property so they are

as efficient as a static-optimal tree for the given access sequence. Formally, our task
is to create data structures that:

a) provide ordered set operations;
b) hold static-optimality property for a wide class of access distributions;
c) show good worst-case time and memory performance.

1.3. The Splay Tree
Splay Tree [12] is the first self-adjusting data structure whose time complexity

satisfies the static-optimality property. It is, as well as its multiway generalization,
K-ary Splay Tree[3], use the splay restructuring heuristic for rebalancing: each op-
eration moves a target node to to the root by performing a sequence of rotations
along the original traversed path (see Figure 1).

8

Figure 1 – Rotations of Splay-Tree [12]. The accessed node is x. Each case has a
symmetric variant (not shown). (a) Zig: terminating single rotation. (b) Zig-zig:

two single rotations. (c) Zig-zag: double rotation.

Now, let us discuss the main issue of the splay heuristic. First of all, it requires
frequent manipulation of pointers along the traversed path to adjust the tree structure
to the request frequencies. Secondary, when it is used in its original form for the
binary search trees, it is not as efficient for external memory as B-Trees, because
the number of accesses to the nodes is still high. Its generalization for multiway
nodes, shown for K-ary Splay Tree, provides only the upper bounds of O(log2 n)
on the amortized number of node accesses per operation, so its also no better than
B-Tree. Finally, the concurrent modification of such rebalancing approach is not

9

trivial and usually it makes threads to conflict on top of the tree, which makes the
data structure less scalable.

Our designed self-adjusting data structures do not use pointers manipulation
for rebalancing, therefore, they avoid the disadvantages mentioned above. In our
work, we do not focus on analysing concurrent versions of the created trees, how-
ever, we describe a simple way to make them concurrent lock-free, using an ap-
proach from [10].

1.4. The B-Tree
The B-Tree is a balanced search tree whose nodes have the number of keys

from B to 2 · B and the number of children from B + 1 to 2 · B + 1, respectively,
where B is a preselected constant.

All operations in B-tree search for a node with the specified key. To do that,
they traverse down the tree, starting from the root node, and use the binary search
in each node: 1) to stop traversal, if the requested key was found, or 2) to find the
proper children node to look at.

Restructuring can be done only during update, insert or delete, opera-
tions:

a) If an insert ended in the leaf node and the requested key was not found,
then we physically add it to the node. If after that the number of keys in the
changed node exceeds the limit, i.e., it becomes 2 ·B + 1, then, we move the
middle key of the changed node to the parent node, split the changed node
into two, link them to the moved key, and, then, repeat the same procedure
with the parent node;

b) If the delete operation finds a node with the provided key and replaces it
with either with the minimum key in its left subtree or the maximum key in its
right subtree. After that if one of the node on the path lacks the required num-
ber of keys, i.e., becomes B− 1, then, we merge that node with its neighbour
and proceed to the next node on the path.
This data structure is usually used as a database index due to better work with

memory and O(logn) operations’ time complexity.

1.5. The Interpolation Search Tree
The interpolation search tree was proposed in [8]. Its worst-case amortized

bounds for all operations are O(log2 n), but for a wide class of distributions called

10

smooth, its expected time of all operations is O(log logn). Here, in our work, we
use the same definition of smoothness, which was given in [8], and prove additional
Lemma 22 for it.

1.6. The Range queries
The existing self-adjusting data structures are usually not supplemented with

range queries. But even if they start to support them, these queries do not affect the
structure of the tree. In our work, the created extended self-adjusting data structures
support range queries that affect the overall structure of the tree, thereby preserving
the properties of self-adjusting trees.

We require our data structures to support the following range-queries, denot-
ing the key as xi, and the corresponding value as yi:

a) get(a, b) — returns an array of objects, whose keys belong
to the passed range [a, b] and are currently present in the tree:
[xi < xi+1 < . . . < xi+l] ⊆ [a, b];

b) calculate(a, b) — returns the result of applying function ⊙ to
all values in the order of keys, which are currently present in the tree:
yi ⊙ yi+1 ⊙ . . .⊙ yi+l for which [xi < xi+1 < . . . < xi+l] ⊆ [a, b];

c) update(a, b, c)—applies to all values whose keys belong to the range
[a, b] the following action: y′i = yi ⋆ c if xi ∈ [a, b].
In the corresponding chapter, we explain how to change the newly designed

self-adjusting data structures, so that they support range queries with different
asymptotics bounds, depending on its parameters. Also, we explain some restric-
tions on ⊙ and ⋆.

Conclusions on Chapter 1
There are a lot of data structures that implement the ordered set interface. But

all of them have some drawbacks: some are not statically-optimal, others are not
efficient in practice.

In this Chapter, we presented operations that our data structures should sup-
port, gave an overview of several data structures that we are going to use as a param-
eterizations of generic self-adjusting approach. Moreover, we described the existing
self-adjusting solutions and their flaws.

11

CHAPTER 2. GENERIC SELF-ADJUSTING TREE APPROACH
In this chapter we introduce an approach to create self-adjusting trees and

prove its operations’ theoretical bounds on the time complexity and memory con-
sumption. Finally, we describe a way to make them concurrent lock-free.

2.1. The Tree Structure
Generic Self-Adjusting Tree (GSAT) is a multiway tree, where the degree of

the node depends on the number of requests to the underlying set. More precisely,
the degree of the root is O(D(m)), where D is the function used for delimiting ele-
ments into the corresponding subtree andm is the total number of requests to all the
elements in the tree. Additionally, we have the function S(T, key) which is used to
search for the subtree of the tree T that should store key. In idealGSAT, subtrees of a
tree have almost equal total number of requests to all their elements, i.e.,Θ(m

D(m)+1),
and hence a child of the root of an ideal GSAT has a degree O(D(m

D(m)+1)).

2.1.1. Formal definitions
Let a and b be integers, a < b. A Generic Self-Adjusting Tree (GSAT) with

boundaries a and b for a setX = {x1 < x2 < . . . < xn} ⊆ [a, b] of n elements with
ac1, ac2, . . . , acn accesses made to respective elements, consists of:

a) An integerm =
n∑

i=1

aci — the total number of accesses to the elements of the

tree, i.e., the set X .
b) An array REP [1 . . . k] of representatives xi1, xi2, . . . , xik , where

i1 < i2 < . . . < ik and REP [j] = xij . Furthermore, k does not exceed
⌈D(m)⌉.

c) An array AC[1 . . . k] of the number of accesses made to xi1, xi2, . . . , xik , re-
spectively.

d) The subtrees of the root node are GSATs T1, T2, . . . , Tk+1 for the subsets
X1, X2, . . . , Xk+1, where
X1 = {x1, . . . , xi1−1}, Xj = {xij−1+1, . . . , xij−1} for 2 ⩽ j ⩽ k,
Xk+1 = {xik+1, . . . , xn}. Furthermore, T1 has boundaries a and xi1, Tj has
boundaries xij−1 and xij for 2 ⩽ j ⩽ k, Tk+1 has boundaries xk and b.

e) A function S(T, key) that returns the index i such that either REP [i] is equal
to key or Ti may contain key, or null if there is no such Ti.

12

The array REP contains several keys from the set X . In ideal GSATs, we
require these keys to be equally spaced in accordance with the number of accesses
to the elements between them.

Definition 2. A GSAT for a set X , |X| = n, and a number of accesses
ac1, ac2, . . . , acn to the keys x1, x2, . . . , xn respectively, is ideal if: (1) for each
j > 0, ij is the first element to the right of ij−1 such that the number of accesses
between ij−1 + 1 and ij , both inclusive, is at least

⌈
m

⌈D(m)⌉+1

⌉
and (2) if the GSATs

T1, T2, . . . , Tk+1 are also ideal.
Let us denote m(Ti) for the number of accesses made to all elements of a

subtree Ti. In the ideal GSAT,m(Ti) has no more than
⌊

m
⌈D(m)⌉+1

⌋
accesses, since xi

has at least one access, and the root has no more than ⌈D(m)⌉ elements. The general
structure of the GSAT is the following (see Figure 2):

Figure 2 – General GSAT structure. The upper part of the red square corresponds
to the segment on which the GSAT was built, and its lower part is equal to the total

number of accesses to the elements of the tree.

However, the GSAT root node can have less than D(m) representatives. We
will look at such an example in the next sub-chapter, in which we discuss the con-
struction of a tree.

Not every function can be used as D(m) to build a GSAT. The function D(m)

must be sqrt-bounded:

13

Definition 3. The function f(m) is sqrt-bounded if:
a) f(m) ⩾ 1 ifm >= 2;
b) f(m) ⩽ √

m except for the set of a finite measure on which f(m) is bounded.

The first property (a) means that every GSAT node must have at least one
element. The second one (b) is used to prove the construction time of ideal GSAT
(Lemma 5) and actually there is no reason to have more than

√
m representatives in

the root — the subtrees would have less requests than the root, which looks strange.
However, we relax this condition by allowing D(x) >

√
x (finite measure property)

if:
a) x ∈

t⋃
i=1

[ai, bi];

b) t < +∞;
c) ∀i = 1 . . . t : |bi − ai| < +∞;
d) ∀i = 1 . . . t, ∃Mi ∈ [ai, bi],Mi < +∞ : Mi ⩾ x ∈ [ai, bi].
Definition 4. A GSAT is correct if its D(m) is sqrt-bounded.
From here, we assume that all considering GSATs are correct, or this fact is

explicitly proved. So when we write ”An ideal GSAT. . .”, we also mean that this
GSAT is correct.

Depending on D(m) and S(T, key), the time complexities of operations as
well as memory consumption may vary. For the further analysis, we consider three
variations of these parameters:

a) D(m) =
√
m, S(T, key) uses the interpolation search, based on the special

array ID[1 . . .mα]with α ∈ [12 , 1), and, then, the exponential search, together
with binary search. We call this parameterization as Self-Adjusting Interpo-
lation Tree (SAIT);

b) D(m) = log2(m), S(T, key) uses the pure binary search. We call this param-
eterization as Self-Adjusting Log Tree (SALT);

c) D(m) = B, where B is preselected constant, S(node, key) uses only binary
search. We call this parameterization as Self-Adjusting B-Tree (SABT).
SAIT in our scheme is similar to the standard Interpolation Search Tree [8].

However, it is based on the number of accesses rather then on the number of ele-
ments.

Obviously, SAIT is a correct (Definition 4) GSAT and we prove later that
SALT (Lemma 7) and SABT (Lemma 8) are also correct GSATs.

14

2.1.2. Construction of Ideal Tree
We start with an algorithm on how to build the ideal GSAT given an ordered

array of elements, augmented with the array of accesses. At the beginning, we count
prefix sums of all accesses made to an ordered array. Then, we generate represen-
tatives in the root node on after another using binary search on the collected prefix
sums, splitting the number of accesses almost evenly between the corresponding
subtrees. The overall pseudo code is shown on listing 1:

Listing 1 – Building an ideal GSAT for n elements for the segment [a, b].

1 fun Bu i l d I d e a l T r e e (E [] e l emen t s , i n t [] ac , i n t n , f l o a t a ,
2 f l o a t b) :
3 pac = new i n t [n + 1]
4 pac [0] = 0
5 f o r i = 1 . . n :
6 pac [i] = pac [i − 1] + ac [i]
7 r e t u r n Bu i l d (e l emen t s , ac , pac , a , b , 0 , n)
8
9 fun Bu i l d (E [] e l emen t s , i n t [] ac , i n t [] pac , f l o a t a , f l o a t b ,
10 i n t l t , i n t r t) :
11 i f r t − l t ⩽ 0 :
12 r e t u r n n u l l
13 m = pac [r t] − pac [l t]
14 node = new Node (m, a , b)
15 k = 0
16 f o r i = 1 . . ⌈D(m)⌉ :
17 from , t o = l t , r t
18 wh i l e t o − from > 1 :
19 m = ⌊from+to

2
⌋

20 i f pac [m] − pac [l t] <
⌈

m
⌈D(m)⌉+1

⌉
:

21 from = m
22 e l s e :
23 t o = m
24 node . r ep [i] = e l emen t s [t o]
25 node . ac [i] = ac [t o]
26 node . c h i l d r e n [i] =
27 Bu i l d (e l emen t s , ac , pac , a , e l emen t s [t o] . key , l t , t o − 1)
28 k = k + 1
29 a = e l emen t s [t o] . key
30 l t = t o
31 i f l t == r t :
32 b r eak
33 node . c h i l d r e n [k + 1] =
34 Bu i l d (e l emen t s , ac , pac , a , b , l t , r t)
35 r e t u r n node

15

Each representative is searched using binary search (lines 16–22),
initialized (lines 23–24) and its left subtree is build recursively (lines
25–26). Each subtree has less than

⌈
m

⌈D(m)⌉+1

⌉
accesses in total and

m(Tk+1) ⩽ m − ⌈D(m)⌉ ×
⌈

m
⌈D(m)⌉+1

⌉
⩽ m − ⌈D(m)⌉×m

⌈D(m)⌉+1 = m
⌈D(m)⌉+1 ⩽ m

D(m)+1 ,
which means that every subtree would have no more than m

D(m)+1 accesses in total.
Also, a node could have less than D(m) representatives, which can be seen in the
Figure 3, but the subtrees have at least the required total number of accesses:

Figure 3 – Non-full GSAT. D(m) =
√
m, x = [1, 2, 3, 4] ⊆ [1, 5], ac = [1, 18, 2, 3].

Additionally, for SAIT we will build an array ID and it can be done after
the line 33, when we have already built all representatives for the current node, so
the analysis for building some auxiliary data structure can be done separately from
building representatives.

Let us prove the several properties of that algorithm and the ideal GSAT.
Theorem 5. An ideal GSAT for an ordered set and array of accesses, having

size n, can be built in time O(m) and requires O(m) memory. Also, it has depth
O(logm).

Proof. Let Time(m) be the time required to build a GSAT, then

Time(m) ⩽ c× D(m) + log2(n)× D(m) + (D(m) + 1)× Time
(m

D(m) + 1

)
:

c×D(m) can be spent for the node to build an additional data structure, e.g., segment
tree for range queries; to build representatives array in the root via binary search we
spend no more than log2(n)× D(m), since the total number of elements is n; there
are nomore than (D(m)+1) subtrees Ti for whichm(Ti) ⩽ m

D(m)+1 . Finally, n ⩽ m,

16

so Time(m) ⩽ (c+ log2(m))×D(m) + (D(m) + 1)× Time
(

m
D(m)+1

)
. We prove

that this function is O(m) in Lemma 6.
LetMem(m) be the required memory for storing GSAT, then using the same

discussion as for the time,

Mem(m) = c×D(m) + (D(m) + 1)×Mem
(m

D(m) + 1

)
⩽ Time(m) = O(m)

Lastly, let see d(m) be the depth of the ideal GSAT. Then,
d(m) = 1 + d

(
m

D(m)+1

)
. By the sqrt-bounded property (a), D(m) is at least

one, so, m
D(m)+1 ⩽

m
2 , thus, GSAT has depth O(logm).

Lemma 6. If T (m) = c× log2(m)× f(m) + (f(m) + 1)× T
(

m
f(m)+1

)
where

f(m) is sqrt-bounded function, then T (m) = O(m) form ∈ N.
Proof. Let us restrict m to be at least 8. Consider T̃ (m) = T (m)

m . Then
mT̃ (m) = c × log2(m) × f(m) + (f(m) + 1) × m

f(m)+1 × T̃
(

m
f(m)+1

)
, so,

T̃ (m) = c×log2(m)×f(m)
m + T̃

(
m

f(m)+1

)
. For m ⩾ 2, we have m

f(m)+1 ⩽ m
2 thus

T̃ (m) ⩽ c×log2(m)×f(m)
m + T̃

(
m
2

)
. Now, we can unwrap the recurrence explicitly:

T̃ (m) ⩽
log2(m)∑
i=0

c× log2(m2i)× f(m2i)× 2i

m
=

c

m
×
(log2(m)∑

i=0

f
(m
2i

)
×log2

(m
2i

)
×2i

)
.

Let M ∗ be the minimum value such that if f(x) >
√
x then M ∗ ⩾ x. From

the finite measure property in sqrt-bounded definition, we know that M ∗ < +∞.
Therefore,

T̃ (m) ⩽ c

m
×
(log2(m)∑

i=0

(√m

2i
× log2

(m
2i

)
×2i

)
+M ∗×

log2(m)∑
i=0

(
log2

(m
2i

)
×2i

))
.

Consider functions

P (m) =

log2(m)∑
i=0

p(i), p(x) =

√
m

2x
× log2

(m
2x

)
× 2x

and

Q(m) =

log2(m)∑
i=0

q(i), q(x) = log2
(m
2x

)
× 2x.

17

If we show that P (m) = O(m), then Q(m) = O(m), because p(x) ⩾ q(x) if
x ⩾ 0, and we get our target that T̃ (m) = O(1) since

T̃ (m) ⩽ c

m
×

(
P (m) +M ∗ ×Q(m)

)
=

c

m
×

(
O(m) +M ∗ ×O(m)

)
= c×O(1) + c×M ∗ ×O(1) = O(1),

becauseM ∗ is a constant. Therefore, we get T (m) = m·T̃ (m) = m·O(1) = O(m)

and the lemma is proved.
By assuming that m = 2r, we can write p(x) = (

√
2)r+x × (r − x) since√

m
2x × log2

(
m
2x

)
× 2x = 2

r−x
2 × (r − x) × 2x = 2

r+x
2 × (r − x). We want to find

intervals where p(x) is monotonous. For that we take a derivative

p′(x) = (
√
2)r+x ×

(ln(2)
2

(r − x)− 1
)

and compare it with 0. As we can see, p′(x) = 0 only if x = r − 2 log2 e = x0.
Therefore, the function p(x) has only one point where the monotonicity changes.
On the right of x0, by substituting x = r, we can see that the derivative is negative.
At the same time, on the left of x0, by substituting x = 0, we get a positive value.
So, p′(x) is first positive and then negative meaning that x0 is the point of maximum.

From that we split x-s by x0. If x ⩾ r − 3 we get p(x) ⩽ p(x0) since
2 log2(e) < 3, hence,

P (m) =
r∑

i=0

p(i) ⩽
(r−3∑

i=0

p(i)
)
+ 3× f(x0) ⩽

(r−3∫
0

p(x) dx
)
+ 4× f(x0)

For the last inequality we additionally add f(x0) so
r−3∑
i=0

p(i) ⩽ (
r−3∫
0

p(x) dx)+f(x0)

and∫
p(x) dx =

∫ (
(
√
2)r+x×(r−x)

)
dx =

(
√
2)r+x+2

ln2(2)
×(r ln(2)−x ln(2)+2)+C.

18

So,P (m) ⩽ (
r−3∫
0

p(x) dx)+4×f(x0) =
(
√
2)r+2

ln2(2) ×((
√
2)r−3(3 ln(2)+2)−r ln(2)−2)

+4×(2e×2r log2(e)) ⩽ 2r

ln2(2)×(3 ln(2)+2)+8
e×2r log2(e) = 2r×(3

ln(2)+
2

ln2 2+
8 log2(e)

e)

= mc′, where c′ is a constant, thus, P (m) = O(m).
Now, we are ready to prove that SALT and SABT are correct GSATs (Defi-

nition 4) by showing that D(m) is sqrt-bounded (Definition 3). While proving this
fact, it is convenient to consider function

g(x) =
√
x− D(x)

and then look at points where g(x) < 0 and x is the minimum point, i.e, g′(x) = 0,
g(x−δ) > 0, g(x+δ) < 0. If for all such x it is true that D(x) < +∞, then forM ∗,
from the proof of Lemma 6, we can take the maximum value among such D(x), so
function D(x) is sqrt-bounded.

Lemma 7. SALT is a correct GSAT.
Proof. For SALT we get g(x) =

√
x − log2(x), g′(x) =

√
x ln(2)−2
x ln 4 .

g′(x) has a single extremum point, x0 = 4
ln2 2 , which is the minimum point.

g(x0) ≈ −0.172143 < 0 and log2(x0) < +∞.
Lemma 8. SABT is a correct GSAT.
Proof. For SABT we get g(x) =

√
x − B. g′(x) = 1

2
√
x
. If x > 0 we get

g′(x) > 0, so g(x) is monotonically increasing function. We see that g(x) ⩽ 0 if
x ∈ [0, B2] and B < +∞, so SABT is a correct GSAT.

2.1.3. Parameterization Analysis
The Theorem 5 works for any GSAT regardless of its parameterization. How-

ever, by analyzing each parameterization separately, we can improve asymptotics
bounds on the construction time, the memory consumption, and the depth of the tree.

Before proceeding to the proofs, we denote by d(m) the depth of GSAT with
m accesses to all its elements.

Theorem 9. An ideal SAIT requires O(m) time to build, O(m
α
2 × n + mα)

memory, and has depth O(log logm).
Proof. For SAIT we can build representatives for O(m) in accordance

with Theorem 5. However, we need to analyse building time for an ID ar-
ray separately. Let us denote P (m) time to build an ID array, then we have
P (m) = O(mα)+(

√
m+1)×P (m√

m+1
). Let P̃ (m) = P (m)

m , som · P̃ (m) = P (m)

19

and P̃ (m) = O(mα−1) + P̃ (m√
m+1

) ⩽ O(mα−1) + P̃ (
√
m), thus, ifm = 22

r :

P̃ (m) = O
(r∑

i=0

(m
1
2i)α−1

)
= O

(r∑
i=0

(22
i

)α−1
)
= O(1),

since α < 1. Therefore, P (m) = O(m), which gives usO(m) time to build an ideal
SAIT.

Now, let us count the memory consumption. The root node of SAIT requires
O(mα) space to store ID array. Also, the total number of nodes in SAIT does not
exceed n, because tree is internal and, so each node has at least one element inside.
Subtrees of the root node satisfies m(Ti) ⩽

√
m. Thus, ID for each of these trees

has size no more thanmα
2 , and, therefore, the memory required for all of the nodes,

except for the root, does not exceed O(m
α
2 × n). After summing everything up, we

get that the total memory does not exceed O(m
α
2 × n+mα).

For d(m) we get d(m) ⩽ 1 + d(
√
m), so d(m) = O(log logm).

Not every GSAT needs O(m) time to build and needs O(m)memory. If each
GSAT node stores onlyO(k), where k is the degree of the current node (thus does not
exceed ⌈D(m)⌉), and such data structure can be built in O(k) time, we immediately
get O(n logn) bound for the construction time, since there are only n elements in
the tree, each is selected as a representative exactly once during the binary search for
O(logn). Also, we haveO(n) bound for memory, because GSAT is an internal tree.
However, the depth should be considered separately to get a more precise bound.

Theorem 10. An ideal SALT requires O(min(n logn,m)) time to build, uses
O(n) memory, and has depth O(logm

log logm).
Proof. SALT stores only elements and does not store additional data struc-

ture, so, we immediately get the required bounds for the construction time and the
memory consumption.

For SALT depth we have:

d(m) ⩽ 1 + d
(m

log2m

)
⩽ 2 + d

(m

log2m× (log2m− log2 log2m)

)
.

Let us find such y that log2m − log2 log2m ⩾ y > 0. Rewriting inequality
through the exponentiation m

log2 m
⩾ 2y and assuming m

log2 m
⩾ √

m = 2y, we have
log2m− log2 log2m ⩾ y = 1

2 × log2m, thus, by applying the inequality one addi-

20

tional time,

d
(m

log2m× (log2m− log2 log2m)

)
⩽ d

(m× 2

log2m× log2m

)
⩽ 1 + d

(m× 2

log22m× (logm+ 1− 2 log2 log2m)

)
.

Consider the function from the denominator above:

h1(x) = logm+ x− (x+ 1) log2 log2m,

participating in such inequality:

2h1(x) =
m · 2x

(log2m)(x+1)
⩾

√
m.

Until the inequality holds, we have h1(x) ⩾ 1
2 × log2m and

d
(m× 2

log22m× (logm+ 1− 2 log2 log2m)

)
= d

(m× 2

log22m× h1(1)

)
⩽ d

(m× 22

(log2m)3

)

= d
(
2h1(2)

)
⩽ 1+d

(m× 22

(log2m)3 × (log2m− 3 + 4 log2 log2m)

)
⩽ 1+d

(m× 23

(log2m)4

)
= 1 + d

(
2h1(3)

)
.

Thus, the depth can be estimated as:

d(m) ⩽ 1 + t+ d
(
2h1(t)

)
,

where t is the first value with

2h1(t) =
m2t

(log2m)t+1
⩽

√
m =⇒ log2m+ t ⩽ 1

2
× log2m+(t+1)× log2 log2m

=⇒ t ⩾
1
2 × log2m− log2 log2m

log2 log2m− 1
⩾

1
2 × log2m

log2 log2m− 1
.

So,

d(m) ⩽
(
1 +

1
2 × log2m

log2 log2m− 1

)
+ d(

√
m).

21

Next, we repeat the similar analysis but now for d(
√
m) instead of d(m):

d(
√
m) ⩽ 1 + d

(2×√
m

log2m

)
⩽ 2 + d

(2×
√
m

log2m× (1 + 1
2 × log2m− log2 log2m)

)
.

Let y be the value such that (1+1
2×log2m−log2 log2m) ⩾ y > 0 =⇒ 2

√
m

log2m
⩾ 2y.

If 2
√
m

log2m
⩾ m

1
4 = 2y holds, we have y = 1

4 × log2m, so

d
(2×

√
m

log2m× (1 + 1
2 × log2m− log2 log2m)

)
⩽ d

(2×√
m× 4

(log2m)2

)

⩽ 1 + d
(2×

√
m× 4

(log2m)2 × (1 + 1
2 × log2m+ 2− 2× log2 log2m)

)
.

Consider the function from the denominator above

h2(x) = 1 +
1

2
× log2m+ 2x− (x+ 1) log2 log2m.

We have h2(x) ⩾ 1
4 × log2m until the inequality holds:

2h2(x) =
2
√
m× 22x

(log2m)x+1
⩾ m

1
4 ,

therefore

d
(2×

√
m

(log2m)2 × (1 + 1
2 × log2m+ 2− 2× log2 log2m)

)
= d

(2×
√
m× 4

(log2m)2 × h2(1)

)

⩽ d
(2×√

m× 42

(log2m)3

)
= d

(
2h2(2)

)
⩽ 1 + d

(2×
√
m× 42

(log2m)3 × (1 + 1
2 × log2m+ 4− 3× log2 log2m)

)
= 1 + d

(2×
√
m× 42

(log2m)3 × h2(2)

)
⩽ 1 + d

(2×√
m× 43

(log2m)4

)
= 1 + d

(
2h2(3)

)
.

So,
d(
√
m) ⩽ 1 + t+ d

(
2h2(t)

)
,

22

where t is the first value that

2
√
m× 22t

(log2m)t+1
⩽ m

1
4 =⇒ t ⩾

1 + 1
4 × log2m− log2 log2m
log2 log2m− 2

⩾
1 + 1

4 × log2m
log2 log2m− 2

,

hence getting new estimate for the depth:

d(m) ⩽
(
1 +

1
2 × log2m

log2 log2m− 1

)
+
(
1 +

1 + 1
4 × log2m

log2 log2m− 2

)
+ d(m

1
4).

With this approach, we performed two iterations moving from d(m) to d(m 1
4).

Now, let us consider k-th iteration:

d(m
1

2k) ⩽ 1+d
(2k ×m

1

2k

log2m

)
⩽ 2+d

(2k ×m
1

2k

log2m× (k + 1
2k
× log2m− log2 log2m))

)
.

Consider the function

h2k(x) = k +
1

2k
× logm+ (k + 1)x− (x+ 1) log2 log2m,

until the inequality holds

2h2k (x) =
2k ×m

1

2k × 2(k+1)x

(log2m)x+1
⩾ m

1

2k+1 =⇒ h2k(x) ⩾
1

2k+1
× log2m,

so,

d(m
1

2k) ⩽ 1 + t+ d
(2k ×m

1

2k × 2t(k+1)

(log2m)t+1

)
,

where t is the first value that

2k ×m
1

2k × 2t(k+1)

(log2m)t+1
⩽ m

1

2k+1

=⇒ t ⩾
k + 1

2k+1 × log2m− log2 log2m
log2 log2m− (k + 1)

⩾
k + 1

2k+1 × log2m
log2 log2m− (k + 1)

,

which allows us to write down the recurrence explicitly, assuming thatm = 22
r :

d(m) ⩽
log2 log2 m−1∑

i=0

(
1+

1
2i+1 × log2m

log2 log2m− (i+ 1)

)
=

r−1∑
i=0

(
1+

2r−1−i

r − 1− i

)
⩽ r+

r−1∑
i=0

2i

i
.

23

Then, using inequality 2i

i ⩽ 1
2 ×

2i+1

i+1 and supposing that r ⩾ 2 we get:

r−1∑
i=0

2i

i
⩽ 2r−1

r − 1
×

r−1∑
i=0

1

2i
⩽ 2r

r − 1
⩽ 2r+1

r
,

so the depth can be estimated as:

d(m) ⩽ log2 log2m+ 2
(log2m
log2 log2m

)
= O

(log2m
log2 log2m

)
.

Theorem 11. An ideal SABT has O(min(n logn,m)) the construction time,
has O(n) memory, and has depth O(logB(m)).

Proof. For same reasons as for SALT (Theorem 11) we get
O(min(n logn,m)) time to build and O(n) memory. For d(m) we get
d(m) ⩽ 1 + d(mB), so d(m) = O(logB(m)).

This concludes the analysis of the GSAT construction and we move on to
operations.

2.2. Operations
2.2.1. Update operations

Insert, delete and contains operations are implemented in the same
way as in [8], using an approach based on the counters to amortize the tree rebuild-
ing. Except, now we use im and m instead of isize and size, since GSAT builds
subtrees based on the number of requests, not on the size of the set.

Now, let us discuss these operations in more detail. We associate with each
node a counter which is initially equal to zero. Going down the tree in the search of
the requested key, we increment counters of each node on the traversed path, until
the key was found or there is no such key. Then, it finds the node on the traversed
path with the minimum depth that overflows, i.e., whose counter exceeds im

4 . The
algorithm rebuilds the whole subtree of the overflowed node. im stands for the
number of total requests to the tree after the last build, so, im changes only during
the rebuilding.

Insertion links the key to the parent node, if the tree has not already contained
it.

Deletions are performed by marking an element as deleted. The element is
not physically removed — it is removed when some subtree containing it is rebuilt.

24

Let’s consider that the subtree T ′ has the elementsX ′ = {xi1, xi2, . . . , xis} and there
is a subset of marked for deletion elementsMarked ⊆ X ′.

If T ′′ = Rebuild(T ′), then T ′′ contains the elements X ′ \ Marked and the
total number of requests is Requests(T ′′) =

∑
xi∈X ′

aci −
∑

yj∈Marked

acj .

The pseudo code for contains operation (listing 2), insert operation
(listing 3) and delete operation (listing 4) is listed below.

Listing 2 – Contains operation

1 fun Con t a i n s (Node T , E key) :
2 TR = n u l l
3 r e s u l t = f a l s e
4 wh i l e T ̸= n u l l :
5 T . c = T . c + 1
6 i f T.c > T.im

4
and TR == n u l l :

7 TR = T
8 i = S (T , key)
9 i f T . r e p [i] == key :
10 i f no t T . marked [i] :
11 r e s u l t = t r u e
12 T . ac [i] = T . ac [i] + 1
13 b r eak
14 T = T . c h i l d r e n [i]
15 i f TR ̸= n u l l :
16 TR = Rebu i l dT r e e (TR)
17 r e t u r n r e s u l t

Rebuilding replaces the tree T by an ideal GSAT for the set of unmarked keys
stored in T . After it, we have u.c = 0 and u.im = u.m for each node in T . The
pseudo code for this operation is listed below (listing 5).

Now, let us consider, how the GSAT structure has changed after introducing
these operations.

Lemma 12. The worst-case depth of GSAT for the set of n elements, after ex-
ecuting insert, delete, contains operations, is O(logm).

Proof. Consider a node v and its parent w. Then form(v) (the current number
of accesses to the subtree with the root v) we have: m(v) ⩽ im(w)

4 + im(w)
D(m)+1 , since no

more than im(w)
4 accesses could occurred in Tv, otherwise, Tw would have been re-

built. Also im(w)
D(m)+1 ⩽

im(w)
2 , som(v) ⩽ im(w)

4 + im(w)
2 = 3

4×im(w), thus, the depth of
a GSAT isO(log im(root)). Sincem = m(root) ⩾ im(root)−C(root) ⩾ im(root)

2 ,
we conclude that the depth is O(logm).

25

Listing 3 – Insert operation

1 fun I n s e r t (Node T , E key) :
2 TR = n u l l
3 P , j = nu l l , n u l l
4 wh i l e T ̸= n u l l :
5 T . c = T . c + 1
6 i f T.c > T.im

4
and TR == n u l l :

7 TR = T
8 i = S (T , key)
9 i f T . r e p [i] == key :
10 i f T . marked [i] :
11 T . marked [i] = f a l s e
12 T . ac [i] = T . ac [i] + 1
13 b r eak
14 P , j = T , i
15 T = T . c h i l d r e n [i]
16 i f T == n u l l :
17 P [j] = new Node (key , ac =1)
18 i f TR ̸= n u l l :
19 TR = Rebu i l dT r e e (TR)

Listing 4 – Delete operation

1 fun De l e t e (Node T , E key) :
2 TR = n u l l
3 wh i l e T ̸= n u l l :
4 T . c = T . c + 1
5 i f T.c > T.im

4
and TR == n u l l :

6 TR = T
7 i = S (T , key)
8 i f T . r e p [i] == key :
9 T . marked [i] = t r u e
10 T . ac [i] = T . ac [i] + 1
11 b r eak
12 T = T . c h i l d r e n [i]
13 i f TR ̸= n u l l :
14 TR = Rebu i l dT r e e (TR)

Listing 5 – Rebuild operation

1 fun Rebu i l dT r e e (Node T) :
2 T ′ = Bu i l d I d e a l T r e e (Unmarked (T))
3 f o r v ∈ T ′ :
4 v . c = 0
5 v . im = v .m
6 r e t u r n T ′

26

Lemma 13. The amortized cost of insert, delete or contains op-
erations (not counting the time for the preceding search) in GSAT is O(logm),
that is, the total cost of the first m insertions, deletions and contains in GSAT is
O(m× logm).

Proof. We use the following accounting scheme to amortize the rebuild over
all operations: every operation puts one token on each node on the path to the target
element. By Lemma 12 each operation adds no more than O(logm) tokens. Let
us denote C(v) as the number of tokens in node v (the counter value). Rebuilding
Tv in GSAT costs O(m(Tv)). From properties of counter and rebuilding we get
m(Tv) ⩽ 5

4 × im(Tv) and im(Tv)
4 ⩽ C(v), thus, we have enough tokens to repay for

the rebuilding of Tv.
Now let us consider, how the memory bounds for GSAT parameterizations

change.
Theorem 14. After insert, delete and contains operations, the SAIT

for the set of n elements consumes O(mα × n) space.
Proof. If after any operation above no subtrees were rebuilt, then we spend

O(1) in case of an insert operation, since new node consumes only a constant
memory. Otherwise, some subtree T ′ was rebuilt. After rebuilding T ′, memory has
changed only for T ′ and its subtrees. If T ′ had n′ elements, after rebuilding it can not
spendmore thanO(mα×n′), since for each element we can not spend more memory
than for ID array, whose maximum size isO(mα), thus, we get the required bound.

Theorem 15. After insert, delete and contains operations, the SALT
and SABT for the set of n elements consumes O(n) space.

Proof. Both of the trees are internal, thus, if after an operation no tree were
rebuilt, we spend O(1) in case of insert operation, and if some subtree T ′ with
size n′ was rebuilt, it consumes O(n′) space.

Aswe can see, the worst-case analysis does not give good bounds for the depth
of GSAT, however, it is worth considering this issue in the expected sense, which
we will do in the next sub-chapter.

2.2.2. Expected Time Analysis
We start this section with the expected time analysis to improve worst-case

bounds, if keys are requested in the accordance with some distribution.
Let µ be the probability density function on reals. Let Fn be a random file of

size n which is generated by drawing independently n reals according to density µ.

27

Definition 16. A µ[a, b]-random GSAT is a GSAT with boundaries [a, b] with
total number of accesses m to all its elements, generated by the following actions
provided that µ is a density function with finite support [a, b]:

a) Take a random file Fn′ and build an ideal GSAT from its content, treating the
number of ocсurrences of the element in the file as the number of accesses to
it.

b) Perform a sequence of i µ-random insertions, d random deletions and c µ-
random contains Op1, . . . , Opi+c+d so the number of accesses to non-deleted
elements is m. An insertion is µ-random if it inserts a random real drawn
according to density µ into the tree. A deletion is random if it deletes a random
element from the tree and each element in the tree has the same probability to
deleted. A contains operation is µ-random if it finds a random real drawn in
accordance with density µ in the tree.
An ideal GSAT has a great asymptotic bounds for its depth and by analysing

a random GSAT we want to say that with high probability the depth of some key
remains the same as it was after the last rebuild and this fact is true up to a constant
until the next rebuild. The following lemmas in this sub-chapter together show this
fact.

Lemma 17. Let T be a µ[a, b]-random GSAT and let T ′ be a subtree of T . Then
there are reals c, d such that T ′ is a µ′[c, d]-random GSAT such that a ⩽ c < d ⩽ b

and for x ∈ [c, d]:

µ′(x) =
µ(x)∫ d

c µ(x)
.

This lemma can be proven in the same way as in [8], Lemma 4.
Lemma 18. Let T be a µ[a, b]-random GSAT with number of accesses to all its

elements equal tom, and let T ′ be the direct subtree of T . Then,m(T ′) isO(m
D(m)+1)

with probability at least 1−O(D(m)+1
m).

Proof. Letm0 be the initial size of T after its last rebuild. Then,m ⩽ 5
4 ×m0

and k ⩽ 1
4 × m0 accesses were made into T since it was rebuilt for the last time.

When T was rebuilt for the last time no more than m
D(m)+1 accesses had elements

that were stored inm(T ′). Since then some additional accessesX were made in T ′.
From here on let us treat these accesses as a separate elements which differ

by some small epsilon. For example, if key x had 5 accesses, we will make from

28

it five different elements, which then fit in the segment [x− 1
2 , x + 1

2] so it will not
intersect with other keys.

From this point of view, no more than m
D(m)+1 elements were stored inm(T ′)

and X additional items were stored in T ′, so we are in the same configuration as
in [8], Lemma 5.

Repeating the reasoning from there, the probability that more than 5
4 ×

m
D(m)+1

accesses were made into the tree T ′ is ⩽ 1
2 × D(m)+1

m , so m(T ′) = m
D(m)+1 with

probability 1−O(D(m)+1
m).

Lemma 18 illustrates the self-organizing feature of GSATs and now we are
ready to prove expected total cost of executed operations.

Lemma 19. Let µ be a density with finite support [a, b]. Then the expected
total cost of processing a sequence ofm µ-random insertions, random deletions and
µ-random contains to an initially empty GSAT is O(m · d), where d is the depth of
the ideal GSAT. Thus, the expected amortized cost of insertion, deletion or contains
is O(d).

Proof. Let f(m) be the expected number of tokens put down by the m-th
operation. Then

f(m) ⩽ 1 + f
(
O
(m

D(m) + 1

))
+O(logm)×O

(D(m) + 1

m

)
.

This can be seen as follows: if the operation goes into a subtree of size O(m
D(m)+1),

then we put down 1+f(O(m
D(m)+1)) tokens. If it does not, then we put down at most

O(logm) tokens by Lemma 12. The probability of the latter event is O(D(m)+1
m) by

Lemma 18, therefore, since D(m) is sqrt-bounded:

O(logm)×O
(D(m) + 1

m

)
⩽ O(logm)×O

(2√
m

)
= O

(2 · logm√
m

)
= O(1).

Thus, f(m) = O(d).
Lemma 20. The expected amortized cost of insert, delete or contains

operations (not counting the time for the preceding search) for element xwith ac(x)
accesses in GSAT is O(log(m

ac(x))), that is, the total expected cost of the first m

insertions, deletions and contains in GSAT is O
(
m+

n∑
i=1

ac(xi)× log
(

m
ac(xi)

))
.

Proof. Let us consider element x with ac accesses, having depth d. Then if k
is the first value such that ac ⩾ m

2k
=⇒ ac ⩽ m

2k−1 =⇒ k ⩽ log2(mac) + 1. Also

29

d ⩽ k since the number of requests from ancestor to descendant in GSAT decreases
at least twice, thus, x has expected depth O(log(mac)).

The Lemma 20 means that if we can find next subtree for key inO(1) for each
node, GSAT satisfies static-optimality property (1) in expected way.

Theorem 21. SABT holds static-optimality property in the expected way.
Proof. For SABT each node has degree B, where B is a constant, thus, next

subtree for each node can be found in O(1).
However, this fact is not true for SAIT and SALT, because currently for both

of them Time(S(T, key)) = O(logn). Nevertheless, this bound can be improved
for SAIT with the help of ID array and by imposing restrictions on the probability
density function.

2.2.3. Search
For every GSAT the function S(T, key) can be implemented in that way (see

listing 6), so Time(S(T, key)) = O(logn), because GSAT is an internal tree.

Listing 6 – S(T, key) basic implementation

1 fun S (Node T , E key) :
2 a = 0
3 b = T . k + 1
4 wh i l e b − a > 1 :
5 c = ⌊a+b

2
⌋

6 i f T . r e p [c] < key :
7 a = m
8 e l s e :
9 b = m
10 r e t u r n b

However, let us make the separate analysis for SAIT, similar to [8], to see that
by spending more memory for GSAT we can speed up S(T, key).

A density µ is smooth for a parameter α, 1
2 ⩽ α < 1, if there are constants

a, b and d such that µ(x) = 0 for x < a and x > b and such that for all c1, c2, c3,
a ⩽ c1 < c2 < c3 ⩽ b, and all integers n andm withm = ⌈nα⌉,∫ c2

c2− c3−c1
m

µ[c1, c3](x) dx ⩽ d× n− 1
2 ,

where µ[c1, c3](x) = 0 for x < c1 or x > c3 and µ[c1, c3](x) = µ(x)
p for c1 ⩽ x ⩽ c3

where p =
∫ c3
c1

µ(x)dx. We use the same definition of smoothness as in [8]. Now let

30

us prove that distributions like zipf, 90/10, 70/30 and uniform are smooth
for any α. The following lemma proves it.

Lemma 22. Let µ be a probability density function for [a, b] and which values
on [a, b] lies in [x, y], where x > 0. Then, µ is smooth for any parameter α ∈ [12 ; 1).

Proof. At first, we fix a parameter α, n and m = ⌈nα⌉. Then, consider any
triple of reals c1, c2, c3 such that a ⩽ c1 < c2 < c3 ⩽ b. After denoting c3 − c1 as
len, and c3−c1

m asmlen, consider the integral from the definition of smoothness:∫ c2

c2− c3−c1
m

µ[c1, c3](x) dx =

∫ c2

c2−mlen

µ[c1, c3](x) dx ⩽ y ×mlen

y ×mlen+ x× (len−mlen)

=
y × len

y × len+ x× len× (m− 1)
=

y

y + x× (m− 1)
=

y

y − x+ x×m

⩽ y

y − x+ x×
√
n
⩽ d√

n
=⇒ y

x+ y−x√
n

⩽ d.

So we can take d = 1 and the lemma is proved.
An array ID, used for SAIT, initialized and used in the same way as in [8].
Lemma 23. Let µ be a smooth density a parameter α and let T be a µ[a, b]-

random SAIT with parameter α. Then the expected search time in the root array is
O(1).

Proof. Similar to the reasoning in [8], changing the view from accesses to
different elements, if we have spent l + 1 iterations while searching in ID array, at
least t = l × √

m0 accesses lie in the interval of ID
[
y − b−a

m , y
]
, where m0 is the

number of accesses after the last rebuild. The probability of the last event is at most(
3×d
l

)l·√m0 by claim from [8], and, hence, the expected number of iterations over the
array is ∑

l⩾1

min
(
1,
(3× d

l

)l·√m0
)
= O(1).

Now, we are ready to proof the bound on the expected search time in SAIT.
Theorem 24. Let µ be a smooth density for a parameter α. Then the expected

search time of an element with the number of accesses ac in a µ[a, b]-random SAIT
for a parameter α is O(log logm

log ac).

31

Proof. Let T (m) be the expected search time in a µ[a, b]-random SAIT with
m accesses to all its elements. Then

T (m) = O(1) + T
(
O
(√

m
))

+O(m− 1
2)×O(

√
m).

The search time in the root array is O(1) by Lemma 23. The next subtree in which
we search is µ-random by Lemma 17. We have total number of accesses O(

√
m)

with probability at least 1 − O(m− 1
2) by Lemma 18, otherwise the search time is

bounded by O(
√
m).

When the total number of accesses to a subtree is less or equal to ac, the search
stops. So, T (m) = O(log logm

log ac).

Theorem 25. SAIT holds static-optimality in expected way.
Proof. This fact is true by the Theorem 24.

2.2.4. Range queries
Now we extend GSAT by making it support range queries.
We start with get(a, b) query. Let us denote B(T) to be the segment on

top of which GSAT, T , was built for the last time. Until we have [a, b] ⊂ B(Ti)

we just go down to Ti, increasing node’s counter. Then, being on the depth d, con-

sider subtrees Ti, Ti+1, . . . , Ti+j with maximum j such that
j⋃

k=i

B(Tk) ⊆ [a, b]. To

gather all elements from [a, b] we will visit all such Ti and we would also visit
REP [i], REP [i + 1], . . . REP [i + j] ⊆ [a, b]. Initial range [a, b] can be split
into two parts only once, and it has already happened for the depth d. If we have
B(Ti−1) ∩ [a, b] ̸= ∅, we need to do get query for the tree Ti−1 with the segment
[a,REP [i− 1]], which obviously will not split. Similarly, ifB(Ti+j+1)∩ [a, b] ̸= ∅,
we have to do get query for the tree Tj+1 with the segment [REP [j], b], which
obviously will not split again. So the amortized time for get(a, b) query is
O(Time(S(T, key)) · max

x∈[a,b]
depth(x) + |b − a|). During such request, because we

split no more than once, there can not be more than two rebuilds, since no more
than 2 different subtrees will be traversed. So such range query will not affect other
operations asymptotic bounds and the total number of accesses after such query will
be m′ ⩽ m + |b − a + 1|. To support get(a, b) query we do not need to store
any additional data, we just need to traverse the tree in the right order.

Now we consider queries calculate(a, b) (compute ⊙ for the values
whose keys from [a, b]) and update(a, b, c) (apply to each value (⋆c) if its

32

key from [a, b]). We extend the definition of GSAT by supplementing each node with
2 additional data structures, PF (propagate function) and PA (propagate accesses).
Both of them would have size 2 ·k+1, where (k+1) is the degree of the considered
node and these data structures have to support following operations: (1) change
segment’s values by applying some function to all values from the segment; (2) to
compute some value on the segment. To make this operations reasonable, let us add
some properties to ⊙ and ⋆:

a) (a⊙ b)⊙ c = a⊙ (b⊙ c)— calculate-associative;
b) (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)— update-associative;
c) (a ⋆ x)⊙ (b ⋆ x) = (a⊙ b) ⋆ x – distributive.

By this operations’ requirements we see that Segment Tree [11], using lazy propaga-
tion technique [7], can be used, so we can build it for O(k) and each operation will
have timeO(log k). Nowwe consider indices: PF [1] corresponds to T1, PF [2] cor-
responds to REP [1], PF [3] corresponds to REP [2], so, in general, PF [i] is equal
to the value that has to be propagated to T i+1

2
if i is odd, or is equal to the value that

has to be propagated to REP [i2] if i is even. The same rules used for PM , but for
this array it has to propagate the number of accesses for some segment.

Now we ready to consider query update(a, b, c) in action: the start
is the same as for get(a, b): until we have [a, b] ⊂ B(Ti) we just go down to
Ti, increasing node’s counter and also propagating value and accesses to subtree

Ti. Then on the depth d, we have
j⋃

k=i

B(Tk) ⊆ [a, b], so we make request (⋆c) to

PF [2 · i− 1, 2 · i, . . . , 2 · j] and request (+1) for the same range for PM and then
again split no more than once at the current node on the depth d, and finish searching
if we processed all keys from the request query.

For calculate(a, b) everything is similar as to update(a, b, c):
we also need not to forget to increase counter and propagate value to the next visited
node, by we do not change PF , instead, we calculate function on its some segment.
Also we have to preserve associative property there, so order of applying results
from subtree is important.

Now we can say that such range queries complicate all the previous opera-
tions, because we additionally compute accesses for propagation which is done in
O(logn), so such queries can be done in O(logn · max

x∈[a,b]
depth(x)).

33

Storing PF and PM helps us to speed up operations, but if we have GSAT
with D(m) = O(1), we can use the same approach as for get(a, b) by explicitly
pushing and computing corresponding function value and the number of accesses.

2.3. Concurrent lock-free extension
To make GSAT concurrent, we use approach from[10]. The main difference

is that instead of storing sizes, we store the number of accesses and their changes.
Thus, in the function markAndCount [10] we count the number of accesses made
to the subtree and then choose representatives on the first level. Next, we use col-
laborative rebuild, changing initial builder to our GSAT builder, which uses binary
searches for splitting subtrees. This extension will support insert, delete and
contains operations, but not range queries.

Conclusions on Chapter 2
In this chapter, we described a generic approach for creating self-adjusting

data structures, looked through different parameterizations and saw how they re-
flect time complexity and memory consumption. Moreover, we have proved static-
optimality in expected way for SABT and separately for SAIST, assuming that prob-
ablity density is smooth. We described how to make GSAT support range queries
and saw, what asymptotic bounds such operations have as well as how they affect
others operations. Finally, we briefly discussed how to transform sequential GSAT
into the concurrent one.

34

CHAPTER 3. EXPERIMENTS AND RESULTS
In this chapter, we compare different GSAT parameterizations with their clas-

sic versions and splay-tree on different workloads.
These workloads were launched on a system with the following characteris-

tics: Intel Xeon Gold 6240R CPU @ 2.40GHz, RAM 256Gb.

3.1. Graphs structure
OX axis shows the size of the set of keys and OY axis shows the number of

operations per second on one process — the higher the better. Each benchmark was
launched for 20 seconds. Each point on the graph was obtained by the following
procedure: we launched the same workload with same parameters for five times
and then plotted the average value among them to prevent any fluctuations.

Each picture consists of two graphs, where on the left side we have only-find
queries, while on the right side we have mixed queries.

SA2T on the graphs below means parametrization of SABT, where B = 2.

3.2. x/y workloads
We start with the experiments on x/y workloads. There are two key sets Sr

and Su which have sizes y ·|S|, where S is the whole set of keys and the keys in these
sets are chosen uniformly at random. In that workload, x% of contains operations
choose an argument from Sr while the rest contains operations choose an argument
from S \ Sr. The same happens with update operations and set Su.

In other words, the more difference x−y becomes the more workload skewed.
We consider three workloads of different skewness: 100/100, i.e., uniform;

70/30; and 90/10. The amount of update operations is also tunable. We have
two settings: 0% and 60%, i.e., 30% of inserts and 30% of removes. The operations
are chosen uniformly with respect to the proportions.

At first, we look on the uniform workload (Figure 4):

35

Figure 4 – Uniform workload

Then, we consider 70/30 workload (Figure 5):

Figure 5 – 70/30 workload

Finally, we look onto 90/10 workload (Figure 6):

36

Figure 6 – 90/10 workload

As we can see, the more skewed the access distribution becomes, the better
GSATs works— they are superior on only-find queries and slightly worse on mixed
queries to classic tree versions. Moreover, GSATs surpass splay-tree on every work-
load. SAIT is superior to other trees, because on average, it takes ∼ 1 iterations to
determine the next subtree, thanks to the ID array.

3.3. zipf workload
Let us consider last heavy-tailed distribution workload—Zipf, parameterized

with 1 and see, how implemented data structures behave on it (Figure 7):

Figure 7 – Zipf-1 workload

37

Here splay-tree equivalent to SA2T on only-find queries, however, splay-tree
outperforms GSAT for mixed queries — it is reasonable, because splay-tree store
near the root only a small amount of requesting keys while GSATs spend time on
rebuilding subtrees to balance them.

Conclusions on Chapter 3
In this chapter, we provided results of the experiments that indicate that

GSATs implementations, especially SAIT, show overall better results on the gen-
eral and read-only highly skewed workloads than the classic tree versions or Splay
Tree. Moreover, it is not significantly worse on mixed workloads then their original
tree versions. The obtained practical results coincide with the expectations after the
received theoretical bounds.

38

CONCLUSION
The Generic Self-Adjusting Tree Approach can be applied to different data

structures to make them self-adjusting by extracting their main characteristics into
the functions D(m) and S(node, key). The general analysis for GSATs is done prac-
tically in spite of D(m), however, to get a more precise bounds it is better to consider
each parameterization separately. So we have proved the static-optimality property
in expected way for the SABT and SAIT.

The GSAT approach is not limited to only basic set operations, it can be ex-
tended to support range queries, which, unlike other self-adjusting data structures,
considers the number of accesses for an element to restructure the tree in accordance
with the data distribution.

GSATs have shown themselves decent in practice on different workloads
in comparison with original, non-self-adjusting, trees as well as with other self-
adjusting trees — the more skewed workload, the more GSAT overpower non-self-
adjusting tree, however, it requires more time in comparison with Splay Tree to
adapt to data, which can be seen on the zipf-1 workload.

39

REFERENCES
1 Abramson N. Information theory and coding. — New York: McGraw-Hill,

1983.

2 Bayer R.,McCreight E.Organization andmaintenance of large ordered indices.
— 1970.

3 Sherk M. Self-adjusting k-ary search trees // J. Algorithms. — 1995. —
P. 24–44.

4 Benchmarking cloud serving systems with YCSB / B. F. Cooper [et al.]
// Proceedings of the 1st ACM symposium on Cloud computing. — 2010. —
P. 143–154.

5 CBTree: A Practical Concurrent Self-adjusting Search Tree / Y. Afek [et al.]
// Proceedings of the 26th International Conference on Distributed Computing.
—Salvador, Brazil : Springer-Verlag, 2012.—P. 1–15.— (DISC’12).—URL:
http://dx.doi.org/10.1007/978-3-642-33651-5_1.

6 Knuth D. E. The art of computer programming. Vol. 3. — Pearson Education,
1997.

7 Lazy Propagation in Segment Tree [Электронный ресурс]. — 2023. — URL:
https://www.geeksforgeeks.org/lazy-propagation-in-
segment-tree/.

8 Mehlhorn K., Tsakalidis A. Dynamic interpolation search. — 1991. — URL:
https : / / people . mpi - inf . mpg . de / ~mehlhorn / ftp /
DynamicInterpolationSearch.pdf.

9 Poess M., Floyd C. New TPC benchmarks for decision support and web com-
merce // ACM Sigmod Record. — 2000. — Vol. 29, no. 4. — P. 64–71.

10 Prokopec A., Brown T., Alistarh D. Analysis and Evaluation of Non-Blocking
Interpolation Search Trees // Proceedings of Principles and Practice of Parallel
Programming 2020. — 2020. — (PPoPP’20).

11 Segment tree [Электронный ресурс]. — 2023. — URL: https://en.
wikipedia.org/wiki/Segment_tree.

12 Tarjan R., Sleator D. Self-Adjusting Binary Search Trees. — 1985. — URL:
https : / / www . cs . princeton . edu / courses / archive /
fall07/cos521/handouts/self-adjusting.pdf.

40

13 Zipf’s law [Электронный ресурс]. — 2023. — URL: https : / / en .
wikipedia.org/wiki/Zipf%5C%27s_law.

41

