Performance Challenges in Modular .o

y 4
t '/7/7/a o '
INVENTEURS DU MONDE NUMERIQUE Parallel P rogra}ms lTM O U N lVERSITY

Umut Acar Vitaly Aksenov

Arthur Chargueraud Mike Rainey
aksenov.vitaly@Qgmail.com

Granularity Problem Motivating Example Spguard to Control Granularity

We are given an array with elements of type T. — Arguments: complexity c(x), parallel

Find the number of elements that satisty p: pb (x) and sequential bodies sb (x);

p = [&] (T+ x) { return hash(x) == 2017 }. Maintains constant C' that approximates the
template <T, P> ratio between complexity and running time.

int match(Tx lo, Tx hi, P p) Predicts the execution time as C-c (x) ;
int result

int n = hi - lo if the prediction is less than x then executes

if n < THRESHOLD sequential body sb (x) , else executes parallel

result = match_seqg(lo, hi, p)

else bOdy pb (X) ;

Tx mid = lo + (n / 2) measures the total sequential execution time
int resultl, result?2

(Given a multicore machine with

shared memory and a nested paral-
lel program how to execute this
program efficiently?

Requirements: — Online
— Handle templated code
— Hardware independent

fork2join ([&] { for future predictions
resultl = match(lo, mid, p)
» Too small tasks = too large overheads Vo le] template <T, P>
» Too big tasks = not enough parallelism result2 = match(mid, hi, p) int match(Tx lo, T hi, P p)
: 1) .
o Ideal task size = how to select the threshold? result — resultl + result) izt ieiu}lﬁ o
return result spguard ([&] { // complexity function
‘ . return n
b, [&] { // parallel bod
Eva uatlon Type T threshold Comment if n < 1 P Y
" . - X slower 1t = tch_ Lo, hl’
https://github.com /deepsea-inria/pctl char L 100x slowe clee | mateh_seqlio, hi, p)
. 5000 (TBB) opt%mal Tx mid = 1o + (n / 2)
We compare against the manually tuned code onrs optima int resultl, result?
from PBBS suite [1]. X o power fork2join(f&] |
[] ;igTBB) 23&2;?67 resultl = match(lo, mid, p)
: : : ours optimal boo [&] A
Application/input PBBS (s) | Ours hari2048 pp— — result2 = match(mid, hi, p)
blockradix-sort | 10 ogtimal })
random 0.20 — 749 (5)3(32) if);%;ni(iwer resul’;/= resuli; Jlr kJ_;ecsiultZ
exponential 0.19 —84% char[131072] 1 (TBB) optimal },re[zilé - mzigﬁi;le;?l@,ohz, P)
random kvp 256 0.49 —23.9% 10 optimal 1)
random kvp 10° 0.49 —27.7% (5)?122 iifizzrer return result
comparison-sort
random 1.13 —36.4%
exponential 0.82 —31.3% , ;
SR ——t——=| | Implementation of Spguards as a Library
suffix-arra
ty' 3 5 6.3 template <Complexity, Par_body, Seqg_body> Challeﬂges
igrams : 070 void spguard(estimator*x es, Complexity c,
dna 1.29 —6.7% Par_body pb, Seqg _body sb) .
text 4.11 —7.4% int N = c() 1. In nested parallel programs a spguard with wrong
wiki 3.66 —5.3% time work = if es.is_small (N initial constant can always choose parallel body and

convex-hull then measured_run (sb)

—— G ey else measured_run (pb) will never update a constant.
11 CIrcle : -0 /0 es.report (N, work)
kuzmin 0.41 —6.9% Solution. Report the time spent during the parallel
on circle 8.26 | —32.4% cons® gmfie N % paral e L om unit call as the sum of sequential sub-computations.
nearest-neighbours cons ouble « growt actor
1 P4rale 019 —2.2% class estimator o 2. A constant can differ significantly for different
kuzmin 22.00 —2.5% double C // constant for estimations , , ,
cubo =90 657, int Nmax = 0 // max complexity measure sizes: for example, if the data becomes unfit in the
on sphere 14.60 | —31.2% "°ig I?PO? _(ifn‘T‘ E tim; NT)> . cache. So, we cannot use the obtained constant for
atomic i K an max
plummer 23.54 —2.5% c-T /N the sizes arbitrarily bigger.
ray-cast Nmax = N } . .1 :
1 cube =00 —1.9% Solution. We allow to sequentialize only if the pre-
on sphere 0.87 —0.2% b°°1tiS—SI?§l<l i\lint) N) dicted work is small and the size is not much bigger
return max) Or i .
happy 0.50 —1.9% (N < o - Nmax and N-C < o - k) than the current maximal known size.
Xyz-rgb manuscript 9.46 +0.3% - -
turbine 4.10 —2.1%
delaunay :
e ——t—7o | | [heoretical Result
kuzmin 3.99 —4.4% O(1 9
— Theorem. T, < (1 - i))-%%—O(/{)-SnL%-O(log K),
cube-grid 0.12 +1.2% where T, 1s a parallel time of a nested parallel fork-join program including the constant time overhead
rMat24 0.07 +2.7% per fork2join, P is a number of cores, and w and s are work and span without considering overheads.
rMat27 0.06 +2.7%
mst
cube-grid 9 98 —9.9% It is a generalization of Brent’s bound 7T, < w /P + s which ignores task creation costs.
rMat24 2.21 —13.3% A ti
rMat27 1.89 | —16.3% SSUPULIONS
spanning b'd o = for any spguard g = spguard (F'(g), P(g), S(9)), P(9)= [&]{Sp, fork2join (L(g), R(g)), Sm}
cube-gri : —9.8%0
Mat24 0.44 —0.6% time measurements do not difffer much from work | + < M(S(g),I)/Ws(S(9),I) < E
Mat27 0.33 —5.0% . . . :
—° . sequential work in P(g) is not much bigger than | 1 < Wy (P(g),1)/Ws(S(g),I) < D

work in S(g)

References and ACkﬂOW‘edgementS a task a times bigger induces no more than S more | if F(J) < F(I) < «a - F(J) then

|1] G. Blelloch et al., Brief~Announcement: The work Ws(g,J) < Ws(g,I) < B-Wsl(g,J)

]ggo;)olem Based Benchmark Suite. SPAAT2012, p. there is a ~-balance between branches of the fork % < Wy(L(g),I)/Ws(S(g),I) < ~ and
_70.)

This work is partially supported by the National Science y = W, (R(g)’ [)/WS (S(g)’ [) <7

Foundation (CCF-1408940 and CCF-1629444) and Eu-
ropean Research Council (ERC-2012-StG-308246).

spguards are called sufficiently frequently in a call | if ¢’ is an immediate outer spguard of ¢

tree then W4(S(¢'),I) < yWs(S(g),I)

