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Abstract12

Batching is a technique that stores multiple keys/values in each node of a data structure. In13

sequential search data structures, batching reduces latency by reducing the number of cache misses14

and shortening the chain of pointers to dereference. Applying batching to concurrent data structures15

is challenging, because it is difficult to maintain the search property and keep contention low in the16

presence of batching.17

In this paper, we present a general methodology for leveraging batching in concurrent search18

data structures, called BatchBoost. BatchBoost builds a search data structure from distinct “data”19

and “index” layers. The data layer’s purpose is to store a batch of key/value pairs in each of its20

nodes. The index layer uses an unmodified concurrent search data structure to route operations21

to a position in the data layer that is “close” to where the corresponding key should exist. The22

requirements on the index and data layers are low: with minimal effort, we were able to compose23

three highly scalable concurrent search data structures based on three original data structures as24

the index layers with a batched version of the Lazy List as the data layer. The resulting BatchBoost25

data structures provide significant performance improvements over their original counterparts.26
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1 Motivation and Background31

Batching is an increasingly important technique for maximizing the performance of concurrent32

data structures. Briefly, batching is the technique by which a linked data structure stores33

multiple elements in a single data node. The most well-known batched data structure is34

the B-tree [4], but batching has been applied to a variety of trees [17,23], lists [5], and skip35

lists [3, 5]. The benefit of batching is that it co-locates multiple elements in a contiguous36

region of memory (e.g., a cache line). While batching typically does not improve asymptotic37

guarantees, it can reduce the total number of cache lines accessed by an operation.38

The latency reductions that stem from batching are broadly beneficial. In data structures39

that provide scan operations and range queries [2,3,8,12,24], batching coarsens the granular-40

ity of synchronization metadata, so that it can be accessed less frequently. In data structures41

that use remote direct memory access (RDMA), Non-Uniform Memory Access (NUMA), or42

non-volatile byte-addressable memory (NVM), batching reduces the number of accesses to a43

memory that is slower than local DRAM. Batching can also benefit algorithms for GPUs [16]44

and emerging near-memory computing paradigms [11], where careful consideration of data45

placement is paramount.46

Batching is not without its downsides, for both sequential and concurrent programs. For47

example, consider an ordered map implemented as a batched linked list (i.e., each node uses48

a sorted vector to represent a batch of N key/value pairs). While lookup operations within49

a batch take O(log N) time, it takes O(N) work to insert or remove an element in a batch,50

in order to preserve sorting. If instead we used an unsorted batch, each operation would cost51

O(N), but with lower constants. Similarly, if each batch is protected by a coarse lock, then52

when keys K1 and K2 are stored in the same batch, threads operating on those keys would53

not be able to proceed in parallel.54

While it may seem difficult to find an ideal batch implementation, recent work has shown55

that it is not too difficult, especially for workloads that deal with large volumes of data and56

low rates of skew, so long as batch sizes remain modest. Examples of scalable, low-latency57

batched data structures include maps (e.g., Kiwi [3], CUSL [19], Skip Vector [21], OCC (a,58

b)-tree [22], Lock-Free B+Tree [6]), and queues [10, 20, 25]. These works tended to treat59

batching as a first-class design consideration, raising the question of whether it is possible to60

build a general methodology for adding batching to an existing concurrent data structure.61

We propose the BatchBoost methodology as a step toward this goal. BatchBoost is designed62

specifically for ordered maps. It provides programmers with a scalable batched doubly-linked63

list. The original data structure is then treated as an index to some node in the list. The64

key innovation is that an out-of-date index will always return a valid node, from which the65

“correct” node can be found by moving through the links of our doubly-linked links. In this66

way, BatchBoost lets programmers keep their existing, scalable index, while still benefitting67

from batching of key/value pairs.68

2 Requirements and the BatchBoost Construction69

Our goal is to emphasize orthogonality. It should be possible for a programmer to think of a70

data structure as consisting of an index layer and a data layer. The data layer should be71

batched, with as few configuration knobs as possible. The index layer should be decoupled72

from the data layer, and chosen based on workload and machine characteristics. At any time,73

it should be trivial to replace the index or data layer with a more suitable data structure,74

without changing the other layer’s implementation.75

In BatchBoost, data structure operations always linearize in the data layer. The index76

layer can be thought of as providing routing “hints.” Given relatively straightforward77
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requirements on the data layer, an operation proceeds in three steps. First, it queries the78

index layer to find a good starting position in the data layer. Second, it operates on the data79

layer. Finally, it might update the index. A key point is that the index layer need not be80

kept consistent with the data layer, so long as (1) data layer operations can recover from bad81

hints, and (2) the index and data layers agree on how to achieve safe memory reclamation.82

Listing 1 Composition of index and data layer operations into BatchBoost operations
83

1 fn lookup ( IndexLayer I, Key K) -> Option <V>84

2 at = I. findApprox (K)85

3 <ret , val , node > = at. lookup (K)86

4 if ret == Found: return Some(val)†87

5 if ret == NotFound : return None ()†88

6 if ret == DeletedNode : I. remove (node.key ); goto 289

790

8 fn insert ( IndexLayer I, Key K, Value V) -> bool91

9 at = I. findApprox (K)92

10 <ret , node > = at. insert (K, V)93

11 if ret == InsertSuccess : return true†94

12 if ret == AlreadyExists : return false†95

13 if ret == DeletedNode : I. remove (node.key ); goto 996

14 assert (ret == InsertSuccessAndSplit )97

15 I. insert (node.key , node)98

16 if node. deleted : I. remove (node.key)99

17 return true100

18101

19 fn remove ( IndexLayer I, Key K) -> bool102

20 at = I. findApprox (K)103

21 <ret , node > = at. remove (K)104

22 if ret == RemoveSuccess : return true†105

23 if ret == NotPresent : return false†106

24 if ret == DeletedNode : I. remove (node.key ); goto 20107

25 assert (ret == RemoveSuccessAndMerge )108

26 I. remove (node.key)109

27 return true110111

Listing 1 presents a general BatchBoosted data structure. We model the DataLayer type112

as a collection of nodes, each of which stores a tuple ⟨pairs, lower, upper, size, capacity⟩, as113

well as links to other nodes. pairs is a collection of size key/value pairs (size ≤ capacity),114

whose keys are in the range [lower, upper). The range of the DataLayer is from ⊥ to ⊤,115

which is also the union of all nodes’ ranges. We require that from any node, there is a way116

to reach any other node (perhaps because nodes have predecessor and successor pointers, or117

because everything is reachable from some sentinel node). We also require that the node118

include a field indicating if it has been removed from the data layer (a mark or deleted119

bit). Each node in DataLayer supports three operations with a key argument: 1) lookup120

operation (line 3) traverses the doubly-linked list and returns the node that should contain121

the key; 2) insert operation (line 10) traverses the doubly-linked list, finds the node where122

the key should be inserted, and inserts there; 3) remove operation (line 21) traverses the123

doubly-linked list, finds the node where the key should be, and removes it from there.124

The IndexLayer type is an ordered map from keys to DataLayer::Node objects. We do125

not specify its implementation, only that it allows the creation and removal of mappings,126

and supports some suitable findApprox(k) function that returns a value mapped to a key127

which is likely to be close to k. The precision of findApprox() does not affect correctness,128
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but the performance of BatchBoosted data structures is likely to correlate with the precision129

of the index’s findApprox() implementation.130

Initially the data layer contains a single node, which is mapped to the index with key ⊥.131

The index may store references to logically deleted nodes; it can also lack references to nodes132

that are in the data layer. IndexLayer::findApprox(key) represents these possibilities:133

when queried with a key, there is no guarantee that the returned node contains it or even be134

somewhere close. Note that for an ordered map, findApprox(key) can be implemented in135

many ways, including ceil(key) and floor(key).136

The index is updated lazily. Insertion of a key/value pair into a node may result in the137

creation of a new node in the data layer; removal of a pair may result in a node becoming138

“too small”, in which case it can be unlinked once its contents are merged into an adjacent139

node. These conditions are returned on lines 10 and 21, respectively. If a node becomes140

deleted between when it is created and when it is added to the index, an insert operation is141

responsible for removing it (line 16). Coupled with standard assumptions about safe memory142

reclamation, this ensures a node pointed to by the index is still safe to access, even if it143

has been unlinked from the data layer. Similarly, removal of a merged node from the index144

layer can delay (line 24), in which case some other thread may remove it (e.g., line 6), and145

a subsequent insertion can put a different key/node mapping into the index. When this146

happens, the removal of a valid node is possible. Lines marked with † represent places where147

an operation may choose to remedy this situation by trying to insert node if node ̸= at.148

For clarity, the code in Listing 1 skips other optimizations. We do not describe the149

exact implementation of the data layer because there are lots of them. For example, some150

data layer implementations may allow lookup to succeed even when the node returned by151

findApprox has been unlinked, avoiding the need for line 6.152

3 Performance Evaluation153

Description. We implemented BatchBoost in C++. We use three non-batched search154

structures as index layers: Fraser’s skip list [13] and trees by Bronson et al. [7] and Natarajan155

et al. [18]. For all index layers we use the existing floor method for findApprox. The156

skip-list code is from SynchroBench [14], the trees are from SetBench [9]. For the data157

layer, we created a batched, doubly linked list based on the Lazy List [15]. While many158

configurations of the data layer are possible, we only consider a fixed-capacity array storing159

its key/value pairs in ascending order. We use epoch-based memory reclamation; threads160

enter the epoch at the beginning of an operation in Listing 1, and exit the epoch immediately161

before the operation returns.162

All experiments were conducted on a machine with two Intel Xeon Gold 5218 CPUs163

at 2.30GHz (32 total cores / 64 threads), running Ubuntu 22.04 (Linux Kernel 5.15). We164

compiled all code with clang 15 (–O3 optimizations). Each data point is the average of five165

5-seconds trials. Variance was typically low, and is indicated via error bars.166

Experiments are parameterized by lookup ratio R and key range K. Each operation167

type is chosen randomly and is a lookup with R% probability, with remaining operations168

split equally between insert and remove. Data structures are pre-filled with 50% of keys, so169

that the data structure size stays roughly constant. Integer keys are chosen with uniform170

probability from [1, K].171

Sensitivity to Batch Size. The batch size is a critical configuration parameter. If it is172

too small, batching might increase latency. If it is too large, then contention on batches will173

be too high, hindering scalability. Figure 1 measures throughput at 32 threads as we vary the174

batch size (K = 107). We consider lookup ratios of 34% and 90%. The labels sl, bro, and175

nat refer to Fraser’s skip list [13], Bronson’s tree [7], and Natarajan’s tree [18], respectively.176
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Figure 1 Impact of batch size on throughput at 32 threads
4 64 1024

bro_bb 44.43 30.22 36.68
sl_bb 29.07 22.27 35.58

nat_bb 37.14 36.32 40.71
Table 1 Impact of batch size on cache miss ratio at 16 threads

The _bb suffix refers to a BatchBoost data structure composing the corresponding index177

with our doubly-linked list.178

While the results confirm that there is a sensitivity to batch size, the expected performance179

plateau is surprisingly wide. Thus while there is more than 2× difference between good and180

bad batch sizes, the exact size does not seem to be particularly significant. We observe that181

sensitivity is lower than in nonblocking batched data structures [22]. This is due to our use182

of a lock-based list, which allows in-place modification instead of copy-on-write. Since the183

drop-off is worse when the batch size gets too large, we conservatively chose a batch size of184

100 for all subsequent experiments.185

Using the Linux perf tool, we were able to attribute these results directly to a reduction186

of cache misses. Table 1 shows cache miss ratio against the total number of cache loads for187

different batch sizes. In effect, BatchBoost shrinks the size of the index, thereby reducing188

pointer chasing. While the data layer has more cache accesses than a leaf of the unmodified189

data structure, the increase is less than the savings in the index layer. However, with the190

increasing batch the ratio of cache misses also increases, thus, we need to choose some ideal191

batch size.192

Throughput and Scalability. Figure 2 measures throughput of our BatchBoost data193

structures with a fixed batch size as we vary the thread count. BatchBoost consistently194

improves the performance. The peak speedup depends on workload parameters and varies195

from 5 − 10% to almost 2×.196

Furthermore, we do not observe significant cache traffic due to contention. By the197

time threads reach the data layer, the index has dispersed them, reducing the likelihood198

of contention. Thus as long as the data layer has low latency, the window of contention is199

low, and threads are not likely to interfere with each other. Additionally, the data layer200

hides most mutations (insertions and removals) from the index layer. A smaller index, with201

fewer writes, is more likely to remain resident in most CPUs’ caches. In essence, BatchBoost202

increases the likelihood that the index stays in its common (read-only) case.203

4 Conclusions and Future Work204

In this paper we introduced the BatchBoost methodology, and demonstrated that it simplifies205

the creation of scalable data structures with good locality. As discussed in Section 1, batching206

DISC 2023
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Figure 2 BatchBoost throughput and scalability for varied R and K

has broad potential. An important future research direction is to apply our BatchBoost207

construction in additional domains, as well as on more complex benchmarks. We also intend208

to compare against other batching techniques. Another important research question pertains209

to the data layer: We demonstrated that BatchBoost worked well with different index210

layer implementations, but what about alternate data layer implementations (especially211

nonblocking)? Further afield, our evaluation showed that BatchBoost amplified the “common212

case” in the index layer. This may motivate designing new index layers with an explicit213

and highly optimized findApprox operations. For example, we are interested whether214

we can use a fast sequential index data structure, e.g., Abseil B-trees [1], protected by a215

scalable readers/writer lock. This could allow concurrent updates and reads, since even under216

concurrent rebalancing, index lookup operations will give a good enough approximation in217

our doubly-linked list.218
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