
Self-Adjusting Linear Networks
with Ladder Demand Graph

Vitaly Aksenov1r0000´0001´9134´5490s, Anton Paramonov2

, Iosif Salem3r0000´0003´2810´2781s, and Stefan Schmid‹3r0000´0002´7798´1711s

1 ITMO University, St. Petersburg, Russia aksenov.vitaly@gmail.ru
2 EPFL, Switzerland anton.paramonov2000@gmail.com

3 TU Berlin, Berlin, Germany
iosif.salem@inet.tu-berlin.de, stefan.schmid@tu-berlin.de

Abstract. Self-adjusting networks (SANs) have the ability to adapt to
communication demand by dynamically adjusting the workload (or de-
mand) embedding, i.e., the mapping of communication requests into the
network topology. SANs can reduce routing costs for frequently commu-
nicating node pairs by paying a cost for adjusting the embedding. This
is particularly beneficial when the demand has structure, which the net-
work can adapt to. Demand can be represented in the form of a demand
graph, which is defined by the set of network nodes (vertices) and the
set of pairwise communication requests (edges). Thus, adapting to the
demand can be interpreted by embedding the demand graph to the net-
work topology. This can be challenging both when the demand graph is
known in advance (offline) and when it revealed edge-by-edge (online).
The difficulty also depends on whether we aim at constructing a static
topology or a dynamic (self-adjusting) one that improves the embedding
as more parts of the demand graph are revealed. Yet very little is known
about these self-adjusting embeddings.
In this paper, the network topology is restricted to a line and the demand
graph to a ladder graph, i.e., a 2ˆn grid, including all possible subgraphs
of the ladder. We present an online self-adjusting network that matches
the known lower bound asymptotically and is 12-competitive in terms of
request cost. As a warm up result, we present an asymptotically optimal
algorithm for the cycle demand graph. We also present an oracle-based
algorithm for an arbitrary demand graph that has a constant overhead.

Keywords: Ladder graph · Self-adjusting networks · Traffic patterns ·
Online algorithms.

1 Introduction

Traditional networks are static and demand-oblivious, i.e., designed without con-
sidering the communication demand. While this might be beneficial for all-to-

‹ Supported partially by the Austrian Science Fund (FWF) project I 4800-N (AD-
VISE) and the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement No. 864228 “Self-
Adjusting Networks (Adjust-Net)”.

2 V. Aksenov et al.

all traffic, it doesn’t take into account temporal or spatial locality features in
demand. That is, sets of nodes that temporarily cover the majority of commu-
nication requests may be placed diameter-away from each other in the network
topology. This is a relevant concern as studies on datacenter network traces have
shown that communication demand is indeed bursty and skewed [3].

Self-adjusting networks (SANs) are optimized towards the traffic they serve.
SANs can be static or dynamic, depending on whether it is possible to reconfigure
the embedding (mapping of communication requests to the network topology)
in between requests, and offline or online, depending on whether the sequence of
communication requests is known in advance or revealed piece-wise. In the online
case, we assume that the embedding can be adjusted in between requests at a
cost linear to the added and deleted edges, thus, bringing closer frequently com-
municating nodes. Online algorithms for SANs aim to reduce the sum of routing
and reconfiguration (re-embedding) costs for any communication sequence.

We can express traffic in the form of a demand graph that is defined by the
set of nodes in the network and the set of pairwise communication requests (edge
set) among them. Knowing the structure of the demand graph could allow us to
further optimize online SANs, even though the demand is still revealed online.
That is, by re-embedding the demand graph to the network we optimize the use
of network resources according to recent patterns in demand.

To the best of our knowledge, the only work on demand graph re-embeddings
to date is [2], where the network topology is a line and the demand graph is also a
line. The authors presented an algorithm that serves m “ Ωpn2q requests at cost
Opn2 log n`mq and showed that this complexity is the lower bound. The problem
is inspired by the Itinerant List Update Problem [12] (ILU). To be more precise,
the problem in [2] appears to be the restricted version of the online Dynamic
Minimum Linear Arrangement problem, which is another reformulation of ILU.

Contributions. In this work, we take the next step towards optimizing
online SANs for more general demand graphs. We restrict the network topology
to a line, but assume that the demand graph is a ladder, i.e., a 2 ˆ n grid. We
assume that before performing a request, we can re-adjust the line topology by
performing several swaps of two neighbouring nodes, paying one for each swap.
We present a 12-competitive online algorithm that embeds a ladder demand
graph to the line topology, thus, asymptotically matching the lower bound in
[2]. This algorithm can be applied to any demand graph that is a subgraph of
the ladder graph and that when all edges of the demand graph are revealed the
topology is optimal and no more adjustments are needed. We also optimally
solve the case of cycle demand graphs, which is a simple generalization of the
line demand graph, but is not a subcase of the ladder due to odd cycles. Finally,
we provide a generic algorithm for arbitrary demand graphs, given an oracle that
computes an embedding with the cost of requests bounded by the bandwidth.

A solution for the ladder is the first step towards the k ˆ n grid demand
graph where k is an arbitrary constant. Moreover, a ladder (and a cycle) has a
constant bandwidth, i.e., a minimum value over all embeddings in a target line
topology of a maximal path between the ends of an edge (request). It can be

Self-Adjusting Linear Networks with Ladder Demand Graph 3

shown that given a demand graph G the best possible complexity per request is
the bandwidth.

Related work. Avin et al. [2], consider a fixed line (host) network and a
line demand graph. Their online algorithm re-embeds the demand graph to the
host line topology with minimum number of swaps on the embedding. Both [1,6]
present constant-competitive online algorithms for a fixed and complete binary
tree, where nodes can swap and the demand is originating only from the source.
However, these two works do not consider a specific demand graph. Moreover,
[5] studied optimal but static and bounded-degree network topologies, when the
demand is known. Self-adjusting networks have been formally organized and
surveyed in [7]. Other existing online SAN algorithms consider different models.
The most distinct difference is our focus on online re-embedding while keeping a
fixed host graph (i.e., a line) compared to other works that focus on changing the
network topology. The latter is what, for example, SplayNet [14] is proposing,
where tree rotations change the form of the binary search tree network, without
optimizing for a specific family of demand patterns.

Online demand graph re-embedding also relates to dynamically re-allocating
network resources to follow traffic patterns. In [4], the authors consider a fixed
set of clusters of bounded size, which contain all nodes and migrate nodes online
according to the communication demand. But more broadly, [8] assumes a fixed
grid network and migrates tasks according to their communication patterns.

Online embedding of metric spaces is studied in [11]. Authors consider the
problem in which elements of some metric space are exposed one after another
and the goal is to map them into another metric space while preserving the small-
est expansion possible. There are several differences with our problem: 1) they
care about all pairs of elements, while we consider a special demand graph;
2) nodes can not be re-embedded after being placed.

Also, relevant problems, from a migration point of view, are the classic list
update problem (LU) [15], the related Itinerant List Update (ILU) problem [12],
and the Minimum Linear Arrangement (MLA) problem [10]. In contrast to those
problems, we study an online problem where requests occur between nodes.

Roadmap. Section 2 describes the model and background. Section 3 con-
tains the summary of our three contributions (ladder, cycle, general demand
graph) and their high-level proofs. Section 4 presents the algorithm and the
analysis for ladder demand graphs. Some technical details can be found in the
technical report [13].

2 Model and Background

Let us introduce the notation that we are going to use throughout the paper.
Let V pHq and EpHq be the sets of vertices and edges in graph H, respectively.
Sometimes, we just use V and E if the graph H is obvious from the context. Let
dHpu, vq be the distance between u and v in graph H.

Let N be the network topology and σ be a sequence of pairwise commu-
nication requests between nodes in N . Let the demand graph G be the graph

4 V. Aksenov et al.

built over the nodes in N and the pairs of nodes that appear in σ, i.e. G “

pV pNq, tσi “ psi, diq |σi P σuq. We assume that the demand graph is of a certain
type and our overall goal will be to embed the demand graph G in the actual
network topology N at a minimum cost. This is non-trivial as requests are se-
lected from G by an online adversary and G is not known in advance. In the
following, we formalize demand graph embedding and topology reconfiguration.

A configuration (or an embedding) of G (the demand graph) in a graph N
(the host network) is a bijection of V pGq to V pNq; CGÑN denotes the set of all
such configurations. A configuration c P CGÑN is said to serve a communication
request pu, vq P EpGq at the cost dN pcpuq, cpvqq. A finite communication sequence
σ “ pσ1, . . . , σmq is served by a sequence of configurations c0, c1, . . . , cm P CGÑN .
The cost of serving σ is the sum of serving each σi in ci plus the reconfiguration
cost between subsequent configurations ci and ci`1. The reconfiguration cost
between ci and ci`1 is the number of migrations necessary to change from ci to
ci`1; a migration swaps the images of two neighbouring nodes u and v under c
in N . Moreover, Ei “ tσ1, . . . , σiu denotes the first i requests of σ interpreted
as a set of edges on V . We present algorithms for an online self-adjusting linear
network: a network whose topology forms a 1-dimensional grid, i.e., a line.

Definition 1 (Working Model). Let G be the demand graph, n be the number
of vertices in G, N “ pt1, . . . , nu, tp1, 2q, p2, 3q, . . . , pn ´ 1, nqu be a line (or list)
graph Ln (host network), c be a configuration from CGÑN , and σ be a sequence
of communication requests. The cost of serving σi “ pu, vq P σ is given by
|cpuq ´ cpvq|, i.e., the distance between u and v in N . Migrations can occur
before serving a request and can only occur between nodes configured on adjacent
vertices in N .

In the following we introduce notions relevant to our new results.

Definition 2 (Bandwidth). Given a graph G, the Bandwidth of an embedding
c P CGÑLn

is equal to the maximum over all edges pu, vq P E of |cpuq´cpvq|, i.e.,
the distance between u and v on Ln. BandwidthpGq is the minimum bandwidth
over all embeddings from CGÑLn .

Remark 1 The Bandwidth computation of an arbitrary graph is an NP-hard
problem [9].

To save the space, we typically omit the proofs of lemmas and theorems in
this paper and put them in [13, Appendix C]. Here we define the 2 ˆ n grid or
ladder graph for which we get the main results of our paper.

Definition 3. A graph Laddern “ pV,Eq is represented as follows. The vertices
V are the nodes of the grid 2ˆn — tp1, 1q, p1, 2q, . . . , p1, nq, p2, 1q, p2, 2q, . . . , p2, nqu.
There is an edge between vertices px1, y1q and px2, y2q iff |x1 ´x2|`|y1 ´y2| “ 1.

Self-Adjusting Linear Networks with Ladder Demand Graph 5

Lemma 1. BandwidthpLaddernq “ 2.

Proof. The bandwidth is greater than 1, because
there are nodes of degree three. The bandwidth
of 2 can be achieved via the “level-by-level” enu-
meration as shown on the figure.

Fig. 1: Optimal ladder
numeration.

Lemma 2. For each subgraph S of a graph G, BandwidthpSq ď BandwidthpGq.

2.1 Background

Let us overview the previous results from [2]. In that work, both the demand
and the host graph (network topology) were the line Ln on n vertices. It was
shown that there exists an algorithm that performs Opn2 log nq migrations in
total, while serving the requests themselves in Op1q. By that, if the number of
requests is Ωpn2 log nq then each request has Op1q amortized cost.

Theorem 1 (Avin et al. [2]). Consider a linear network Ln and a linear
demand graph. There is an algorithm such that the total time spent on migrations
is Opn2 log nq, while each request is performed in Op1q omitting the migrations.

We give an overview of this algorithm. At each moment in time, we know
some subgraph of the line demand graph. For each new communication request,
there are two cases: 1) the edge from the demand graph is already known —
then, we do nothing; 2) the new edge is revealed. In the second case, this edge
connects two connected components. We just move the smaller component on
the line network closer to the larger component. The move of each node in one
reconfiguration does not exceed n. Since, the total number of reconfigurations
in which the node participates does not exceed log n, we have Opn2 log nq upper
bound on the algorithm. From [2],Ωpn2 log nq is also the lower bound on the total
cost. Thus, the algorithm is asymptotically optimal in the terms of complexity.

Corollary 1. If |σ| “ Ωpn2 log nq the amortized service cost per request is Op1q.

The algorithms are not obliged to perform migrations at all, but the sum of
costs for Θpn2q requests can be lower-bounded with Ωpn2 log nq.

Theorem 2 (Lower bound, Avin et al. [2]). For every online algorithm ON
there is a sequence of requests σON of length Θpn2q with the demand graph being
a line, such that costpONpσON qq “ Ωpn2 log nq.

That implies Ωplog nq optimality (or competitive) factor since any offline
algorithm knowing the whole request sequence σ in advance can simply recon-
figure the network to match the (line) demand graph by paying Θpn2q in the
worst case.

6 V. Aksenov et al.

3 Summary of contributions

In this work we present self-adjusting networks with a line topology for a demand
graph that is either a cycle, or a 2 ˆ n grid (ladder), or an arbitrary graph. We
study offline and online algorithms on how to best embed the demand graph on
the line, such that the total cost is minimized. The online case is more challeng-
ing, as the demand graph is revealed edge-by-edge and the embedding changes,
with a cost. The result for the cycle follows from [2] almost directly. However, the
result for the ladder is non-trivial and requires new techniques; it is not simple
to reconfigure a subgraph on a 2 ˆ n grid after revealing a new edge in order to
get Opn2 log nq cost of modifications in total. We give an overview of each case
below.

3.1 Cycle demand graph

We start with the following observation. Let Cn be a cycle graph on n vertices,
i.e., EpCnq “ tp1, 2q, . . . , pn´1, nq, pn, 1qu. Then, BandwidthpCnq “ 2. We give a
brief description of how the algorithm works. We start with the same algorithm
as for the line (Section 2.1): while the number of revealed edges is not more than
n ´ 1, we can emulate the algorithm for the line. When the last edge appears
we restructure the whole embedding in order to get bandwidth 2, which is the
cycle bandwidth. For the last-step restructuring using swaps, we pay no more
than Opn2q. This cost is less than the total time spent on the reconstruction
Ωpn2 log nq.

Theorem 3. Suppose the demand graph is Cn. There is an algorithm such that
the total cost spent on the migrations is Opn2 log nq and each request is performed
in Op1q. In particular, if the number of requests is Ωpn2 log nq each request has
Op1q amortized cost.

The full proof appears in [13, Appendix A]

Remark 2 The lower bound with Ωpn2 log nq that was presented for a line de-
mand graph still holds in the case of a cycle, since the cycle contains the line as
the subgraph. Thus, our algorithm is optimal.

3.2 Ladder demand graph

Now, we state the main result of the paper — the algorithm for the case when
the demand graph is a ladder.

Theorem 4. Suppose a demand graph is a ladder. There is an algorithm such
that the total cost spent on the migrations is Opn2 log nq and each request is
performed in Op1q. In particular, if the number of requests is Ωpn2 log nq each
request has Op1q amortized cost.

Self-Adjusting Linear Networks with Ladder Demand Graph 7

We provide a brief description of the algorithm. We say that a ladder has
n levels from left to right: i.e., the nodes p1, yq and p2, yq are on the same level
y (see Figure 1). On a high-level, we use the same algorithmic approach as in
Theorem 1 for the line demand graph. The main difference is that instead of
embedding the demand graph right away in the line network, at first, we “quasi-
embed” the graph in the 2n-ladder graph, which then we embed in the line. By
“quasi-embedding” we mean a relaxation of the embedding defined earlier: at
most three vertices of the demand graph are mapped to each level of the ladder.

Suppose for a moment that we have a dynamic algorithm that quasi-embeds
the graph in the 2n-ladder. Given this quasi-embedding we can then embed the
2n-ladder in the line Ln. We sequentially go through from level 1 to level 2n of
our ladder and map (at most three) vertices from the level to the line in some
order (see Theorem 1). Such a transformation from the ladder to the line costs
only a constant factor in bandwidth.

We explain briefly how to design a dynamic quasi-embedding algorithm with
the desired complexity. At first, we present a static quasi-embedding algorithm,
i.e., we are given a subgraph of the ladder and we need to quasi-embed it. This
algorithm consists of three parts: embed a tree, embed a cycle, embed everything
together. To embed a tree we find a special path in it, named trunk. We embed
this trunk from left to right: one vertex per level. All the subgraphs connected
to trunk are pretty simple and can be easily quasi-embedded in parallel to the
trunk (see Figure 2). To embed a cycle we just have to decide which orientation it
should have. To simplify the algorithm we embed only the cycles of length at least
6, omitting the cycles of length 4. This decision introduces just the multiplicative
constant of the cost. Finally, we embed the whole graph: we construct its cycle-
tree decomposition and embed cycles and trees one by one from left to right.

Now, we give a high-level description of our dynamic algorithm. We maintain
the invariant that all the components are quasi-embedded. When an already
served request (edge) appears, we do nothing. The complication comes from a
newly revealed edge-request. There are two cases. The first one is when the edge
connects nodes in the same component — thus, there is a cycle. We redo only the
part of the quasi-embedding of the component around the new cycle; the rest of
the component remains. In the second case, the edge connects two components.
We move the smaller component to the bigger one as in Theorem 1. The bigger
component does not move and we redo the quasi-embedding of the smaller one.

Fig. 2: Quasi-correct embedding of a tree

Now, we briefly calculate
the complexity of the dy-
namic algorithm. For the re-
quests of the first case, if the
nodes are on the cycle for the
first time (this event happens
only once for each node), we pay Opnq for it. Otherwise, there are already nodes
in the cycle. In this case we make sure to re-embed the existing cycle in a way
that all the nodes are moved for a Op1q distance. As for the neighboring nodes,
it can be shown that each node is moved only once as a part of the cycle neigh-

8 V. Aksenov et al.

borhood, so we also bound this movement with Opnq cost. This gives us Opn2q

complexity in total — each node is moved by at most Opnq. For the requests
of the second case, we always move the smaller component and, thus, we pay
Opn2 log nq in total: each node can be moved by Opnq at most Oplog nq times, i.e.,
any node can be at most log n times in the “smaller” component. Our algorithm
matches the lower bound, since the ladder contains Ln as a subgraph.

3.3 General graph

We finish the list of contributions with a general result; the case where the
demand graph is an arbitrary graph G. The full proofs are available in [13,
Appendix D].

Theorem 5. Suppose we are given a (demand) graph G and an algorithm B,
that for any subgraph S of G outputs an embedding c P CSÑL|V pGq|

with bandwidth
less than or equal to λ ¨ BandwidthpGq for some λ. Then, for any sequence of
requests σ with a demand graph G there is an algorithm that serves σ with a
total cost of Op|EpGq| ¨ |V pGq|2 ` λ ¨ BandwidthpGq ¨ |σ|q. In particular, if the
number of requests is Ωp|EpGq| ¨ |V pGq|2q each request has Opλ ¨BandwidthpGqq

amortized cost.

Here we give a brief description of the algorithm. Suppose that the current
configuration ci is the embedding of the current demand graph Gi in L|V pGq|

after i requests. Now, we need to serve a new request in λ ¨ BandwidthpGiq ď

λ ¨BandwidthpGq. If the corresponding edge already exists in the demand graph,
we simply serve the request without the reconfiguration. Now, suppose the re-
quest reveals a new edge and we get the demand graph Gi`1. Using the algorithm
B we get the configuration (embedding) ci`1 that has λ ¨ BandwidthpGi`1q ď

λ ¨ BandwidthpGq. Please note that we do not put any constraints on the al-
gorithm B: typically this problem is NP-complete. To serve the request fast,
we should rebuild the configuration ci into the configuration ci`1. By using the
swap operations on the line we can get from ci to ci`1 in Op|V pGq|2q operations:
each vertex moves by at most V pGq. After the reconfiguration we can serve the
request with the desired cost.

A new edge appears at most |EpGq| times while the reconfiguration costs
|V pGq|2. Each request is served in λ ¨ BandwidthpGq. Thus, the total cost of
requests σ is Op|EpGq| ¨ |V pGq|2 ` λ ¨ BandwidthpGq ¨ |σ|q.

Lemma 3. Given a demand graph G. For each online algorithm ON there is a
request sequence σON such that ON serves each request from σON for a cost of
at least BandwidthpGq.

4 Embedding a ladder demand graph

We present our algorithms for embedding a demand graph that is a subgraph
of the ladder graph (2 ˆ n-grid) on the line. We first present the offline case,

Self-Adjusting Linear Networks with Ladder Demand Graph 9

where the demand graph is known in advance (Section 4.1). Then we present
the dynamic case, where requests are revealed online, revealing also the demand
graph and thus possibly changing the current embedding (Section 4.2). Finally,
we discuss the cost of the dynamic case in Section 4.3.

Though our final goal is to embed a demand graph into the line, we will first
focus on how to embed a partially-known demand graph into LadderN , where
N is large enough to make the embedding possible, i.e., no more than 2n. When
we have such an embedding one might construct an embedding from LadderN
into Linen, simply composing it with a level by level (see the proof of Lemma
1) embedding of LadderN to Line2N and then by omitting empty images we get
Linen. Such a mapping of LadderN to Line2N enlarges the bandwidth for at
most a factor of 2, but significantly simplifies the construction of our embedding.

Definition 4. A ladder graph l consists of two line-graphs on n vertices l1 and
l2 with additional edges between the lines: tpl1ris, l2risq | i P rnsu, where ljris is
the i-th node of the line-graph lj. We call the set of two vertices, tl1ris, l2risu,
the i-th level of the ladder and denote it as levelLaddernpiq or just levelpiq if it is
clear from the context. We refer to l1ris and l2ris as levelpiqr1s and levelpiqr2s,
respectively. We say that levelxvy “ i for v P V pLaddernq if v P levelLaddernpiq.
We refer to l1 and l2 as the sides of the ladder.

Definition 5. A correct embedding of a graph A into a graph B is an injective
mapping φ : V pAq Ñ V pBq that preserves edges, i.e.

#

@u, v P V pAq with u ‰ v ñ φpuq ‰ φpvq

pu, vq P EpAq ñ pφpuq, φpvqq P EpBq

4.1 Static quasi-embedding

We start with one of the basic algorithms — how to quasi-embed any graph that
can be embedded in Laddern onto LadderN with large N . We present a tree and
cycle embedding and then we show how to to combine them in an embedding
of a general component (by first doing a cycle-tree decomposition). The whole
algorithm is presented in [13, Appendix B.1].

Tree embedding In this case, our task is to embed a tree on a ladder graph.
We start with some definitions and basic lemmas.

Definition 6. Consider some correct embedding φ of a tree T into Laddern.
Let r “ arg max

vPV pT q
levelxφpvqy and l “ arg min

vPV pT q
levelxφpvqy be the “rightmost”

and “leftmost” nodes of the embedding, respectively. The trunk of T is a path in
T connecting l and r. The trunk of a tree T for the embedding φ is denoted with
trunkφpT q.

Definition 7. Let T be a tree and φ be its correct embedding into Laddern. The
level i of Laddern is called occupied if there is a vertex v P V pT q on that level,
i.e., φpvq P levelLaddernpiq.

10 V. Aksenov et al.

Statement 1 For every occupied level i there is v P trunkφpT q such that v P

levelpiq.

Proof. By the definition of the trunk, an image goes from the minimal occupied
level to the maximal. It cannot skip a level since the trunk is connected and the
correct embedding preserves connectivity.

The trunk of a tree in an embedding is a useful concept to define since the
following holds for it. The proofs for the lemmas in this section appear in [13,
Appendix C].

Lemma 4. Let T be a tree correctly embedded into Laddern by some embedding
φ. Then, all the connected components in T z trunkφpT q are line-graphs.

Lemma 5. For the tree T and for each node v of degree three (except for maxi-
mum two of them) we can verify in polynomial time if for any correct embedding
φ, trunkφpT q passes through v or not.

Support nodes are the nodes of two types: either a node of degree three with-
out neighbours of degree three or a node that is located on some path between
two nodes with degree three. The path through passing through all support
nodes is called trunk core. We denote this path for a tree T as trunkCorepT q.
Intuitively, the trunk core consists of vertices that lie on a trunk of any em-
bedding. It can be proven that the support nodes appear in the trunk of every
correct embedding (proof appears in [13]).

Definition 8. Let T be a tree. All the connected components in T z trunkCorepT q

are called simple-graphs of tree T .

Lemma 6. The simple-graphs of a tree T are line-graphs.

Definition 9. The edge between a simple-graph and the
trunk core is called a leg. The end of a leg in the simple-
graph is called a head of the simple-graph. The end of a
leg in the trunk core is called a foot of the simple-graph.
If you remove the head of a simple-graph and it falls
apart into two connected components, such simple-graph
is called two-handed and those parts are called its hands.
Otherwise, the graph is called one-handed, and the sole
remaining component is called a hand. If there are no
nodes in the simple-graph but just a head it is called zero-
handed.

Fig. 3: Hands, Legs,
and Trunk core.

Definition 10. A simple-graph connected to some end node of the trunk core is
called exit-graph. A simple-graph connected to an inner node of the trunk core
is called inner-graph.

Please note that the next definition is about a much larger ladder graph,
LadderN , rather than Laddern. Here, N is equal to 2n to make sure that we
have enough space to embed.

Self-Adjusting Linear Networks with Ladder Demand Graph 11

Definition 11. An embedding φ : V pGq Ñ V pLadderN q of a graph G into
LadderN is called quasi-correct if:

– pu, vq P EpGq ñ pφpuq, φpvqq P EpLadderN q, i.e., images of adjacent vertices
in G are adjacent in the ladder.

– There are no more than three nodes mapped into each level of LadderN ,
i.e., the two ladder nodes on each level are the images of no more than three
nodes.

We can think of a quasi-correct embedding as an embedding into levels of
the ladder with no more than three nodes embedded to the same level. Then, we
can compose this embedding with an embedding of a ladder into the line which
is the enumeration level by level. More formally if a node u is embedded to level
i and a node v is embedded to level j and i ă j then the resulting number of u
on the line is smaller than the number of v, but if two nodes are embedded to
the same level, we give no guarantee.

Lemma 7. Any graph mapped into the ladder graph by the quasi-correct embed-
ding described above can be mapped to the line level by level with the property
that any pair of adjacent nodes are embedded at the distance of at most five.

Assume, we are given a tree T that can be embedded into Laddern. Further-
more, there are two special nodes in the tree: one is marked as R (right) and
another one is marked as L (left). It is known that there exists a correct embed-
ding of T into Laddern with R being the rightmost node, meaning no node is
embedded more to the right or to the same level, and L being the leftmost node.

We now describe how to obtain a quasi-correct embedding of T in LadderN
with R being the rightmost node and L being the leftmost one while L is mapped
to ImageL — some node of the LadderN . Moreover, our embedding obeys the
following invariant.

Invariant 1 (Septum invariant) For each inner simple-graph, its foot and its
head are embedded to the same level and no other node is embedded to that level.

Fig. 4: Example of a quasi-correct em-
bedding

We embed a path between L and
R simply horizontally and then we ori-
ent line-graphs connected to it in a
way that they do not violate our de-
sired invariant. It can be shown that
it is always possible if T can be em-
bedded in Laddern. The pseudocode
is in [13, Appendix, Algorithm 1].

Suppose now that not all informa-
tion, such as R, L, and ImageL, is
provided. We explain how we can em-
bed a tree T . We first get the trunk
core of the given tree. This can be
done by following the definition. Now

12 V. Aksenov et al.

the idea would be to first embed the trunk core and its inner line-graphs using a
tree embedding presented earlier with R and L to be the ends of the trunk core.
Then, we embed exit-graphs strictly horizontally “away” from the trunk core.
That means, that the hands of exit-graphs that are connected to the right of the
trunk core are embedded to the right, and the hands of those exit-graphs that
are connected to the left of the trunk core are embedded to the left. An example
of the quasi-correct embedding is shown in Figure 4.

If a tree does not have a trunk core, then its structure is quite simple (in
particular it has no more than two nodes of degree three). Such a tree can be em-
bedded without conflicts. The pseudocode appears in [13, Appendix, Algorithm
2].

Cycle embedding Now, we show how to embed a cycle into LadderN . First,
we give some important definitions and lemmas.

Definition 12. A maximal cycle C of a graph G is a cycle in G that cannot be
enlarged, i.e., there is no other cycle C 1 in G such that V pCq Ĺ V pC 1q.

Definition 13. Consider a graph G and a maximal
cycle C of G. A whisker W of C is a line inside G
such that: 1) V pW q ‰ H and V pW q X V pCq “ H. 2)
There exists only one edge between the cycle and the
whisker pw, cq for w P V pW q and c P V pCq. Such c
is called a foot of W . The nodes of W are enumer-
ated starting from w. 3) W is maximal, i.e., there is no
W 1 in G such that W 1 satisfies previous properties and
V pW q Ĺ V pW 1q.

Fig. 5: Cycle and its
Whiskers.

Definition 14. Suppose we have a graph G that can be correctly embedded into
Laddern by φ and a cycle C in G. Whiskers W1 and W2 of C are called adjacent
(or neighboring) for the embedding φ if @i ď minp|V pW1q|, |V pW2q|q pφpW1risq,
φpW2risqq P EpLaddernq.

Lemma 8. Suppose we have a graph G that can be correctly embedded into
Laddern and there exists a maximal cycle C in G with at least 6 vertices with
two neighbouring whiskers W1 and W2 of C, i.e., pfootpW1q, footpW2qq P EpGq.
Then, W1 and W2 are adjacent in any correct embedding of G into LadderN .

Definition 15. Assume, we have a graph G and a
maximal cycle C of length at least 6. The frame for
C is a subgraph of G induced by vertices of C and
tW1ris,W2ris | i ď minp|V pW1q|, |V pW2q|qu for each
pair of adjacent whiskers W1 and W2. Adding all the
edges tpW1ris,W2risq | i ď minp|V pW1q|, |V pW2q|qu for
each pair of adjacent whiskers W1 and W2 makes a
frame completed.

Fig. 6: Cycle, its frame,
and edges (dashed) to
make the frame com-
pleted

Self-Adjusting Linear Networks with Ladder Demand Graph 13

Given a cycle C of length at least six and its special nodes L,R P V pCq, we
construct a correct embedding of C into LadderN with levelxLy ď levelxuy ď

levelxRy for all u in V pCq, while L is mapped into the node ImageL.
We first check if it is possible to satisfy the given constraints of placing the

L node to the left and a R node to the right. If it is indeed possible, we place
L to the desired place ImageL and then we choose an orientation (clockwise or
counterclockwise) following which we could embed the rest of the nodes, keeping
in mind that R must stay on the rightmost level. The pseudocode appears in
[13, Appendix, Algorithm 3].

Now, suppose that not all the information, such as R, L, and ImageL, is
provided. We reduce this problem to the case when the missing variables are
known. This subtlety might occur since there are inner edges in the cycle. In
this case, we choose missing L{R more precisely in order to embed an inner
edge vertically. For more intuition, please see Figures 7a and 7b. A dashed line
denotes an inner edge. The pseudocode appears in [13, Appendix, Algorithm 4].

(a) Incorrect cycle embedding (b) Correct cycle embedding

Fig. 7: Cycle embeddings.

Embedding a connected component of the demand graph Combining
the previous results, we can now explain how to embed in LadderN a connected
component S that can be embedded in Laddern.

Definition 16. By the cycle-tree decomposition of a graph G we mean a set of
maximal cycles tC1, . . . Cnu of G and a set of trees tT1, . . . , Tmu of G such that

–
Ť

iPrns

V pCiq Y
Ť

iPrms

V pTiq “ V pGq

– V pCiq X V pCjq “ H @i ‰ j
– V pTiq X V pTjq “ H @i ‰ j
– V pTiq X V pCjq “ H @i P rms, j P rns

– @i ‰ j @u P V pTiq @v P V pTjq pu, vq R EpGq

We start with an algorithm on how to make a cycle-tree decomposition of S
assuming no incomplete frames. To obtain a cycle-tree decomposition of a graph:
1) we find a maximal cycle; 2) we split the graph into two parts by logically
removing the cycle; 3) we proceed recursively on those parts, and, finally, 4) we
combine the results together maintaining the correct order between cycle and
two parts (first, the result for one part, then the cycle, and then the result for
the second part). Since we care about the order of the parts, we say that it is

14 V. Aksenov et al.

a cycle-tree decomposition chain. The decomposition pseudocode appears in [13,
Appendix, Algorithm 5].

We describe how to obtain a quasi-correct embedding of S. We preprocess S:
1) we remove one edge from cycles of size four; 2) we complete incomplete frames
with vertical edges. Then, we embed parts of S from the cycle-tree decomposi-
tion chain one by one in the relevant order using the corresponding algorithm
(either for a cycle or for a tree embedding) making sure parts are glued together
correctly. The pseudocode appears in [13, Appendix, Algorithm 6].

4.2 Online quasi-embedding

In the previous subsection, we presented an algorithm on how to quasi-embed
a static graph. Now, we will explain how to operate when the requests are re-
vealed in an online manner. The full version of the algorithm is presented in [13,
Appendix B.2].

There are two cases: a known edge is requested or a new edge is revealed. In
the first case the algorithm does nothing since we already know how to quasi-
correctly embed the current graph and, thus, we already can embed into the line
network with constant bandwidth. Thus, further, we consider only the second
case.

We describe how one should change the embedding of the graph after the
processing of a request in an online scenario. At each moment some edges of the
demand graph Laddern are already revealed, forming connected components.
After an edge reveal we should reconfigure the target line topology. For that,
instead of line reconfiguration we reconfigure our embedding onto LadderN that
is then embedded to the line level by level and introduces a constant factor. So,
we can consider the reconfiguration only of LadderN and forget about the target
line topology at all. When doing the reconfiguration of an embedding we want
to maintain the following invariants:
1. The embedding of any connected component is quasi-correct.
2. For each tree in the cycle-tree decomposition its embedding respects Septum

invariant 1.
3. There are no maximal cycles of length 4.
4. Each cycle frame is completed with all “vertical” edges even if they are not

yet revealed.
5. There are no conflicts with cycle nodes, i.e., each cycle node is the only node

mapped to its image in the embedding to LadderN .
For each newly revealed edge there are two cases: either it connects two nodes

from one connected component or not. We are going to discuss both of them.

Edge in one component The pseudocode appears in [13, Appendix, Algorithm
8]. If the new edge is already known or it forms a maximal cycle of length four,
we simply ignore it. Otherwise, it forms a cycle of length at least six, since two
connected nodes are already in one component. We then perform the following
steps:

Self-Adjusting Linear Networks with Ladder Demand Graph 15

1. Get the completed frame of a (possibly) new cycle.
2. Logically “extract” it from the component and embed maintaining the ori-

entation (not twisting the core that was already embedded in some way).
3. Attach two components appeared after an extraction back into the graph,

maintaining their relative order.

Edge between two components The pseudocode appears in [13, Appendix,
Algorithm 9]. In order to obtain an amortization in the cost, we always “move”
the smaller component to the bigger one. Thus, the main question here is how
to glue a component to the existing embedding of another component. The idea
is to consider several cases of where the smaller component will be connected to
the bigger one. There are three possibilities:

1. It connects to a cycle node. In this case, there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle
to which we connect is the one of the ends in the cycle-tree decomposition
of the bigger component. Here, we just simply embed it to the end of the
cycle-tree decomposition while possibly rotating a cycle at the end.

Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition. It
can be shown that in this case the smaller component again must be a line-
graph. Thus, our only goal is to orient it and possibly two of its inner simple-
graphs neighbours to maintain the Septum invariant 1 for the corresponding
tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposi-
tion. In this case, we straightforwardly apply a static embedding algorithm
of this tree and the smaller component from scratch. Please, note that only
the exit graphs of the end tree will be moved since the trunk core and its
inner graphs will remain.

16 V. Aksenov et al.

4.3 Complexity of the online embedding

Now, we calculate the cost of our online algorithm (a more detailed discussion
on the cost of the algorithm appears in [13, Appendix C.5]): how many swaps
we should do and how much we should pay for the routing requests. Recall that
we first apply the reconfiguration and, then, the routing request.

We start with considering the routing requests. Their cost is Op1q since they
lie pretty close on the target line network, i.e., by no more than 12 nodes apart.
This bound holds because the nodes are quasi-correctly embedded on LadderN ,
two adjacent nodes at G are located not more than four levels apart (in the worst
case, when we remove an edge of a cycle with length four) where each level of
the quasi-correct embedding has at most three images of nodes of G. Thus, on
the target line, if we enumerate level by level, the difference between any two
adjacent nodes of G is at most 12.

Then, we consider the reconfiguration. We count the total cost of each case
of the online algorithm before all the edges are revealed.

In the first case, we add an edge in one component. By that, either a new
frame is created or some frame was enlarged. In both cases, only the nodes, that
appear on some frame for the first time, are moved. Since, a node can be moved
only once to be mapped to a frame and it is swapped at most N “ Opnq times
to move to any position, the total cost of this type of reconfiguration is at most
Opn2q. Also, there are several adjustments that could be done: 1) the “old” frame
can rotate by one node, and 2) possibly, we should flip the first inner-graphs of
two components connected to the frame. In the first modification, each node at
the frame can only be “rotated” once, thus, paying Opnq cost in total. In the
second modification, inner-graph can change orientation at most once in order
to satisfy the Septum invariant (Invariant 1), thus, paying Opn2q cost in total —
each node can move by at most N “ Opnq.

In the second case, we add an edge in between two components. At first,
we calculate the time spent on the move of the small component to the bigger
one: each node is moved at most Oplog nq times since the size of the component
always grows at least two times, the number of swaps of a vertex is at most
N “ Opnq to move to any place, thus, the total cost is Opn2 log nq. Secondly,
there are two more modification types: 1) a rotation of a cycle, and 2) some
simple-graphs can be reoriented. The cycle can be rotated only once, thus, we
should pay at most Opnq there. At the same time, each simple-graph can be
reoriented at most once to satisfy the Septum invariant (Invariant 1), thus, the
total cost is Opn2q for that type of a reconfiguration.

To summarize, the total cost of requests σ is Opn2 log nq for the whole re-
configuration plus Op|σ|q per requests. This matches the lower bound that was
obtained for the line demand graph. The same result holds for any demand graph
that is the subgraph of the ladder of size n.

Theorem 6. The online algorithm for embedding the ladder demand graph of
size n on the line has total cost Opn2 log n`|σ|q for a sequence of communication
requests σ.

Self-Adjusting Linear Networks with Ladder Demand Graph 17

5 Conclusion

We presented methods for statically or dynamically re-embedding a ladder de-
mand graph (or a subgraph of it) on a line, both in the offline and online case.
As side results, we also presented how to embed a cycle demand graph and a
meta-algorithm for a general demand graph. Our algorithms for the cycle and
the ladder cases match the lower bounds. Our work is a first step towards a
tight bound on dynamically re-embedding more generic demand graphs, such as
arbitrary k ˆ n grids.

References

1. Avin, C., Bienkowski, M., Salem, I., Sama, R., Schmid, S., Schmidt, P.: Determinis-
tic self-adjusting tree networks using rotor walks. In: 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS). pp. 67–77. IEEE (2022)

2. Avin, C., van Duijn, I., Schmid, S.: Self-adjusting linear networks. In: International
Symposium on Stabilizing, Safety, and Security of Distributed Systems. pp. 368–
382. Springer (2019)

3. Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic traces
and implications. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems 4(1), 1–29 (2020)

4. Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. In:
International Symposium on Distributed Computing. pp. 243–256. Springer (2016)

5. Avin, C., Mondal, K., Schmid, S.: Demand-aware network design with minimal
congestion and route lengths. IEEE/ACM Transactions on Networking (2022)

6. Avin, C., Mondal, K., Schmid, S.: Push-down trees: optimal self-adjusting complete
trees. IEEE/ACM Transactions on Networking 30(6), 2419–2432 (2022)

7. Avin, C., Schmid, S.: Toward demand-aware networking: a theory for self-adjusting
networks. ACM SIGCOMM Computer Communication Review 48(5), 31–40
(2019)

8. Batista, D.M., da Fonseca, N.L.S., Granelli, F., Kliazovich, D.: Self-adjusting grid
networks. In: 2007 IEEE international conference on communications. pp. 344–349.
IEEE (2007)

9. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing
Surveys (CSUR) 34(3), 313–356 (2002)

10. Hansen, M.D.: Approximation algorithms for geometric embeddings in the plane
with applications to parallel processing problems. In: 30th Annual Symposium on
Foundations of Computer Science. pp. 604–609. IEEE Computer Society (1989)

11. Newman, I., Rabinovich, Y.: Online embedding of metrics. arXiv preprint
arXiv:2303.15945 (2023)

12. Olver, N., Pruhs, K., Schewior, K., Sitters, R., Stougie, L.: The itinerant list update
problem. In: International Workshop on Approximation and Online Algorithms.
pp. 310–326. Springer (2018)

13. Paramonov, A., Salem, I., Schmid, S., Aksenov, V.: Self-adjusting linear networks
with ladder demand graph. arXiv preprint arXiv:2207.03948 (2022)

14. Schmid, S., Avin, C., Scheideler, C., Borokhovich, M., Haeupler, B., Lotker, Z.:
Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw. 24(3),
1421–1433 (2016)

15. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

	Self-Adjusting Linear Networks with Ladder Demand Graph

