
Parallel-batched Interpolation Search Tree

Vitaly Aksenov1, Ilya Kokorin1,2, and Alena Martsenyuk

1 ITMO University, Russia
2 vk.com, Russia

Abstract. A sorted set (or map) is one of the most used data types in
computer science. In addition to standard set operations, like Insert,
Remove, and Contains, it can provide set-set operations such as Union,
Intersection, and Difference. Each of these set-set operations is equiv-
alent to some batched operation: the data structure should be able to
execute Insert, Remove, and Contains on a batch of keys. It is obvious
that we want these “large” operations to be parallelized. These sets are
usually implemented with the trees of logarithmic height, such as 2-3
trees, treaps, AVL trees, red-black trees, etc. Until now, little attention
was devoted to parallelizing data structures that work asymptotically
better under several restrictions on the stored data. In this work, we
parallelize Interpolation Search Tree which is expected to serve requests
from a smooth distribution in doubly-logarithmic time. Our data struc-
ture of size n performs a batch of m operations in O(m log logn) work
and poly-log span.

Keywords: Parallel Programming · Data Structures · Parallel-Batched
Data Structures.

1 Introduction
A Sorted set is one of the most ubiquitous Abstract Data Types in Computer
Science, supporting Insert, Remove, and Contains operations among many oth-
ers. The sorted set can be implemented using different data structures: to name
a few, skip-lists [21], red-black trees [11], splay trees [22], or B-trees [10, 9].

Since nowadays most of the processors have multiple cores, we are interested
in parallelizing these data structures. There are two ways to do that: write
a concurrent version of a data structure or allow one to execute a batch of
operations in parallel. The first approach is typically very hard to implement
correctly and efficiently due to problems with synchronization. Thus, in this
work we are interested in the second approach: parallel-batched data structures.

Several parallel-batched data structures implementing a sorted set are pre-
sented: for example, 2-3 trees [18], red-black trees [17], treaps [6], (a, b) trees [2],
AVL-trees [15], and generic joinable binary search trees [5, 23].

Although many parallel-batched trees were presented, we definitely lack im-
plementations that can execute separate queries in o(log n) time under some
assumptions. However, there exist at least one sequential data structures with
this property — Interpolation Search Tree, or IST.

Despite the fact that concurrent IST is already presented [8, 20] we still lack
its parallel-batched version: it differs much from the concurrent version since it

2 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

allows many processes to execute scalar requests simultaneously, while we use
the multiprocessing to parallelize large non-scalar requests.

The work is structured as follows: in Section 2 we describe the important
preliminaries; in Section 3 we present the original Interpolation Search Tree; in
Sections 4, 5, and 6 we present the parallel-batched contains, insert and remove
algorithms; in Section 7 we present a parallelizable method to keep the IST
balanced; in Section 8 we present a theoretical analysis; in Section 9 we discuss
the implementation and present experimental results; we conclude in Section 10.
The full version of the paper appears at [3].

2 Preliminaries
2.1 Parallel-batched data structures
Definition 1. Consider a data structure D storing a set of keys and an opera-
tion Op. If Op involves only one key (e.g., it checks whether a single key exists
in the set, or inserts a single key into the set) it is called a scalar operation.
Otherwise, i.e., if Op involves multiple keys, it is called a batched operation.

A data structure D that supports at least one batched operation is called a
batched data structure.

We want the following batched operations from a sorted set:
– Set.ContainsBatched(keys[]) — the operation takes an array of keys of

size m and returns an array Result of size m. For each i, Result[i] is true
if keys[i] exist in the set, and false otherwise.

– Set.InsertBatched(keys[]) — the operation takes an array of keys of size
m. If keys[i] does not exist in the set, the operation adds it to the set.

– Set.RemoveBatched(keys[]) — the operation takes an array of keys of size
m. If keys[i] exists in the set, the operation removes it from the set.
Note, that: 1) InsertBatched calculates the union of two sets; 2) RemoveBatched

calculates the difference of two sets; and 3) ContainsBatched calculates the in-
tersection of two sets.

We can employ parallel programming techniques (e.g., fork-join parallelism [7,
14]) to execute batched operations faster.
Definition 2. A batched data structure D that uses parallel programming to
speed up batched operation execution is called a parallel-batched data structure.
2.2 Time complexity model
In our work, we assume the standard work-span complexity model [1] for fork-
join computations. We model each computation as a directed acyclic graph,
where nodes represent operations and edges represent dependencies between
them. This graph has exactly one source node (i.e., the start of the execution
with zero incoming edges) and exactly one sink node (i.e., the end of the execu-
tion with zero outcoming edges). Some operations have two outcoming edges —
they spawn two parallel tasks and are called fork operations. Some operations
have two incoming edges — they wait for two corresponding parallel tasks to
complete and are called join operations.

Considering the execution graph of the algorithm, our target complexities
are: 1) work denotes the number of nodes in the graph, i.e., the total number of
operations executed; 2) span denotes the number of nodes on the longest path
from source to sink, i.e., the length of the critical path in the graph.

Parallel-batched Interpolation Search Tree 3

2.3 Standard parallel primitives
In this work, we use several standard parallel primitives. Now, we give their
descriptions. Their implementations are provided, for example, in [12].

Parallel loop. It executes a loop body for n index values (from 0 to n-1,
inclusive) in parallel. This operation costs O(n) work and O(log n) span given
that the body has time complexity O(1).

Scan. Result := Scan(Arr) calculates exclusive prefix sums of array Arr
such that Result[i] =

∑i−1
j=0 Arr[j]. Scan has O(n) work and O(log n) span.

Filter. Filter(Arr, predicate) returns an array, consisting of elements
of the given array Arr satisfying predicate keeping the order. Filter has O(n)
work and O(log n) span given that predicate has time complexity O(1).

Merge. Merge(A, B) merges two sorted arrays A and B keeping the result
sorted. It has O(|A|+ |B|) work and O(log2(|A|+ |B|)) span.

Difference. Difference(A, B) takes two sorted arrays A and B and returns
all elements from A that are not present in B, in sorted order. It takes O(|A|+|B|)
work and O(log2(|A|+ |B|)) span.

Rank. Given that A is a sorted array and x is a value, we denote ElemRank(A,
x) = |{e ∈ A|e ≤ x}| as the number of elements in A that are less than or equal
to x. Given that A and B are sorted arrays, we denote Rank(A, B) = [r0, r1,
. . ., r|B|−1], where ri = ElemRank(A, B[i]). Rank operation can be computed
in O(|A|+ |B|) work and O(log2(|A|+ |B|)) span.

3 Interpolation Search Tree
3.1 Interpolation Search Tree Definition
Interpolation Search Tree (IST) is a multiway internal search tree proposed
in [16]. IST for a set of keys x0 < x1 < . . . < xn−1 can be either leaf or non-leaf.
Definition 3. Leaf IST with a set of keys x0 < x1 < . . . < xn−1 consists of
array Rep with Rep[i] = xi, i.e., it keeps all the keys in this sorted array.

Definition 4. Non-leaf IST with a set of keys x0 < x1 < . . . < xn−1 consists of
two parts (Fig. 1 and 2):

– An array Rep storing an ordered subset of keys xi0 , xi1 , . . . xik−1
.

– Child ISTs C0, C1 . . . Ck: 1) C0 is an IST storing a subset of keys x0, x1 . . . xi0−1;
2) for 1 ≤ j ≤ k−1, Cj is an IST storing a subset of keys xij−1+1, . . . xij−1;
and 3) Ck is an IST storing a subset of keys xik−1+1, . . . xn−1;

Fig. 1: Example of a non-leaf IST. Rep[0] = x3, Rep[1] = x6, Rep[2] = x10. C0

stores keys x0 . . . x2, C2 stores keys x4 . . . x5, C3 stores keys x7 . . . x9, C4 stores
keys x11 . . . x12.

Any non-leaf IST has the following properties: 1) all keys less than Rep[0]
are located in C0; 2) all keys in between Rep[j−1] and Rep[j] are located in Cj ,
and, finally, 3) all keys greater than Rep[k − 1] are located in Ck.

4 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

3.2 Interpolation search and the lightweight index

Fig. 2: Example of an IST built on array in
Fig. 1.

We can optimize operations
on ISTs with numeric keys,
by leveraging the interpola-
tion search technique [19, 16,
24]. Each node of an IST has
an index that can point to
some place in the Rep ar-
ray close to the position of
the key being searched. This
approach is named interpola-
tion search. The structure of
a non-leaf IST with an index
is shown in Fig. 3.

Fig. 3: Non-leaf IST contains: (1) Rep array; (2)
an array of pointers to child ISTs C; (3) an index,
allowing for fast lookups of keys in the Rep array.

In the original IST, the in-
dex uses an array ID of size
m ∈ Θ(nε) with some ε ∈
[12 ; 1). ID[i] = j iff Rep[j] <

a+i· b−a
m ≤ Rep[j+1] where a

and b are the lower and upper
bounds on the values. In [16],
ID[⌊x−a

b−a ·m⌋] is the approxi-
mate position of x in Rep.

After finding the approxi-
mate location of x in Rep, we
can find its exact location by
using the linear search, as de-
scribed in [16]. Let us denote i := ID[⌊x−a

b−a ·m⌋]. If i points to the right place —
we stop. Otherwise, we go in the proper direction: to the right of i (Fig. 4a) or
to the left of i (Fig. 4b).

Note, we can use more complex techniques instead of the linear search, e.g.,
exponential search [4]. However, they are often unnecessary, since the index
usually provides an approximation good enough to finish the search only in a
couple of operations. Also, we can use other index structures, e.g., a machine
learning model [13].

3.3 Search in IST
Suppose we want to find a key in IST. The search algorithm is iterative: on each
iteration we look for the key in a subtree of a node v. To look for the key in the
whole IST we begin the algorithm by setting v := IST.Root.

To find key in v, we do the following (k is the length of v.Rep):

1. If v is empty, we conclude that key is not there;
2. If key is found in v.Rep array, then, we found the key;
3. If key < v.Rep[0], the key can be found only in v.C[0] subtree. Thus, we

set v ← v.C[0] and continue the search;

Parallel-batched Interpolation Search Tree 5

Fig. 4: Determining the exact location of the key given the approximate location

(a) Searching for the key on the right
to the approximate position.

(b) Searching for the key on the left to
the approximate position.

4. If key > v.Rep[k - 1], the key can be found only in v.C[k] subtree. Thus,
we set v ← v.C[k] and continue the search;

5. Otherwise, we find j such that v.Rep[j - 1] < key < v.Rep[j]. In this
case key can be found only in v.C[j]. Thus, we set v ← v.C[j] and con-
tinue our search in the j-th child.

3.4 Executing update operations and maintaining balance
The algorithm for inserting a key into IST is very similar to the search algorithm
above. To execute Insert(key) we do the following (Fig. 5):

1. Initialize v := IST.Root;
2. For the current node v, if key appears in v.Rep array, we finish the opera-

tion — the key already exists.
3. If v is a leaf and key does not exists in v.Rep, insert key into v.Rep keeping

it sorted;
4. If v is an inner node and key does not exists in v.Rep, determine in which

child the insertion should continue, set v ← v.C[next_child_idx] and go
to step (2). Fig. 5: Insert 15: proceed from the root to the

second child and then to the first child.To remove a key from IST
we introduce Exists array in
each node that shows whether
the corresponding key in Rep
is in the set or not. Thus, we
just need to mark an element
as removed without physi-
cally deleting it. We have
to take into account such
marked keys during the con-
tains and inserts. The removal
algorithm is discussed in more
detail in [16].

6 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

The problem with these update algorithms is that all the new keys may
be inserted to a single leaf, making the IST unbalanced. In order to keep the
execution time low, we should keep the tree balanced.
Definition 5. Suppose H is some small integer constant, e.g., 10. An IST T,
storing keys x0 < x1 < . . . < xn−1, is said to be ideally balanced if either: 1) T
is a leaf IST and n ≤ H; 2) T is a non-leaf IST, n > H, and elements in Rep
are equally spaced, Rep[i] = x(i+1)·⌊n

k ⌋, and all child ISTs {Ci}ki=0 are ideally
balanced.

For non-leaf IST, we aim to have the size of Rep as k = ⌊
√
n⌋. Consider

an ideally balanced IST storing n keys (Fig. 6). As we require, the root of IST
contains Θ(n

1
2) keys in its Rep array; any node on the second level has Rep array

of size Θ(n
1
4); generally, any node on the i-th level has Rep array of size Θ(n

1

2i).
Thus, an ideally balanced IST with n keys has a height of O(log log n).

Fig. 6: Height of an ideal ISTIn order to keep IST bal-
anced we maintain the num-
ber of modifications (both in-
sertions and removals) ap-
plied to each subtree T. When
the number of modifications
to T exceeds the initial size of
T multiplied by some constant
C, we rebuild T from scratch
making it ideally balanced.
This rebuilding approach has
a proper amortized bounds
and is adopted from papers
about IST [16, 8, 20].

3.5 Time and space complexity
Mehlhorn and Tsakalidis [16] define of a smooth probability distribution. For ex-
ample, the uniform distribution is smooth. Suppose we are given µ that is smooth.
From [16] we know that: 1) IST with n keys takes O(n) space; 2) the expected
amortized cost of µ-random insertion and random removal is O(log log n); 3) the
amortized insertion and removal cost is O(log n); 4) the expected search time
on sets, generated by µ-random insertions and random removal, is O(log log n);
5) the worst-case search time is O(log2 n).

Therefore, IST can execute operations in o(log n) time under reasonable as-
sumptions. As our goal, we want to design a parallel-batched version of the IST
that processes operations asymptotically faster than known sorted set imple-
mentations (e.g., red-black trees).

4 Parallel-batched Contains
In this section, we describe the implementation of ContainsBatched(keys[])
operation. We suppose that keys array is sorted. For simplicity, we assume that
IST does not support removals. In Section 6, we explain how to fix it.

Parallel-batched Interpolation Search Tree 7

We implement ContainsBatched operation in the following way. At first, we
introduce a function BatchedTraverse(node, keys[], left, right, result[]).
The purpose of this function is to determine for each index left ≤ i < right,
whether keys[i] is stored in the node subtree. If so, set result[i] = true,
otherwise, result[i] = false. Given the operation BatchedTraverse, we can
implement ContainsBatched with almost zero effort (Listing 1.1):

Listing 1.1: Implementation of ContainsBatched on top of BatchedTraverse
routine

fun ContainsBatched(keys[]):
result[] := [array of size |keys|]
// search for all keys in the root subtree (i.e., in the whole IST)
BatchedTraverse(IST.Root, keys, 0, |keys|, result)
return result

Now, we describe BatchedTraverse(node, keys[], left, right, result[]).

4.1 BatchedTraverse in a leaf node

Fig. 7: Execution of BatchedTraverse
in an IST leaf. Here Rank(node.Rep,
keys[left..right)) = [1, 1, 2, 2,
3, 4].

If node is a leaf node, we determine
for each key in keys[left..right)
whether it exists in node.Rep. Since
node is a leaf, keys cannot be found
anywhere else in node subtree.

We may use Rank function to
find the rank of each element
of keys[left..right) in node.Rep
and, thus, determine for each key
whether it exists in node.Rep (Fig. 7,
Listing 1.2). As presented in Sec-
tion 2.3, ranks of all keys from subar-
ray keys[left..right) may be com-
puted in parallel in linear work and poly-logarithmic span.

Listing 1.2: Using Rank to find keys in a leaf node in parallel
rank := Rank(node.Rep, keys[left..right))
pfor i in left..right:

r := rank[i - left]
if r = 0 or node.Rep[r - 1] ̸= keys[i]:

result[i] ← false
else:

result[i] ← true

4.2 BatchedTraverse in an inner node
Consider now the BatchedTraverse procedure on an inner node (Fig. 8).

We begin its execution with finding the position for each key from keys[left..right)
in node.Rep. We may do it using Rank function as in Section 4.1. However, we can
also use the interpolation search (described in Section 3.2): see Listing 1.3. De-
note T as an interpolation search time in node.Rep. As stated in Section 3.5, T is

8 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

Fig. 8: Execution of BatchedTraverse in an inner node of an IST.

expected to be O(1). Thus, this algorithm can be executed in O((right−left)·T)
work and polylog span in contrast to the algorithm based on the Rank function,
that takes O((right− left) + |node.Rep|) work.

Listing 1.3: Using interpolation search to find keys in IST leaf node in parallel
pfor i in left..right:

idx := interpolation_search(node.Rep, keys[i])
result[i] ← node.Rep[idx] = keys[i]

Some keys of the input array (e.g., 5 and 11 in Fig. 8) are found in the Rep
array. For such keys, we set Result[i] to true. After that, all other keys can
be divided into three categories:

– Keys that are strictly less than Rep[0] (e.g., 0 and 2 in Fig. 8) lie in C[0]
subtree. Therefore for such keys we should continue the traversal in C[0];

– Keys that are strictly greater than Rep[k - 1] (e.g., 100 and 101 in Fig. 8)
can only be found in C[k]. Therefore for such keys we continue the traversal
in C[k].

– Keys that lie between Rep[i] and Rep[i + 1] for some i ∈ [0; k − 2] (we
can find such i for each key using the same search technique as described
above). For example, 6 and 7 for i = 1 or 9 and 10 for i = 2 in Fig. 8.
Such keys can only be found in C[i + 1]. Therefore for such keys we should
continue the traversal in C[i + 1];

Note that some child nodes (e.g., C[1] and C[4] in Fig. 8) can not contain
any key from keys[left..right) thus we do not continue the search in such
nodes.

After determining in which child the search of each key should continue we
proceed to searching for keys in children in parallel.

5 Parallel-batched Insert

We now consider the implementation of the operation InsertBatched(keys[]).
Again, we suppose that array keys[] is sorted. For simplicity, we consider
InsertBatched implementation on an IST without removals. In Section 6 we
explain how to fix it.

Parallel-batched Interpolation Search Tree 9

Fig. 9: Inserting a batch of keys in the ISTWe begin the insertion proce-
dure with filtering out keys al-
ready present in the set. We
can do this using the described
ContainsBatched routine together
with the Filter primitive: we fil-
ter out all the keys for which
ContainsBatched returns true.

We implement our procedure
recursively in the same way
as BatchedTraverse. Note, that
each key being inserted is not
present in IST, thus, for each key
our traversal finishes in some leaf
(Fig. 9).

After we finish the traver-
sal — we need to insert subarray
keys[lefti . . . righti) into some leaf leafi. For example, in Fig. 9 we insert
keys[0..2) (i.e., 0 and 3) to the leftmost leaf, while inserting keys[2..4) (i.e.,
18 and 19) to the rightmost leaf.

To finish the insertion, we just merge keys[lefti . . . righti) with leafi.Rep
and get the new Rep array. Now, each target leaf leafi contains all the keys that
should be inserted into it.

6 Parallel-batched Remove
We now sketch the implementation of the operation RemoveBatched(keys[]).
Again, we suppose that array keys is sorted.

We use the same approach as our previous algorithms. At first, we filter out
the keys that do not exist in the tree. Then, we go recursively, find the keys in
Rep arrays, and set the corresponding Exists cell to false.

Since now we have a logical removal, we should modify the implementations
of ContainsBatched and InsertBatched.

During the execution of ContainsBatched when we encounter the key be-
ing searched in the Rep array of some node v (v.Rep[i] = key), we check
v.Exists[i]: 1) if v.Exists[i] = true then key exists in the set; 2) otherwise,
key does not exist in the set.

Now, we explain the updates to InsertBatched. As was stated in Section 5,
we cannot encounter any of the key being inserted in the Rep array of any node
of IST, since we filter out all the keys existing in IST. However, when keys can
be logically removed this is not true anymore. Such keys have the corresponding
entry in v.Exists array set to false, since the key does not logically exist in
IST (Fig. 10a).

Suppose we are inserting key and we encounter it in some v.Rep. Thus, we
can just set v.Exists[i] ← true (Fig. 10b). This way the insert operation
“revives” a previously removed key.

10 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

(a) Keys 1, 10 and 23 are marked as
removed

(b) Keys 10 and 23 are revived by a
subsequent insert operation

Fig. 10: Insertion of a key, that still exists in the IST physically, but is removed
logically
7 Parallel tree rebuilding

7.1 Rebuilding principle

As stated in Section 3.4, we employ the lazy subtree rebuilding approach to keep
IST balanced. This algorithm is adopted from papers [16, 8, 20].

For each node of IST we maintain Mod_Cnt — the number of modifications
(successful insertions and removals) applied to that node subtree. Moreover, each
node stores Init_Subtree_Size — the number of keys in that node subtree
when the node was created.

Suppose we execute an update operation Op in node v and Op increases
v.Mod_Cnt by k (i.e., it either inserts k new keys or removes k existing keys).

If v.Mod_Cnt + k ≤ C · v.Init_Subtree_Size (where C is a predefined
constant, e.g., 2) we increment v.Mod_Cnt by k and continue the execution of
Op in an ordinary way. Otherwise, we rebuild the whole subtree of v.

The subtree rebuilding works in the following way. At first, we flatten the
subtree into an array: we collect all non-removed keys from the subtree to array
subtree_keys[] in ascending order. This operation is described in more detail in
Section 7.2. If the operation, that triggered the rebuilding, was InsertBatched,
we merge the keys, we are inserting, with the keys from the subtree_keys. Oth-
erwise, (that operation is RemoveBatched) we remove the required keys from the
subtree_keys via the Difference operation (see Section 2.3 for details). Finally,
we build an ideal IST new_subtree, containing all entries from subtree_keys.
This operation is described in more detail in Section 7.3.

7.2 Flattening an IST into an array in parallel

First of all, we need to know how many keys are located in each node subtree. We
store this number in a Size variable in each node and maintain it the following
way: 1) when creating new node v, set v.Size to the initial number of keys in
its subtree; 2) when inserting m new keys to v’s subtree, increment v.Size by m;
3) when removing m existing keys from v’s subtree, decrement v.Size by m.

Parallel-batched Interpolation Search Tree 11

To flatten the whole subtree of node we allocate an array keys of size
node.Size where we shall store all the keys from the subtree. We implement the
flattening recursively, via the Flatten(v, keys[], left, right) procedure,
which fills subarray keys[left..right) with all the keys from the subtree. To
flatten the whole subtree of node into newly-allocated array subtree_keys of
size node.Size we use Flatten(node, subtree_keys, 0, node.Size).

Note that non-leaf node v has 2k + 1 sources of keys: v.C[i] with v.C[i].Size
keys and v.Rep[i]. C[i] is 2 · i-th key source and Rep[i] is 2 · i + 1-th key
source. Note that for a leaf node all children just contain 0 keys.

Now for each key source we must find its position in the keys array. To
do this we calculate array sizes of size 2k + 1. i-th source of keys stores its
keys count in sizes[i]. After that we calculate positions := Scan(sizes)
to find the prefix sums of sizes. After that positions[i] =

∑i−1
j=0 sizes[j].

Consider now i-th key source. All prior key sources should fill positions[i]
keys, thus, i-th key source should place its keys into the array starting from
left + positions[i] position (Fig. 11). Therefore:

– v.C[i] places its keys in the keys array starting from left + positions[2
· i] by running Flatten(v.C[i], left + positions[2 · i], left + positions[2
· i] + v.C[i].Size).

– If v.Exists[i] = false then v.Rep[i] should not be put in the keys array;
– Otherwise, v.Exists[i] = true and v.Rep[i] should be placed at keys[left

+ positions[2 · i + 1]] since v.Rep[i] is the (2 · i + 1)-th key source.
Each key source can be processed in parallel, since there are no data depen-

dencies between them.

Fig. 11: Parallel flattening of an IST node

In Fig. 11, C[0] will place its keys in keys[left .. left + 3) subarray,
Rep[0] will be placed in keys[left + 3], C[1] will place its keys in keys[left
+ 4 .. left + 5) subarray, Rep[1] will not be placed in keys array since its
logically removed, C[2] will place its keys in keys[left + 5 .. left + 9)
subarray, Rep[2] will be placed in keys[left + 9] and C[3] will place its keys
in keys[left + 10 .. left + 12) subarray.

7.3 Building an ideal IST in parallel
Suppose we have a sorted array of keys and we want to build an ideally bal-
anced IST (see Section 3.4) with these keys. We implement this procedure recur-

12 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

sively via build_IST_subarray(keys[], left, right) procedure — it builds
an ideal IST containing keys from the keys[left..right) subarray and returns
the root of the newly-built subtree. Thus, to build a new subtree from array keys
we just use new_root := build_IST_subarray(keys[], 0, |keys|).

If the size of the subarray (i.e., right - left) is less than a predefined
constant H, we return a leaf node with all the keys from keys[left..right)
in Rep array.

Otherwise (i.e., if right - left is big enough), we have to build non-leaf
node. Let us denote m := right - left; k := ⌊

√
m⌋−1. As follows from Def-

inition 5, Rep array should have size Θ(
√
m) and its elements must be equally

spaced keys of the initial array. Thus, we copy each k-th key (k-th, 2 · k-th,
etc.) into array Rep. Note, our subarray begins at position left of the initial
array, since we are building IST from the subarray keys[left..right). Thus,
we copy keys[left + (i + 1) · k] into Rep[i]. All the copying can be done
in parallel since there are no data dependencies. This way we obtain Rep array
of size Θ(

√
m) filled with equally-spaced keys of the initial subarray (Fig. 12).

Now we should build the children of the newly-created node (Fig. 12):
– Rep[0] = keys[left + k]. Thus, all keys less than keys[left + k] will

be stored in C[0] subtree: C[0] ← build_IST_subarray(keys[], left,
left + k);

– for 1 ≤ i ≤ k−2, Rep[i - 1] = keys[left + i · k] and Rep[i] = keys[left
+ (i + 1) · k]. Thus, all keys x such that Rep[i-1] < x < Rep[i] should
be stored in C[i] subtree. Since keys array is sorted, C[i] must be built from
the subarray keys[left + i · k + 1..left + (i + 1) · k), thus, C[i]
← build_IST_subarray(keys[], left + i · k + 1, left + (i + 1) ·
k);

– Rep[k - 1] = keys[left + k2]. Thus, all keys greater than keys[left
+ k2] are stored in C[k] subtree: C[k] ← build_IST_subarray(keys[],
left + k2, right).

We can build all children in parallel, since there is no data dependencies
between them.

Fig. 12: Building children of a new node

To finish the construction of a node we need to calculate node.ID array
described in Section 3.2. We can build it in the following way:

Parallel-batched Interpolation Search Tree 13

– Create an array bounds of size m + 1 such that bound[i] = keys[left]+i ·
(keys[right - 1]−keys[left])/L where L = Θ(nε) with some ε ∈ [12 ; 1);

– Use Rank primitive to find the rank of each bounds[i] in the Rep array.

8 Theoretical results
In this section, we present the theoretical bounds for our data structure. These
bounds are quite trivial, so we just give intuition.
Theorem 1. The flatten operation of an IST with n elements has O(n) work
and O(log3 n) span. The building procedure of an ideal IST from an array of size
n has O(n) work and O(log n · log log n) span. Thus, the rebuilding of IST with
n elements costs O(n) work and O(log3 n) span.

Proof (Sketch). While the work bounds are trivial, we are more interested in
span bounds. From [16] we know that in the worst case, the height of IST with n
keys does not exceed O(log2 n). Thus, the flatten operation just goes recursively
into O(log2 n) levels and spends O(log n) span at each level. This gives O(log3 n)
span in total. The construction of an ideal IST has O(log log n) recursive levels
while each level can be executed in O(log n) time, i.e., copy the elements into
Rep array. This gives us the result.

This brings us closer to our main complexity theorem.
Theorem 2. The work of a batched operation on our parallel-batched IST has
the same complexity as if we apply all m operations from this batch sequen-
tially to the original IST of size n (from [16], the expected execution time is
O(m log log n)). The total span of a batched operation is O(log4 n).

Proof (Sketch). The work bound is trivial — the only difference with the original
IST is that we can rebuild the subtree in advance before applying some of the
operations. Now, we get to the span bounds. From [16], we know that the height
of IST with n keys does not exceed O(log2 n). On each level, we spend: 1) at
most O(log2 n) span for merge and rank operations; or 2) we rebuild a subtree
at that level and stop. The first part gives us O(log4 n) span, while rebuilding
takes just O(log3 n) span. This leads us to the result of the total O(log4 n) span.

9 Experiments
We have implemented the Parallel Batched IST in C++ using OpenCilk [7] as
a framework for fork-join parallelism.

We tested our parallel-batched IST on three workloads. We initialize the
tree with elements from the range [−108; 108] with probability 1/2. Thus, the
expected size of the tree is 108. Then we call: 1) search for a batch of 107 keys,
taken uniformly at random from the range; 2) insert a batch of random 107 keys,
taken uniformly at random from the range; 3) remove a batch of random 107

keys, taken uniformly at random from the range.
The experimental results are shown in Fig. 13. The OX axis corresponds to

the number of worker processes and the OY axis corresponds to the time required
to execute the operation in milliseconds. Each point of the plot is obtained as
an average of 10 runs. We run our code on an Intel Xeon Gold 6230 machine
with 16 cores.

14 Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

Fig. 13: Benchmark results for Parallel-batched Interpolation Search Tree

As shown in the results, we achieve good scalability. Indeed: 1) 14x scaling on
ContainsBatched operation for 16 processes; 2) 11x scaling on InsertBatched
operation for 16 processes; 3) 13x scaling on RemoveBatched operation for 16
processes.

We also compared our implementation in a sequential mode with std::set.
std::set took 9257 ms to check the existence of 107 keys in a tree with 108

elements while our IST implementation took only 3561 ms. We achieve such
speedup by using interpolation search as described in Section 3.2.

10 Conclusion
In this work, we presented the first parallel-batched version of the interpolation
search tree that has an optimal work in comparison to the sequential imple-
mentation and has a polylogarithmic span. We implemented it and got very
promising results. We believe that this work will encourage others to look into
parallel-batched data structures based on something more complex than binary
search trees.

References

1. Acar, U.A., Blelloch, G.E.: Algorithms: Parallel and sequential.
https://www.umut-acar.org/algorithms-book 6 (2019)

2. Akhremtsev, Y., Sanders, P.: Fast parallel operations on search trees. In: 2016
IEEE 23rd International Conference on High Performance Computing (HiPC). pp.
291–300. IEEE (2016)

3. Aksenov, V., Kokorin, I., Martsenyuk, A.: Parallel-batched interpolation search
tree. arXiv preprint (2023), https://arxiv.org/abs/2306.13785

4. Bentley, J.L., Yao, A.C.C.: An almost optimal algorithm for unbounded searching.
Information processing letters 5(SLAC-PUB-1679) (1976)

5. Blelloch, G.E., Ferizovic, D., Sun, Y.: Just join for parallel ordered sets. In: Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architec-
tures. pp. 253–264 (2016)

Parallel-batched Interpolation Search Tree 15

6. Blelloch, G.E., Reid-Miller, M.: Fast set operations using treaps. In: Proceedings
of the tenth annual ACM symposium on Parallel algorithms and architectures. pp.
16–26 (1998)

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Journal of parallel and dis-
tributed computing 37(1), 55–69 (1996)

8. Brown, T., Prokopec, A., Alistarh, D.: Non-blocking interpolation search trees
with doubly-logarithmic running time. In: Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. pp. 276–
291 (2020)

9. Comer, D.: Ubiquitous b-tree. ACM Computing Surveys (CSUR) 11(2), 121–137
(1979)

10. Graefe, G., et al.: Modern b-tree techniques. Foundations and Trends® in
Databases 3(4), 203–402 (2011)

11. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th
Annual Symposium on Foundations of Computer Science (sfcs 1978). pp. 8–21.
IEEE (1978)

12. JáJá, J.: An introduction to parallel algorithms. Reading, MA: Addison-Wesley
10, 133889 (1992)

13. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index
structures. In: Proceedings of the 2018 international conference on management of
data. pp. 489–504 (2018)

14. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande. pp. 36–43 (2000)

15. Medidi, M., Deo, N.: Parallel dictionaries using avl trees. Journal of Parallel and
Distributed Computing 49(1), 146–155 (1998)

16. Mehlhorn, K., Tsakalidis, A.: Dynamic interpolation search. Journal of the ACM
(JACM) 40(3), 621–634 (1993)

17. Park, H., Park, K.: Parallel algorithms for red–black trees. Theoretical Computer
Science 262(1-2), 415–435 (2001)

18. Paul, W., Vishkin, U., Wagener, H.: Parallel dictionaries on 2–3 trees. In: Inter-
national Colloquium on Automata, Languages, and Programming. pp. 597–609.
Springer (1983)

19. Peterson, W.W.: Addressing for random-access storage. IBM journal of Research
and Development 1(2), 130–146 (1957)

20. Prokopec, A., Brown, T., Alistarh, D.: Analysis and evaluation of non-blocking
interpolation search trees. arXiv preprint arXiv:2001.00413 (2020)

21. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

22. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
(JACM) 32(3), 652–686 (1985)

23. Sun, Y., Ferizovic, D., Belloch, G.E.: Pam: parallel augmented maps. In: Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. pp. 290–304 (2018)

24. Willard, D.E.: Searching unindexed and nonuniformly generated files in \log\logn
time. SIAM Journal on Computing 14(4), 1013–1029 (1985)

