De Bruijn Superwalk with Multiplicities Problem is NP-hard

Evgeny Kapun Fedor Tsarev Genome Assembly Algorithms Laboratory University ITMO, St. Petersburg, Russia

April 11, 2013

Genome Assembly Models

- Shortest Common Superstring NP-hard (Gallant et al., 1980).
- Shortest de Bruijn Superwalk NP-hard (Medvedev et al., 2007).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Genome Assembly Models

- Maximum likelihood approach to find edges' multiplicities (Medvedev and Brudno, 2009; Varna et al., 2011).
- De Bruijn Superwalk with Multiplicities – complexity was not known. This talk – we prove it is NP-hard.

De Bruijn Superwalk with Multiplicities Problem

Find a walk in the de Bruijn graph containing several walks as subwalks and passing through each edge the exactly predefined number of times.

Example

► Reads = subwalks: AAGT, AGTCA, TCAA

Superwalk: AAGTCAGTCAAG

NP-hardness Proof Outline

1. Reduce Shortest Common Superstring problem to Common Superstring with Multiplicities problem.

2. Reduce Common Superstring with Multiplicities problem to De Bruijn Superwalk with Multiplicities problem.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

NP-hardness Proof Outline

1. Reduce Shortest Common Superstring problem to Common Superstring with Multiplicities problem.

Common Superstring with Multiplicities Problem

Find a string containing several strings as substrings and containing each character the exactly predefined number of times.

Example

- ► Strings: AAGT, AGTCA, TCAA
- Multiplicities: m(A) = 5, m(C) = 2, m(G) = 3, m(T) = 2
- ► Solution for SCS: AAGTCAA
- Solution for CSM: AAGTCAGTCAAG or just AAGTCAAACGGT

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reducing SCS to CSM

Given an instance of SCS with $\Sigma = \{0, 1\}$ in decision form ("Is there such a string that"), substitute

$$0
ightarrow T_0 = 000111$$

$$1 \rightarrow T_1 = 001011$$

and make the multiplicities of 0 and 1 equal to 3 times the desired superstring length.

Properties of T_0 and T_1

- T_0 and T_1 have the same length.
- ► Furthermore, number of occurrences of each character is the same in T₀ and T₁.
- ► No proper suffix of either T₀ or T₁ is equal to any of the proper prefixes of either T₀ or T₁.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Properties of T_0 and T_1

As a result, all overlaps of the transformed strings are aligned.

Properties of T_0 and T_1

Unaligned overlaps are impossible because no proper prefix of T_0 and T_1 is equal to any proper suffix.

Reducing SCS to CSM

As a result, the shortest common superstring of the transformed strings would be equal to the transformed shortest common superstring of the original strings.

NP-hardness Proof Outline

2. Reduce Common Superstring with Multiplicities problem to De Bruijn Superwalk with Multiplicities problem.

Reducing CSM to DBSM

Trivial reduction ($\Sigma = \{0, 1\}$, k = 0):

Strings become walks, multiplicities of characters become multiplicities of edges.

Reducing CSM to DBSM

Generalization for any k:

Result

De Bruijn Superwalk with Multiplicities problem is NP-hard for any $|\Sigma| \ge 2$ and any k. Since the case $|\Sigma| = 1$ is trivial, the problem is NP-hard for all nontrivial cases.

Ackowledgements

- Funding:
 - Ministry of Education and Science of Russian Federation (contract 16.740.11.0495, agreement 14.B37.21.0562)
 - University ITMO (research project 610455)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank you! Questions?

ヨト 《ヨト ヨー つくぐ