
Feature Selection Algorithm Ensembling Based on
Meta-Learning

Abstract—We propose a new approach to feature selection that
is based on ensembling and meta-learning. Meta-learning is used
to choose feature selection algorithm that are used to produce
feature rankings, which are then aggregated into a resulting
feature ranking. This approach requires a lot of additional
computational time for meta-learning system construction, but
it works fast and shows better feature selection quality than
algorithms in aggregation.

I. INTRODUCTION

In the modern world, machine learning is widely used in
almost any field of human activity. Feature subset selection
(FSS) is one of frequently used method in data mining and
machine learning [1]. It is a preprocessing step which is
used to decrease training time and enhance generalization by
reducing probability of overfitting via model simplification.
A FSS algorithm returns a subset of the original feature set,
which is the main and only difference from feature extraction
algorithms. FSS algorithms effectively remove irrelevant and
redundant features taking into account feature interactions [2].

FSS methods can be divided into five groups depending
on how feature selection itself is interacting with model
construction: wrappers, filter, embedded, hybrid, and ensem-
bling. Wrappers are FSS methods that apply some search in
the feature subset space and use a processing algorithm for
estimating the quality of the selected subset. These methods
are quite slow and can be applied only to relatively small
datasets, as for each new subset new model has to be trained
by applying the selected processing algorithm. On the contrast,
filters use only intrinsic properties of features and work really
fast with high-dimensional datasets. Embedded methods are
part of learning models that implement FSS as the result of
the model training. Hybrid methods usually combine several
different FSS methods resulting in order to obtain higher
model efficacy. For example, a wrapper can be applied after a
filter, which leads to lower overall time investment into feature
selection process. Ensembling methods work with several
feature subsets selected by different methods and aggregating
them.

Ensembling methods are usually applied only for filters, as
filters are quite fast and easily scalable. A proper choice of
FSS algorithms to be blended in an ensemble may lead to
high increase in model quality and speed. With such variety
of feature selection methods, it is hard to select the proper
one, and some of them also require careful parameters tuning.
Since feature selection is required for the data preprocessing
step, it should be performed in a fast and efficient way. The

problem of efficient selection of FSS algorithms may be solved
under the meta-learning approach [3]. Meta-learning helps to
solve the problem of algorithm selection by predicting the best
algorithm (or their ranking) for a problem instance never seen
before using knowledge on how algorithms works on other
problem instances. However, we will use it to predict proper
feature selection algorithms to be included into an ensemble.

Meta-learning is a powerful technique to predict the most
efficacious algorithm and ensemble learning is a powerful
technique to improve algorithms efficacy in general. The
algorithm we propose is based on combination of these two
techniques in order to obtain a novel, powerful tool for feature
selection. The main goal of this paper is to propose such an
algorithm that uses meta-learning to choose FSS algorithms
to be chosen for ensembling.

The rest of this paper is organized as follows. In Section II,
we provide necessary terms and concepts of meta-learning and
ensemble-learning. In Section III, we present our ensembling
feature selection algorithm. Section IV contains experiments
results and their discussion. Section V concludes this work.

II. BACKGROUND

A. Meta-learning Approach

Meta-learning approach is used to handle with the problem
following from The No Free Lunch theorems [4]: without
any task-specific behavior based on prior information about
given dataset, expected efficacy of all the algorithms (including
coin toss) is the same. The core idea of meta-learning is to
think of algorithm selection problem as a supervised learning
problem [5], [6]: datasets are objects; target function maps a
dataset to the algorithm, which shows the highest performance
for this dataset with respect to a certain criterion. A dataset is
described with its properties, which are called meta-features.
Thus, the problem of algorithm selection is reduced to learn
such a classifier, which can predict the best algorithm for
given dataset. After the paper [7], the problem to be solved
is usually the learning to rank problem: not only the best
algorithm should be predicted, but the ranking of algorithms
according to their performance. It allows shifting from “true-
false” prediction language to a more well-grained one, which
can describe how much we are mistaking in prediction.

Consider the universal space of datasets D . Under the clas-
sical approach [8] we assume that we are given an algorithm
set A = {a1, . . . , aL} and a certain quality criterion Q :
A×D → R. We also will think that we already know the set of
meta-features which describe datasets: M = {m1, . . . ,m|M |},

mi : D → Codomain(mi). Also we are given a set of training
datasets Dtrain = {d1, . . . , d|Dtrain|} ⊂ D . Our goal is to
learn an algorithm, which we will refer to as the meta-learning
system. This algorithm is required to return an ordered subset
of A for given dataset d. It is the classification problem in
case if only one (the best) algorithm should be returned.

Despite many algorithms can be used on meta-level to solve
this problem, such as neural networks [9], decision rules or
ranking trees [10], one of the most popular one to be used is
well-known kNN algorithm. The intuition that stands behind
is the following: if an algorithm performs well on dataset d,
then it will perform well on dataset d′ similar to d. It leads us
to additional assumption that distance ρM (d, d′) between the
datasets d and d′ can be evaluated. The distance depends on
meta-feature set M. For given dataset d and algorithm a we
can predict Q(a, d) if we know ρM (d, d′) and Q(a, d′) for all
d′ being neighbors of d. Therefore, we can predict algorithm
rank for given dataset.

The meta-learning system consists of the two basic parts:
meta-information storage (database) and computational en-
gine. The database stores meta-features for each training
dataset and results of algorithm runs on this dataset. This
database is constructed during the training step. The second
part of the system serves to search datasets, which are the most
similar to given dataset with respect to the chosen distance ρM .
Also it predicts algorithm performance on the given dataset.
The recommendation system ranks algorithms with respect to
the evaluated similarities to the given datasets.

B. Meta-learning for Feature Subset Selection Algorithms

Many different FSS algorithms exist. This diversity can be
explained by the fact that the processed data can be gathered
from completely different areas. Moreover, there is no FFS
algorithm that will be the best on all kinds of data [11]. In
contrary to classifier selection problem, to which meta-learning
approach was applied many times [?], only a small number
of papers are devoted to application of meta-learning to FSS
problem [12], [13].

Suppose we are given a dataset d and we have L FSS algo-
rithms A = {a1, . . . , aL}. Then let Sl be the list of features
obtained by algorithm al execution on d. Let SA = ∪l{Sl} de-
note a set of features selected by algorithms from A, and Rl(t)
be a function that returns position of element t in list Sl, i.e.
if Sl =

(
t1, . . . , t|Sl|

)
, then Rl(tj) = j, and for each t 6∈ Sl

set Rl(t) = |Sl| + 1. A performance measure for comparing
performance of different feature subset selection algorithms
proposed in [12] is called EARR (Extended Adjusted Ratio of
Ratios):

EARR(ai, aj ; d) =
acci/accj

1 + α log ti/tj + β log ni/nj
,

where α and β are user-defined parameters representing rel-
ative importance of desired performance time and degree of
data compression, and acci, ti and ni are efficacy measure,
performance time and number of selected feature for ith FSS
algorithm on d respectively. The efficacy measure of FSS

algorithm is accuracy of a chosen classifier executed on the
dataset preprocessed with this algorithm.

The meta-learning system predicts three FSS algorithms that
are expected to be the best. The research results show that this
system prediction contains the best algorithm with respect to
the chosen criterion correctly in from 90.43% to 96.52% of
cases depending on the classifier being used. 115 different
well-known datasets were used for testing.

C. Ensemble Learning

Ensemble learning is the approach, the core idea of which is
to combine different algorithms solving the same problem in
order to receive a better algorithm solving this problem [14],
[15]. Nowadays, ensemble learning has many real-world
applications including object detection and tracking, scene
segmentation and analysis, image recognition, information
retrieval, bioinformatics, data mining, etc. [14]. In the most
cases, proper choice of algorithms ensemble improves problem
solution quality [16], [17].

Ensemble learning is known to be applicable in FSS prob-
lem. As an example, in paper [17], where Tuv et al. suggest
and analyze a new efficient feature subset selection algorithm
using tree-based ensembles to generate a compact subset of
non-redundant features. This algorithm shows high efficacy
on different datasets. Filchenkov et. al. suggest approach to
learn ensemble of ranking filters by combining their feature
importance measures [18]. The approach proposed by Bólon-
Canedo et al. [19] can be understood as FSS ensemble
learning, despite they learn ensembles not of FSS algorithms,
but classifiers which are one classifier model learnt on datasets
preprocessed with the FSS algorithms.

In this work, we will follow the approach, presented in
paper [20], which is based on aggregating resulting feature
ranks, obtaining a new feature rank which is used to select
the best ones. We can suggest that each FSS method returns a
ranked feature set. Thus, we need to imply rank aggregation
algorithms in order to obtain a single ranking.

D. Rank Aggregation

The rank aggregation problem is to combine several dif-
ferent ranks on the same set of candidates, or alternatives, in
order to obtain a “better” ordering. In this section we describe
popular ranking aggregation methods that we will use in our
research.

1) Borda Methods: Consider the following group of heuris-
tic rank aggregation methods, which are called Borda meth-
ods [21]. These methods are simple and intuitive, the main
idea is to aggregate ranks by calculating a weight of each
candidate and using different convolution functions such as
arithmetic average, geometric mean, and other to find the
resulting weight of each candidate. The resulting weights are
used to find position of candidate in resulting rank.

In other words, weight functions computation is based on
position of each candidate in each of input ordering:

w(t) = w (R1(t), . . . , RL(t)) , ∀t ∈ T.

Then all the candidates are ordered by values of w function:

R∗(ti) < R∗(tj)⇔ w(ti) < w(tj), ∀ti, tj ∈ T.

Several Borda algorithms exist defined by different weights
functions:
• Method Borda-ARM, in which w is the arithmetic aver-

age function:

w(x1, . . . , xm) =
1

m

m∑
i=1

xm.

• Method Borda-MED, in which w is the median function:

w(x1, . . . , xm) = median(x1, . . . , xm).

• Method Borda-GEM, in which w is the geometric mean
function:

w(x1, . . . , xm) =

(
m∏
i=1

|xm|

) 1
m

.

• Method Borda-L2N, in which w is the L2-norm function:

w(x1, . . . , xm) =

√√√√ m∑
i=1

|xm|2.

2) Markov Chain Methods: Markov chain methods provide
more elegant but more complex solutions than Borda methods
do. One significant difference between these two method
families is that Borda methods use all the ranking ordering,
while Markov chain methods use only pairwise ranking.

Several different methods to fill transition matrix exist. This
matrix is used to find stationary distribution P describing the
Markov chain. In other words, we search a vector π, such that
π × P = π. The transition probability may be modified to
guarantee the existence of a unique stationary distribution in
the following way, as suggested by DeConde et al. [22]:

P ′(u→ v) = (1− a)P (u→ v) + a/L,

where a is a tuning parameter usually set to be in interval
[0.001, . . . , 0.15]. In this work, we set parameter a a to be
equal to 0.05.

Several ways to construct Markov chain exist, in this work
we use the following methods [23], [22]:
• Method MC1: for all u, v ∈ S, u 6= v define transition

probability as the following:

P (u→ v) =

{
1/|S|, if ∃l : Rl(u) > Rl(v);

0, otherwise.

Then define diagonal elements as the following:

P (u→ v) = 1−
∑

v 6= uP (u→ v).

• Method MC2: for all u, v ∈ S, u 6= v define transition
probability as the following:

P (u→ v) =

1/|S|, if Rl(u) > Rl(v) for most

of the input lists;
0, otherwise.

Then define diagonal elements the same as in MC1.
• Method MC3: for all v, u ∈ S, u 6= v define transition

probability as the following:

P (u→ v) =

L∑
i=1

I(Ri(u) > Ri(v))/L|T |.

where I is the indicator function that is equal to 1 if the
condition inside the parentheses is satisfied; otherwise it
is equal to zero.

Then we calculate stationary distribution π of the Markov
chain defined by P. This vector π will be directly used for
ranking FSS algorithms: then greater the value then higher
the algorithm in rank, i.e. algorithm with index argmaxi πi
will be on the top and algorithm with index argmini πi will
be on the bottom of rank.

III. BFSSAEL ALGORITHM

A. Core Idea

A meta-learning system usually returns not only the algo-
rithm predicted to be the best one, but the top L algorithms,
from which user should choose the best one (or a wrapping
method should try each of them). Quality of such a system is
usually estimated with respect to how good is the best of L
returned algorithms.

The main idea of this work is to apply ensemble technique
for all the best recommended algorithms. As we expect, this
will built efficacious algorithm not for a certain dataset, but
for its locus (e.g. ”locally general”).

In order to combine algorithms properly, we should adjust
aggregated feature list size. This problem arises because
selected ranks do not always have the same length and can
consist of different sets of the features. It leads to problem of
adjusting length of the resulting aggregate rank.

In this paper, we use three following subsets of feature list
S∗, aggregated of lists

S∗min = {t ∈ S∗|R∗(t) < lemin
i
|Si|};

S∗average = {t ∈ S∗|R∗(t) < leaveragei|Si|};

S∗max = {t ∈ S∗|R∗(t) < lemax
i
|Si|}.

For determining the best of them, we evaluate the classifier
performance on each of these feature lists and compare them
with respect a performance measure. This allows us to assume
that all the aggregation methods return already adjusted list of
features.

B. AEARR Metric

In order to compare different FSS algorithms, we need to
modify EARR metric. We use the meta-learning system as a
black box, therefore its parameter α influences only on list of
the feature subset selection algorithms. This list will be used
as an input for the proposed system, therefore we may assume
that parameter α is user-defined and is a part of that black box.

It worth to note that EARR metric uses classification
accuracy as the FSS algorithm efficacy measure. Accuracy is

known to be inefficient in cases, in which classes have notable
difference in sizes. In this paper, we suggest to use F1-measure
instead.

We introduce a new metric for comparing algorithms on
dataset d, which we call AEARR (Aggregated Extended
Adjusted Ratio of Ratios). It is defined as follows:

AEARR(ai, aj ; d) =
Fi/Fj

1 + β log ni/nj
,

where fi is value of F1 of a classifier executed on dataset
d preprocessed with algorithm ai, and ni is the number of
features this algorithm selects during preprocessing.

To obtain the absolute rating, we order algorithms with
respect to the following measure:

AEARR(ai; d) =
1

L− 1

∑
j,j 6=i

AEARR(ai, aj ; d).

C. Algorithm

1) Algorithm Scheme: Assume we have already learnt the
meta-learning system for FSS algorithm recommendation. The
system performs the following steps for a given dataset d:

1) Run the meta-learning system and find the top k algo-
rithms for D.

2) Extract k feature rank lists from dataset using k algo-
rithms from the previous step.

3) Run each of g rank aggregation methods on the k rank
lists obtained in the previous step.

4) Evaluate classifier performance and calculate AEARR
metric for each of g feature lists.

5) Return feature set with the largest value of AEARR
metric as the answer.

Algorithm scheme is shown in Fig. 1.
2) Algorithm parameters: The algorithm has several user-

defined parameters for adjusting the system to solve a partic-
ular problem:
• classifier is used for feature selection algorithm perfor-

mance evaluation;
• parameter k is the number of top algorithms, returned by

the recommendation system;
• parameter α is sensitivity to feature subset selection time;
• parameter β is sensitivity to number of selected features.
It is worth to note that all the parameters have significant

impact on the system. Besides, parameters k and α make huge
effect on evaluation time, while parameter β shows significant
influence only on number of features.

3) Usage of Weights for Increasing Classification Quality:
All the rank aggregation methods mentioned above may use
weights for increasing quality. In this section, we describe
two ways to implement it. The first way is based on the fact
that the meta-learning system ranks the algorithms assigning
weights to them. We can use these weights in rank aggregation.
The other way is to evaluate classifiers on each of the
recommended ranks, and then use AEARR metric as weights
for ranks aggregation.

Fig. 1. Algorithm architecture with detailed evaluation engine.

IV. EXPERIMENTS

In this section, we describe results of algorithm executions
on different datasets. The system is implemented on Python
and Java, using WEKA [24] machine learning library.

We must note that the parameter α corresponding to sensi-
tivity of FSS time is used only in the meta-learning system,
therefore in the experiments we set α equal to 0. We will
not affect the fullness of research by doing that, because this
parameter has influence only on recommended algorithms and
the system compares features relatively with respect to value
of AEARR metric.

A. Experiment setup

75 well-known datasets from different domains are taking
for system testing. Bayesian Network is used as a classifier to
measure feature selection algorithm efficacy. We used 5-fold
cross-validation to evaluate model performance.

B. Experiment results

In this subsection, numerical results of the experiments are
presented. The values are the average for all the datasets.

1) Result with different values of β: Plot in Fig. 2 shows
that the proposed algorithm is more efficient in average than
the recommended algorithms for all values of parameter β.

Fig. 2. Result depends on parameter β with L = 4.

Fig. 3. Result with respect to different value of parameter L with β = 4.

More detailed information about this run is given in attach-
ment [25].

2) Results with different values of L: Plot in Fig. 3 shows
that the proposed algorithm is more efficient than the best
of two algorithms recommended by the system. In addition,
it can be noted that it is reasonable to use weights from the
meta-learning system, because in this case system shows better
results. However, there is only a slight difference between the
two approaches used to assign weights with L ≥ 2.

More detailed information about this run is given in attach-
ment [26].

If parameter L equals to 4, then the algorithm works
efficiently enough. If parameter L is greater than 4, then no
big boost in efficacy of the algorithm can be seen. Therefore,
the number of algorithms to use in ensemble is four, because it
allows finding a compromise between efficient and computing
time.

The experiments allow to find some patterns. Generally,
the Borda method that uses L2-norm shows the best results.
In addition, Borda methods that use arithmetic average and
geometric mean and method MC3 show high results.

Fig. 4. Number of times when algorithm was the recommended or works
equally with the recommended one.

Fig. 5. Number of usage in dependence on number of features and parameter.

C. Discussion

As could be seen from results, feature lists that was
created with rank aggregation methods show better results
than received from base algorithms, that was selected by
recommendation system with different parameter β.

Increasing the number of used algorithms increases al-
gorithm efficiently. It was founded experimentally that four
algorithms in ensemble is optimal. This choice caused by
necessity to find balance between quality and computation
complexity.

Using weights in this implementation of algorithms shows
small increment of quality.

Computational time directly depends on features subset
selection algorithms time, and also depends on number of such
algorithms L.

V. CONCLUSION

In this paper, we presented new approach to ensemble fea-
ture selection. We used meta-learning in order to select the best
possible filtering feature selection methods for some dataset
and then used their aggregation for final feature selection
in regards to AEARR metric. Different experiments shown

that this approach leads to better feature selection results in
comparison to aggregated methods.

To improve results of this paper some more feature selection
algorithms properties could be used. For example, An interest-
ing idea is employing information about algorithm similarity.
Its application to classifiers ensemble is out of question, due
to classifiers diversity is the primary source for their ensemble
efficacy. Application of this idea to feature selection domain
is more questionable, and one of the further work direction
is learning feature selection algorithm ensemble using their
similarity [27].

ACKNOWLEDGMENT

REFERENCES

[1] H. Liu and H. Motoda, Feature selection for knowledge discovery and
data mining. Springer Science & Business Media, 2012, vol. 454.

[2] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” The Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[3] A. Zabashta, I. Smetannikov, and A. Filchenkov, “Rank aggregation
algorithm selection meets feature selection,” Imperial Journal of Inter-
disciplinary Research, vol. 9729, pp. 740–755, 2016.

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Evolutionary Computation, IEEE Transactions on, vol. 1,
no. 1, pp. 67–82, 1997.

[5] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta, Metalearning:
applications to data mining. Springer Science & Business Media,
2008.

[6] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, no. 2, pp. 77–95, 2002.

[7] P. B. Brazdil, C. Soares, and J. P. Da Costa, “Ranking learning
algorithms: Using ibl and meta-learning on accuracy and time results,”
Machine Learning, vol. 50, no. 3, pp. 251–277, 2003.

[8] L. A. Rendell, R. Sheshu, and D. K. Tcheng, “Layered concept-learning
and dynamically variable bias management.” in IJCAI, 1987, pp. 308–
314.

[9] H. Bensusan, C. G. Giraud-Carrier, and C. J. Kennedy, “A higher-order
approach to meta-learning.” ILP Work-in-progress reports, vol. 35, 2000.

[10] Q. Sun and B. Pfahringer, “Pairwise meta-rules for better meta-learning-
based algorithm ranking,” Machine learning, vol. 93, no. 1, pp. 141–161,
2013.

[11] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A
review of feature selection methods on synthetic data,” Knowledge and
information systems, vol. 34, no. 3, pp. 483–519, 2013.

[12] G. Wang, Q. Song, H. Sun, X. Zhang, B. Xu, and Y. Zhou, “A feature
subset selection algorithm automatic recommendation method,” Journal
of Artificial Intelligence Research, 2013.

[13] A. Filchenkov and A. Pendryak, “Datasets meta-feature description for
recommending feature selection algorithm,” in AINL-ISMW FRUCT,
2015, pp. 11–18.

[14] R. Polikar, C. Zhang, and Y. Ma, “Ensemble machine learning: Methods
and applications,” 2012.

[15] T. G. Dietterich, “Ensemble learning,” The handbook of brain theory
and neural networks, vol. 2, pp. 110–125, 2002.

[16] O. DeMasi, J. Meza, and D. H. Bailey, “Dimension reduction using
rule ensemble machine learning methods: A numerical study of three
ensemble methods,” arXiv preprint arXiv:1108.6094, 2011.

[17] E. Tuv, A. Borisov, G. Runger, and K. Torkkola, “Feature selection with
ensembles, artificial variables, and redundancy elimination,” The Journal
of Machine Learning Research, vol. 10, pp. 1341–1366, 2009.

[18] A. Filchenkov, V. Dolganov, and I. Smetannikov, “Pca-based algorithm
for constructing ensembles of feature ranking filters,” in ESANN, 2015,
pp. 202–206.

[19] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “An
ensemble of filters and classifiers for microarray data classification,”
Pattern Recognition, vol. 45, no. 1, pp. 531–539, 2012.

[20] L.-Y. Chuang, C.-H. Yang, K.-C. Wu, and C.-H. Yang, “A hybrid feature
selection method for dna microarray data,” Computers in biology and
medicine, vol. 41, no. 4, pp. 228–237, 2011.

[21] S. Lin, “Rank aggregation methods,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 2, no. 5, pp. 555–570, 2010.

[22] R. P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, and R. Et-
zioni, “Combining results of microarray experiments: a rank aggregation
approach,” Statistical Applications in Genetics and Molecular Biology,
vol. 5, no. 1, 2006.

[23] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in Proceedings of the 10th international confer-
ence on World Wide Web. ACM, 2001, pp. 613–622.

[24] M. L. G. at the University of Waikato, “Weka 3: Data Mining Software
in Java,” http://www.cs.waikato.ac.nz/ml/weka/, 2017, [Online; accessed
16-May-2017].

[25] anonymised, “Data table 1,” https://www.dropbox.com/s/
xzvda5xu4791nql/Attachment%201.pdf?dl=0, 2017.

[26] “Data table 2,” https://www.dropbox.com/s/z3v2n1p0o2qc47z/
Attachment%202.pdf?dl=0, 2017.

[27] N. Dessı̀ and B. Pes, “Similarity of feature selection methods: An
empirical study across data intensive classification tasks,” Expert Systems

with Applications, vol. 42, no. 10, pp. 4632–4642, 2015.

