
Runtime Analysis of Different Approaches
to Select Conflicting Auxiliary Objectives

in the Generalized OneMax Problem
Arina Buzdalova, Irina Petrova, Maxim Buzdalov

ITMO University
49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101
Email: abuzdalova@gmail.com, irenepetrova@yandex.com, mbuzdalov@gmail.com

Abstract— It has been shown that single-objective optimization
may be improved by introducing auxiliary objectives. Ideally,
auxiliary objectives should be designed to be independent.
However, in practice, this is not always easy or possible and
the objectives may be conflicting. Particularly, this happens in
the Job-Shop Scheduling problem and in certain search-based
software engineering problems.

We theoretically analyse different approaches of using auxil-
iary objectives on the general ONEMAX problem with conflicting
auxiliary objectives ONEMAX and ZEROMAX. In most of the
considered methods, the optimized objectives are selected dy-
namically. We also consider a method, where the same objectives
are optimized during the whole run. We show that dynamic
selection of conflicting auxiliary objectives combined with explicit
optimization of the target objective has the best runtime of
O(n logn)O(n logn)O(n logn) among all the considered methods.

I. INTRODUCTION

The approaches of using auxiliary objectives can be divided
into three groups [19]. One group contains methods that treat
constraints as auxiliary objectives and transform a constrained
problem into an unconstrained one [7], [18]. Other methods
consider diversity as an objective [19]. We consider the so
called multiobjectivization methods, that use auxiliary objec-
tives correlated with the target objective. It has been shown
both theoretically and practically that multiobjectivization may
improve efficiency of single-objective optimization [2], [11],
[14], [15], [19]. The rest of the paper considers auxiliary
objectives used in the context of multiobjectivization.

Auxiliary objectives may be designed as parts of the decom-
position of the original target objective [11]. The optimum
of the target objective should belong to the Pareto front
formed by the resulting auxiliary objectives. In this case,
the auxiliary objectives are optimized simultaneously using
a multi-objective evolutionary algorithm in order to find the
optimum of the target objective.

There are some different approaches as well, when the
auxiliary objective, which should be used at the current step of
optimization, is selected dynamically [5], [10]. In this case, it
is not required that the auxiliary objectives comprise a decom-
position of the target objective. Therefore, dynamic selection
is helpful when objectives are generated automatically and it
is hard to know their properties in advance [3].

Most theoretical works consider multiobjectivization by
decomposition and investigate when it may outperform single-
objective optimization [2], [9], [14], [15]. However, to the
best of our knowledge, only few theoretical works consider
dynamic selection of objectives [4].

In the mentioned theory papers auxiliary objectives are
usually designed to be independent. So there seem to be no
theoretical results regarding the case of conflicting auxiliary
objectives. However, such objectives may arise in practi-
cal applications. For example, consider the following Job
Shop Scheduling problem [13]. A predefined set of jobs
and machines is given. A job consists of operations, each
operation should be processed by a specified machine and
takes a specified processing time. No two operations of a job
can be processed simultaneously, each machine can process
only one operation at time, all machines run at the same
speed, no preemption allowed. The target objective is the total
flowtime of the schedule. This problem may be solved my
multiobjectivizing the total flowtime into individual flowtimes
needed to complete a certain job. In this case optimization of
the flow time to complete one job may result in the increasing
of the flow time for some other job [13]. Thus, the auxiliary
objectives are conflicting.

Another example of potentially conflicting auxiliary objec-
tives comes from search-based software engineering problems,
such as worst-case execution time test generation. When
solving this kind of problems, the auxiliary objectives may
be generated automatically [3], so it is also hard to ensure
that there are no conflicts.

It is known from experimental studies that for the above
problems the best solutions are usually obtained using dynamic
selection of auxiliary objectives combined with the simulta-
neous explicit optimization of the target objective [6], [16].
Theoretical analysis of a problem with conflicting auxiliary
objectives may help to better understand the reasons why
different methods of objective selection are efficient or not
for such problems.

Overall, the aim of this paper is to prove runtime estimations
for the known methods of objective selection and to compare
them on a model problem with conflicting objectives.

II. PRELIMINARIES

In this section we define the model problem and a multi-
objective evolutionary algorithm, which serves as the base for
the most of the considered algorithms. We also prove some
statements about this algorithm, which are intensively used in
the rest of the paper.

A. Model problem

In general, it is needed to optimize the target objective
t. Auxiliary objectives h1, h2, . . . , hm may be used to find
the optimum of t in a smaller number of fitness function
evaluations. Objectives t, h1, . . . , hm form an optimization
problem with auxiliary objectives. Notice that there is no need
to find the optima of the auxiliary objectives, they are used
just to enhance optimization of the target objective. Below we
formulate a simple model problem used in this paper as an
example of a problem with target and auxiliary objectives.

Definition 1 (OMd problem): The target objective OMd is
calculated as the number of bits in an individual of length n
that matches a given bit mask. The bit mask has d 0-bits and
n−d 1-bits. The auxiliary objective ONEMAX is calculated as
the number of 1-bits in an individual, while another auxiliary
objective ZEROMAX is calculated as the number of 0-bits.

In the rest of the paper, we say that an algorithm solves
the OMd problem if it finds the optimum of OMd using the
ONEMAX and ZEROMAX auxiliary objectives as defined in
this algorithm.

Auxiliary objectives ONEMAX and ZEROMAX are not
independent, because increasing of the ONEMAX value results
in decreasing of the ZEROMAX value. Also the auxiliary
objectives may conflict with the target objective. Let us explain
why a similar situation may arise in the Job-Shop Scheduling
problem [13]. Assume that the target objective is the total
flow time, which should be minimized. Auxiliary objectives
are flow times of particular jobs. Such objectives may be
in conflict, because the same machines are used in different
jobs. In other words, optimization of the flow time needed to
complete one job may result in increasing of the flow time
needed to complete some other job. What is more, the total
flow time may increase, if an improper job was selected to be
optimized.

B. Simple Evolutionary Multi-Objective Optimizer

Most of the algorithms considered in this paper deal with
optimization of several objectives. We use an example multi-
objective evolutionary algorithm, where the objectives are
compared based on Pareto dominance and the non-dominated
set of solutions is maintained. To describe this algorithm we
need to define fitness in a multi-objective case.

Definition 2: Let c1, c2, . . . , cm be the objectives to be
optimized in a multi-objective evolutionary algorithm. The
fitness of an individual x is defined as a vector f =
(c1(x), c2(x), . . . , cm(x)).

As a multi-objective evolutionary algorithm, we consider the
Simple Evolutionary Multi-Objective Optimizer (SEMO) [12],
[14], [17]. This algorithm stores all non-dominated individuals

in the population P . At each step of the algorithm, an
individual x is chosen randomly from P and one bit is flipped
to obtain a new individual x′. Then non-dominated individuals
are selected from P and x′ to form the new population P ′,
which is used as P at the next step of the algorithm. In the
original version of this algorithm proposed in [12], the mutated
individual is not added to the population if an individual with
the same fitness is already present. In the version considered
in the present paper, the old individual with the same fitness
is replaced by the newly mutated individual. The pseudocode
of SEMO is presented in Algorithm 1).

Algorithm 1 SEMO algorithm [12]
1: Population P ← a randomly generated individual
2: while (Stopping criterion is not reached) do
3: Randomly select individual x from P
4: Individual x′ ← mutate x (flip one bit)
5: Select non-dominated individuals P ′ from P ∪ {x′}
6: if ∃y ∈ P ′ : f(y) = f(x′) and y 6= x′ then
7: Remove y from P ′

8: end if
9: P ← P ′

10: end while

C. General Running Time of Auxiliary Objective Approaches
Based on SEMO

In this section we give a general theorem that allows esti-
mating running time of auxiliary objective approaches based
on SEMO. We believe that results of this kind already belong
to folklore, but nevertheless give the proof in the Appendix.

Theorem 1: Consider optimization of objectives
c1, c2, . . . , cm by the SEMO algorithm. Let T be the
runtime of the random local search while optimizing some
objective ck, where k ∈ {1, . . . ,m}. Let F be the size of
the current population. Then SEMO finds the optimum of
ck in expected number of fitness function evaluations of
O(E(F) · E(T)), where E(F) and E(T) are the expected
values of F and T correspondingly.

Now, using Theorem 1, we can describe the general scheme
for the most further analyses of different auxiliary objective
approaches based on SEMO. First, we estimate the expected
population size in a considered auxiliary objective approach.
We also use the fact that the expected optimization time of the
OMd objective using random local search is Θ(n log n) [1], as
the problem of optimizing OMd is just another instance of the
coupon collector problem. Then the final result is obtained by
substituting the expected running time to optimize OMd and
the expected population size to Theorem 1.

III. HELPER OBJECTIVE APPROACH: RANDOM SELECTION
OF AUXILIARY OBJECTIVES

To start with, we analyse the dynamic objective approach
proposed in [10]. In this approach, the target objective is
optimized together with the dynamically selected auxiliary
objectives. We consider the two-objective case, when the one

objective is the target one and the other objective is selected
from a randomly ordered set of auxiliary objectives. This case
was reported in [10] to be the most efficient in practice.

In order to estimate the population size in the algorithms
considered in this section, we need two lemmas presented
below.

Lemma 1: Assume that two objectives are optimized by
SEMO and each objective may be of n different values. Then
the size of population while optimizing these two objectives
is at most n individuals.

Proof: Denote a population as P and the first objective
as h. Assuming that there are n + 1 individuals in P , we
get that there exist two individuals x and x′ 6= x such that
h(x) = h(x′), as there are no duplicates. However, P consists
of individuals which do not dominate each other, which means
that h(x) 6= h(x′). The contradiction proves the lemma.

Lemma 2: Assume that the auxiliary objective h (ONEMAX
or ZEROMAX) was selected at the previous iteration, and
then the opposite criterion h′ 6= h (ZEROMAX or ONEMAX
correspondingly) is selected at the current iteration. Then the
Pareto front at the current iteration consists of at most two
individuals.

Proof: Denote the Pareto front from the previous iteration
as P and the Pareto front from the current iteration as P ′.
Consider the individual x from P with maximal value of the
target objective. Then for every individual y ∈ P it holds that
t(x) ≥ t(y) and h(x) ≤ h(y). When the opposite objective h′

is selected, for each individual y ∈ P it holds that t(x) ≥ t(y)
and h′(x) = n−h(x) ≥ n−h(y) = h′(y). So each individual
from P is dominated by x. Therefore, the only point from P
that is kept in P ′ is x. One more point may be added to P ′ in
the case of the successful mutation. So P ′ consists of at most
two individuals.

In the original approach presented in [10], each auxiliary
objective is selected just once and is optimized for the same
number of iterations. So the total number of iterations is
needed to calculate the number of iterations for a particular
objective. However, the total number of iterations is unknown
in the case when the stopping criteria is finding the optimum.
So we denote the number of iterations given for one objective
as k and only require that k is at least one and does not
exceed the total number of iterations. In this case, a particular
objective may be optimized more than once.

We consider two variants of the dynamic objective ap-
proach. The first variation (Theorem 2) is closer to the original
version, as the objectives are selected according to a fixed
order, which was earlier generated at random. In the second
variation (Theorem 3), an auxiliary objective is just selected
randomly.

Theorem 2: Consider an algorithm that starts from a ran-
domly chosen auxiliary objective and then switches the aux-
iliary objective every k iterations (the auxiliary objective
is being optimized simultaneously with the target objective
by SEMO). This algorithm solves the OMd problem in
O(min(n, k) ·n log n) fitness function evaluations in expecta-
tion.

Proof: The algorithm starts with one individual in the
population. At each iteration, the current population may
increase at most by one. According to Lemma 2, there are
at most two individuals in the population after the auxiliary
objective has been changed. Thus, the number of individuals
in a population is bounded by the length of the period when
the same objective is used, which is k.

Therefore, we get that the size of a population is O(k).
On the other hand, according to Lemma 1, the size of a
population is less than or equal to n. Thus, the expected size
of a population P is bounded by O(min(n, k)) at any iteration
of the algorithm: E(|P |) = O(min(n, k)).

By substitution of E(|P |) into Theorem 1, we get the
expected number of iterations to find the optimum of OMd,
which is O(min(n, k) · n log n).

Theorem 3: Consider the algorithm that randomly chooses
a helper objective every k iterations and optimizes it simulta-
neously with the target objective by SEMO. This algorithm
solves the OMd problem in O(min(n, k) · n log n) fitness
function evaluations in expectation.

Proof: The proof of this theorem is analogous to the proof
of Theorem 2. The only difference is that we do not know
exactly the length of the period when the same objective is
used, because the auxiliary objectives are switched randomly.
So let us estimate the length of this period, in other words,
the expected number of iterations until the currently selected
auxiliary objective is switched to the other auxiliary objective:

E(I) =
1

2
k+

1

22
2k+. . .+

1

2t
tk =

t∑
i=1

ik

2i
= k

t∑
i=1

i

2i
= Θ(k).

This result together with Lemma 1 and Theorem 1 proves
the statement.

As we can see, for both considered variations of the dynamic
objective approach, the expected runtime to solve the model
problem is O(min(n, k) · n log n). Thus, for relatively small
fixed values of k, the expected runtime of O(n log n) may be
obtained, which is as efficient as the optimization of the target
objective without auxiliary objectives.

IV. REINFORCEMENT BASED SELECTION OF AUXILIARY
OBJECTIVES

Consider the dynamic objective approach, where auxiliary
objectives are selected using reinforcement learning (RL) [20].
Such an approach was proposed in [5]. In RL, an agent applies
an action to an environment, then the environment returns
some representation of its state and a numerical reward to
the agent, and the process repeats. Initially, a single objective
evolutionary algorithm was used. The corresponding method
is called EA+RL. In the EA+RL method, an evolutionary
algorithm is treated as an environment. Each action of the
agent corresponds to selection of an objective to be optimized
at the current generation. The agent selects an objective from
the set of auxiliary objectives and the target objective. The
target objective is implicitly taken into account in the reward

optimized by RL, so it is possible to select only one objective
to be explicitly optimized at each iteration.

As explained above, EA+RL optimizes the target objec-
tive implicitly. However, explicit optimization of the target
objective together with the dynamically selected auxiliary
objective seems to still be more efficient in the presence
of objectives which may conflict with the target objective.
The corresponding method is called MOEA+RL. The only
difference of MOEA+RL from EA+RL is that a multi-
objective evolutionary algorithm instead of a single-objective
one is used, so the selected auxiliary objective is optimized
simultaneously with the target objective. In this section we
analyse both methods, starting from the single-objective one.

A. General Principles of Objective Selection by Reinforcement
Learning

The general pseudocode of EA/MOEA + RL is presented in
Algorithm 2. Instead of EA, we use RLS, and we use SEMO
as MOEA. For RL, the Q-learning algorithm is used. So
the considered implementations are named RLS+Q-learning
and SEMO+Q-learning correspondingly. In Q-learning, the
efficiency of selecting an objective h in a state s is measured
by the value Q(s, a), which is updated dynamically after each
selection as shown in line 14 of the pseudocode.

Algorithm 2 RLS/SEMO + Q-learning Algorithm
1: Population P ← a randomly generated individual
2: Define target objective t
3: Define set of auxiliary objectives H
4: Q(s, h)← 0 for each state s and action h ∈ H
5: Calculate fitness for each individual in P
6: while (Stopping criterion is not reached) do
7: s← best value of t in P
8: Randomly select individual x from P
9: Individual x′ ← mutate x (flip one bit)

10: Select objective h: Q(s, h) = maxh′∈H Q(s, h′)
11: Update P using x′ and h
12: s′ ← best value of t in P
13: r ← s′ − s
14: Q(s, h)← (1− α)Q(s, h) + α(r + max

h′∈H
Q(s′, h′))

15: end while

In RLS + Q-learning, the set of auxiliary objectives (line 3)
consists of the target objective OMd and two auxiliary ob-
jectives ONEMAX and ZEROMAX. In SEMO + Q-learning,
the set of auxiliary objectives consists only of two auxiliary
objectives.

In RLS + Q-learning, the individual with the higher value
of the selected objective h (x or x′) is selected for the
next population P in line 11. In SEMO + Q-learning, non-
dominated individuals from P ∪ {x′} are selected as new P .
In this case, the target objective and the selected objective h
take part in the comparison according to Pareto dominance.

Notice that there is always one individual in a population
of RLS+Q-learning, while in MOEA+Q-learning a population
may consist of several individuals.

B. EA+RL: Single-Objective Approach

In this section we analyse the method, where RL is used
to select an objective — the target objective or one of the
auxiliary objective, which is optimized in the current iteration
of EA. As RLS is used instead of EA, the population consists
of a single individual.

Theorem 4: Consider the RLS+Q-learning algorithm. The
states correspond to the current target fitness value, the reward
is defined as the difference of target fitness values in two
consequent iterations. The RLS+Q-learning algorithm does not
solve the OMd problem with a nonzero probability in the case
of 2 ≤ d ≤ n− 2.

Proof: Possible states of the algorithm are presented in
Fig. 1. The vertical axis corresponds to possible values of
t, and, as a consequence, to states of reinforcement learning
algorithm. The horizontal axis corresponds to possible values
of h1. Let us show a possible run of the algorithm in which
the problem is not solved.

Assume that in the optimal solution in the position k1 there
is a 0-bit, and in the position k2 there is a 1-bit. Assume
that the algorithm obtained an individual of all ones except
positions k1 and k2. Then t = n− d and h1 = n− 2 (point A
in Fig 1). The corresponding RL state is n−d. Assume that it
is the first time when the algorithm turned to the state n− d.
So the agent does not have any knowledge about efficiency of
objectives in this state.

Assume that the agent randomly selects the objective h1
and obtains individual with the flipped bit at the position k2.
So t = n − d + 1 and h = n − 1 (the point B in Fig. 1).
The agent has achieved a positive reward for the action h1
in the state n − d. Since the agent has no experience in the
state n − d + 1, it can select the action h1 just at random.
Assume that the algorithm obtained the new individual with
the flipped k1 bit, which is the optimum of h1 (the point C
in Fig. 1). The algorithm has moved to the state n − d. The
agent has already learned that in the state n−d the h1 objective
gives positive reward, so the agent chooses h1. However, the
mutated individual is worse than the optimum of h1 and it will
not be selected for the next generation. The obtained reward is
zero, so the estimation of objective efficiency does not change

d d+1 n-1 n

d

d+1

n-d+1

n

OMd

OM1n-2

n-d

state d

state d+1

state n-d

state n-d+1

state n

n-d-1

n-3

state n-d-1

A

B

C

Fig. 1. Markov chain of RLS+Q-learning

according to the formula in line 14 of Algorithm 2. Therefore,
the algorithm will never move from the current state.

C. MOEA+RL: Multi-Objective Approach

In this section we analyse the method which optimizes
the target objective simultaneously with an auxiliary objective
selected by RL. We use SEMO as the multi-objective algo-
rithm. Compared to a single-objective evolutionary algorithm,
the reward and states should be redefined for the case of a
population based algorithm.

Consider the individual that has the highest value of the
target objective in the current population. We denote it as the
current best individual and use this individual to define states
and reward in the same way as in the single-objective case
(see Section IV-B).

Theorem 5: Consider the SEMO+Q-learning algorithm.
The states correspond to the target fitness value of the current
best individual, the reward is defined as the difference of target
fitness values of the current best individuals in two consequent
iterations. The considered algorithm solves the OMd problem
in O(n log n) fitness function evaluations in expectation.

Proof: Notice that the target fitness of the best indi-
vidual may not decrease, because this individual can not be
dominated by any individual with lower value of the target
objective. Therefore, the agent would never move to a state
that corresponds to a lower value of the target objective.

Once the agent gets to a state, it chooses any of the two
auxiliary objectives equiprobably, since the state is visited for
the first time and there is no information about the efficiency
of the objectives. If an individual with a higher target fitness
is generated by mutation and accepted by SEMO, the agent
moves to a new state and again selects one of the two auxiliary
objectives equiprobably. In the opposite case, the agent gets
zero reward and stays in the same state. Since the reward
is zero, no new information about the objectives is obtained.
Therefore, the agent equiprobably selects one of the two
auxiliary objectives in this case as well.

As shown above, an auxiliary objective is selected randomly
at each iteration. So we have the same situation as in Theo-
rem 3 for k = 1. Therefore, the expected number of iterations
to find the optimum of OMd is O(n log n).

To sum up the analysis of the RL based dynamic objective
approaches on the OMd problem, explicit optimization of the
target objective used in the MOEA+RL algorithm efficiently
works with conflicting auxiliary objectives, while the single-
objective EA+RL algorithm gets stuck in presence of these
objectives.

V. SIMULTANEOUS OPTIMIZATION OF AUXILIARY
OBJECTIVES

Previously, we studied different dynamic objective ap-
proaches, namely random and RL based. In this section, we
consider a static approach, where no selection of objectives is
performed.

Theorem 6: Consider the algorithm that optimizes all aux-
iliary objectives (ONEMAX and ZEROMAX) and the target

objective simultaneously by SEMO until the optimum of
the target objective OMd is found. Then, if initialized by a
random individual, this algorithm solves the OMd problem in
Θ(n2 log n) fitness function evaluations in expectation.

Proof: For every two individuals x and x′ in the pop-
ulation, it holds that if ONEMAX(x) = ONEMAX(x′) then
ZEROMAX(x) = ZEROMAX(x′). Due to this fact, OMd(x) =
OMd(x′), because otherwise one of the individuals dominates
another one, so both of them cannot coexist in the same
population. The selection we use does not permit two indi-
viduals with all the same fitness values, so at most one indi-
vidual with a given ONEMAX(x) survives. If ONEMAX(x) 6=
ONEMAX(x′), then either ONEMAX(x) < ONEMAX(x′)
(then ZEROMAX(x) > ZEROMAX(x′)) or vice versa, which
means that such individuals never dominate each other.

For the upper bound, consider an individual x with the
maximum value of OMd, which is k < n. It is selected
with probability p0 ≥ 1

n , and the mutation which increases its
OMd(x) value happens with p1 = n−k

n . When this happens,
the new individual x′ will have the maximum possible value
of OMd among the population, which, due to the reasoning
above, makes the SEMO selection accept this individual. Thus,
when looking at the maximum OMd values, the ONEMAX
process is modeled. By Theorem 1, the running time is at
most O(n logn

p0
) = O(n2 log n).

For the lower bound, note that the population is initialized
by a single individual and only single-bit mutations are used.
Due to these observations, the population forms a contigu-
ous segment in all three objectives (ONEMAX, ZEROMAX,
OMd). Assume the algorithm starts with OMd(x) = v0. If
n− v0 = Θ(n), then as soon as the value OMd(x) = n+v0

2 is
reached, the algorithm needs Ω(n2 log n) iterations to optimize
OMd: the probability of selecting the individual with the
maximum OMd is O(1

n), and the running time to traverse
the last Θ(n) levels of ONEMAX is Θ(n log n). If, finally, the
initial individual is sampled at a distance of o(n) from the
optimum, the probability of this to happen is at most 1/2, so
the result for this case does not influence the lower bound, as
it is not greater than O(n2 log n).

VI. CONCLUSION

We analyzed different approaches of using auxiliary ob-
jectives on a model problem with conflicting objectives. The
target objective was the generalized ONEMAX problem, the
auxiliary objectives were standard ONEMAX and ZEROMAX.

Dynamic selection of an auxiliary objective, as well as
simultaneous optimization of all auxiliary objectives were
analyzed. In the case when the target objective is optimized
simultaneously with the auxiliary ones, it was shown that
dynamic selection allows solving the problem in O(min(n, k)·
n log n) fitness function evaluations, where n is the problem
size and k is the period of optimizing the same objective. Par-
ticularly, dynamic selection based on reinforcement learning
(the MOEA+RL method) solves the problem in O(n log n)
fitness function evaluations. Simultaneous optimization yields
Θ(n2 log(n)) evaluations in this case. To obtain the above

results, we proposed a general theorem that is useful for ana-
lyzing different auxiliary objective methods. In the case when
the target objective is not optimized explicitly, reinforcement
based dynamic selection (the EA+RL method) fails to solve
the problem. Therefore, it seems that preserving the individual
with high value of the target objective is important to mitigate
the influence of selection of an improper auxiliary objective.

It is also important to notice that when the conflicting
auxiliary objectives were dynamically selected, this often led
to significant decrease of the current population size. For
the considered problem, such behaviour allowed to solve
the problem as efficiently as if there were no conflicting
objectives, i.e. in O(n log n) fitness function evaluations. One
may speculate that similar processes may arise while solving
the Job-Shop Scheduling problem, where objectives may also
be in conflict. This fact together with the explicit usage of the
target objective could explain why in practice the MOEA+RL
method finds better schedules than EA+RL and simultaneous
optimization do.

In the future work, to get a fuller picture, it would be
good to analyse the static method, where only the auxiliary
objectives are optimized simultaneously without the target one.
The stopping criterion for such method is, though, whether the
target optimum is found. However, the target value does not
influence the rest of the search process at all. This method is a
model of the pioneer method of multiobjectivization [11]. This
approach was initially proposed for the auxiliary objectives
which comprise a decomposition of the target objective, unlike
in the considiered problem. We have a hypothesis that for the
considered problem this method should not be very efficient,
because in our case it has to perform somewhat random search
of the proper optimal individual.

VII. ACKNOWLEDGEMENTS

Arina Buzdalova and Irina Petrova were supported by
RFBR according to the research project No. 16-31-00380
mol a. Maxim Buzdalov was supported by the Government
of Russian Federation, Grant 074-U01.

REFERENCES

[1] A. Auger, A. Auger, and B. Doerr. Theory of Randomized Search
Heuristics: Foundations and Recent Developments. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 2011.

[2] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and
E. Zitzler. On the effects of adding objectives to plateau functions. IEEE
Transactions on Evolutionary Computation, 13(3):591–603, 2009.

[3] M. Buzdalov, A. Buzdalova, and I. Petrova. Generation of tests
for programming challenge tasks using multi-objective optimization.
In Proceedings of Genetic and Evolutionary Computation Conference
Companion, pages 1655–1658. ACM, 2013.

[4] M. Buzdalov, A. Buzdalova, and A. Shalyto. A first step towards the
runtime analysis of evolutionary algorithm adjusted with reinforcement
learning. In Proceedings of the International Conference on Machine
Learning and Applications, volume 1, pages 203–208. IEEE Computer
Society, 2013.

[5] A. Buzdalova and M. Buzdalov. Increasing efficiency of evolutionary
algorithms by choosing between auxiliary fitness functions with rein-
forcement learning. In Proceedings of the International Conference on
Machine Learning and Applications, volume 1, pages 150–155, 2012.

[6] A. Buzdalova, M. Buzdalov, and V. Parfenov. Generation of tests for
programming challenge tasks using helper-objectives. In 5th Interna-
tional Symposium on Search-Based Software Engineering, number 8084
in Lecture Notes in Computer Science, pages 300–305. Springer, 2013.

[7] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation, 18(4):617–633, 2010.

[8] B. Hajek. Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied Probability, 14(3):502–
525, 1982.

[9] J. Handl, S. C. Lovell, and J. D. Knowles. Multiobjectivization by
decomposition of scalar cost functions. In Parallel Problem Solving
from Nature – PPSN X, number 5199 in Lecture Notes in Computer
Science, pages 31–40. Springer, 2008.

[10] M. T. Jensen. Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization. Journal of Mathematical Modelling and
Algorithms, 3(4):323–347, 2004.

[11] J. D. Knowles, R. A. Watson, and D. Corne. Reducing local optima
in single-objective problems by multi-objectivization. In Proceedings
of the First International Conference on Evolutionary Multi-Criterion
Optimization, pages 269–283. Springer-Verlag, 2001.

[12] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running
time analysis of multi-objective evolutionary algorithms on a simple
discrete optimization problem. In Proceedings of the 7th International
Conference on Parallel Problem Solving from Nature, number 2439
in Lecture Notes in Computer Science, pages 44–53. Springer-Verlag,
London, UK, UK, 2002.

[13] D. F. Lochtefeld and F. W. Ciarallo. Helper-objective optimization
strategies for the Job-Shop scheduling problem. Applied Soft Computing,
11(6):4161–4174, 2011.

[14] F. Neumann and I. Wegener. Minimum spanning trees made easier via
multi-objective optimization. Natural Computing, 5(3):305–319, 2006.

[15] F. Neumann and I. Wegener. Can single-objective optimization profit
from multiobjective optimization? In Multiobjective Problem Solving
from Nature, Natural Computing Series, pages 115–130. Springer Berlin
Heidelberg, 2008.

[16] I. Petrova, A. Buzdalova, and M. Buzdalov. Improved helper-objective
optimization strategy for Job-Shop scheduling problem. In Proceedings
of the International Conference on Machine Learning and Applications,
volume 2, pages 374–377. IEEE Computer Society, 2013.

[17] C. Qian, Y. Yu, and Z.-H. Zhou. An analysis on recombination in
multi-objective evolutionary optimization. Artif. Intell., 204:99–119,
Nov. 2013.

[18] C. Qian, Y. Yu, and Z.-H. Zhou. Subset selection by pareto optimization.
In Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems, NIPS’15, pages 1774–1782, Cambridge, MA,
USA, 2015. MIT Press.

[19] C. Segura, C. A. C. Coello, G. Miranda, and C. Léon. Using
multi-objective evolutionary algorithms for single-objective optimiza-
tion. 4OR, 3(11):201–228, 2013.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1998.

APPENDIX

Consider some auxiliary objective approach, where several
objectives, including the target one, are optimized by SEMO.
We consider SEMO as a general process Y . There is also an
underlying process X optimizing the target objective. A step
of this process appears when the individual with the best target
objective value is selected to be mutated by SEMO. Notice that
the underlying process X in SEMO is essentially the random
local search (RLS) on the target objective. Lemma 3 allows
estimating the expected running time of the general process
provided that it stops when the underlying process finds the
optimum of the target objective.

Lemma 3: Let E(X) be the expected number of steps in
a random process X . Let Y be a random process that stops
simultaneously with X . On each step of Y , a step of X is

performed with probability p ≥ p0. Then the following holds:
E(Y) ≤ E(X)

p0
, where E(Y) is the expected number of steps

in the process Y .
Proof: E(X) =

∑∞
t=0 t · px(t), where px(t) is the

probability that X finishes in t steps. Let Yi be the number
X steps performed in i steps of Y . Then Y0 = 0 and with
probability p Yi = Yi−1 + 1, otherwise Yi = Yi−1. Assume
that X finishes in t0 steps. Let us estimate the value of
E(t|Yt = t0). Consider Y ′i = t0−Yi. Notice that Y ′i = 0 if X
has performed t0 steps. Also E(Y ′i −Y ′i+1) = p ≥ p0 because
Y ′i − Y ′i+1 = 1 with probability p and is zero otherwise. By
additive drift theorem [8]:

E(t|Y ′t = 0) = E(t|Yt = t0) ≤ t0
p0

From this we get that E(Y) =
∑∞

t=0EY |t ·px(t) ≤
∞∑
t=0

t
p0
·

px(t) = E(X)
p0

.
Lemma 3 estimates the expected running time of the general

process using the expected running time of the underlying
process and the probability that the underlying process was
iterated. Lemma 4 allows estimating this probability using the
expected population size in SEMO.

Lemma 4: Consider optimization of objectives
c1, c2, . . . , cm by the SEMO algorithm. Let F be the
size of the current population. Then the expected value of F
is E(F) =

∑n
i=1 i · p(i), where i is a population size and

p(i) is the probability that the size of the current population
is i. Let q be the probability that an individual with the best
value of ck is selected from the current population. Then
q =

∑n
j=1

p(j)
j , where j is a population size and p(j) is the

probability that the population size is j. Then the following
holds: E(F) · q ≥ 1.

Proof: From i2 − 2ij + j2 = (i − j)2 ≥ 0 follows that
i
j + j

i ≥ 2, which gives that:

E(F) · q =

(
n∑

i=1

i · p(i)

)
·

n∑
j=1

p(j)

j
=

n∑
i=1

n∑
j=1

i · p(i)p(j)
j

=

n∑
i=1

 i · p(i)p(i)
i

+

n∑
j=i+1

p(i)p(j)

(
i

j
+
j

i

)
≥

n∑
i=1

p(i)2 +

n∑
j=i+1

2p(i)p(j)

 =

(
n∑

i=1

p(i)

)2

= 1.

Finally, we can formulate the theorem that allows obtaining
the expected running time of an auxiliary objective approach
using the expected population size and the expected optimiza-
tion time of the target objective.

Proof of Theorem 1: Denote SEMO as process Y .
Then the underlying process X is the random local search
on ck. Consider the target objective as ci. From Lemma 3
and Lemma 4 we get that E(Y) ≤ E(T)

p0
≤ E(T)

(E(F))−1 =

E(T) · E(F).

