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Abstract: Multi-objectivization of artificial immune systems (AIS) is considered for several discrete optimiza-
tion problems with certain properties. It is performed by adding auxiliary objectives which are selected online
using reinforcement learning. The results suggest that using auxiliary objectives may help to improve perfor-
mance of AIS. It is also shown that reinforcement learning is able to ignore inefficient auxiliary objective in
AIS, as it is in EA. To the best of our knowledge, this is the first attempt to study effects of multi-objectivization
on AIS.
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1 Introduction

Auxiliary objectives may be introduced in order to enhance single-objective optimization. The corresponding
approach is called multi-objectivization [9,10,12]. Multi-objectivization may help to escape from local optima of
the target objective and maintain diversity among candidate solutions. Efficiency of using multi-objectivization
in evolutionary algorithms was widely studied in recent years [14]. There are also works concerning multi-
objectivization in reinforcement learning [1].

Artificial immune systems (AIS) may be used for solving of optimization tasks, as evolutionary algorithms
do [8]. However, to the best of our knowledge it has not been studied yet whether multi-objectivization is
efficient for AIS. In the current study we investigate whether a specific multi-objectivization approach help
solving some artificially developed model problems.

We consider so called EA+RL approach, where EA stands for evolutionary algorithm and RL is reinforcement
learning. In EA+RL, auxiliary objectives are dynamically selected with reinforcement learning during one run
of an evolutionary algorithm. Thus EA+RL may be useful in the case when different auxiliary objectives are
efficient at different stages of optimization and we may want to switch between them. Inspiration for such
problem formulation comes from a real world application of EA+RL to generation of test cases for solutions of
programming contest problems [2].

The rest of the paper is organized as follows. Firstly, we describe the previously proposed EA+RL approach,
which is going to be used together with AIS in the current paper. Secondly, we consider methodology used in
the study, i. e. we give motivation for the considered optimization problems and describe the algorithms being
compared. We also describe how a statistical test was used to decide whether the results are significant. Then
the results of running AIS with auxiliary objectives are presented and compared to the results obtained by the
other considered algorithms. Finally, some conclusions about using auxiliary objectives in AIS are made.

2 Related Work

We consider single-objective optimization of a target objective. The optimization is performed using a single-
objective EA. There is a set of predefined auxiliary objectives. We do not know properties of auxiliary objectives
in advance, although it is implied that optimizing some of them may decrease the number of EA generations
needed to find the optimum of the target objective. An objective to be optimized at the current EA generation is
selected from both the set of auxiliary objectives and the target objective. Selection is based on a reinforcement
learning algorithm.

In reinforcement learning, an agent selects an action and applies it to an environment. The environment
returns a numerical reward and some representation of its state. The agent updates the quality estimation of
the actions according to the reward, makes a new selection and so on.

The general scheme of using reinforcement for selection of auxiliary objectives was proposed in the EA+RL
method [5]. In this method the environment corresponds to EA and the actions correspond to the auxiliary



objectives. To apply an action means to select an objective to be used as a fitness function in the current
generation of EA.

The goal of reinforcement learning is to maximize the total reward [15]. In EA+RL, the reward function
usually reflects how the target objective value has changed after applying some objective. In maximization
problems, the higher the difference between the current and the previous value of target objective is, the higher
the reward is. So the reinforcement agent selects the objectives that lead to the faster growth of the target
objective.

We consider optimization problems where all objectives, including the target objective, are calculated during
one processing of an individual [4,5]. Therefore, evaluation of reward does not increase the number of objective
evaluations.

3 Methodology

The aim of the current paper was to investigate whether EA+RL may help to enhance efficiency of AIS, as it
does for EAs. So we plugged AIS in EA+RL instead of EA and thus we got AIS+RL algorithm.

3.1 Considered Algorithms

For EA, we used random local search (RLS) with the mutation operator that flipped one random bit in an
individual. For AIS, we used a simplified version of BCA algorithm. The only difference of this simplified BCA
from RLS is the mutation operator, which was Contiguous Hypermutation Operator [8]. However, even with
this one difference AIS behaves differently from EA. For example, the considered simplified BCA is able to
efficiently optimize highly multimodal H-IFF function, whereas RLS is not [8].

3.2 Parameters of Algorithms

Each algorithm was run 100 times, then the results were averaged. The parameters of RL used in EA were
the learning rate α = 0.5 and the discount factor γ = 0.5. For AIS, the parameters of RL were α = 0.7 and
γ = 0.7. In the both cases, the greedy exploration strategy was used [15]. There was always one individual in
a generation, so the algorithms could be compared by the number of generations needed to reach the optimum
of a target objective. The limit of fitness functions evaluations was set to 10 × 6.

In order to investigate the results for statistical significance, Wilcoxon test was applied with the level of
significance of α = 0.05. The detailed descriptions of how the statistical test was performed are given in the
corresponding sections.

3.3 Considered Optimization Problems

We considered three problems. The aim of the first problem called XdivK was to investigate whether the running
time of AIS may be decreased using an efficient auxiliary objective. The second problem called Switching
problem was used to demonstrate behaviour of AIS+RL in the case when different auxiliary objectives are
efficient at different stages of optimization. The third OneMax with ZeroMax problem includes an inefficient
objectives. AIS+RL should be able to ignore such objectives. In addition, results for two more problems are
considered in Section 5 as well. In all problems, individuals were encoded as bitstrings of length n.

4 Results of Experiments

4.1 RL Increases Efficiency of AIS: XdivK Problem

Consider two objectives: the target one is XdivK and the auxiliary one is OneMax. OneMax is number
of one bits in an individual. XdivK is evaluated as follows: OneMax value is divided by some parameter k
and the integer part of the result is taken. It was shown by theoretical analysis that OneMax is an efficient
auxiliary objective for XdivK [3].

Experimental results are shown in Table 1. Average number of generations needed to reach the target
optimum is presented for each problem size n and for the each considered approach, so the lower values are,
the better the corresponding method is. The AIS and RLS columns refer to XdivK optimization by the
corresponding algorithm when no auxiliary objective is used.

For the cases when the optimum of XdivK was not always reached within the fixed number of generations,
a percent of successful runs is given with the average number of generations in a successful run. For the rest
of the cases, we applied the unpaired Wilcoxon test to the results of AIS and AIS+RL. The difference between
AIS and AIS+RL turned to be statistically significant for all the considered problem instances.



It can be seen from the Table 1 that using of auxiliary objectives enhances both AIS and EA for all considered
problem instances. However, AIS itself is outperformed by EA while solving this problem. Note that for the
biggest problem instance (see the last line of the Table 1), AIS+RL is even able to outperform EA. So using of
auxiliary objectives may help AIS to outperform EA.

Table 1: Number of generations needed to optimize XdivK with OneMax

n k AIS AIS+RL EA EA+RL
12 2 598.4 387.7 123.8 66.4
16 2 1451.9 959.8 192.3 111.8
20 2 3142.1 1567.2 310.7 202.9
18 3 5372.1 3498.3 1077.3 637.5
24 3 21639.0 10156.9 3142.9 1336.1
30 3 48915.6 20166.5 5239.7 3058.1
24 4 79280.7 44855.4 11820.7 5783.6
32 4 93%(337810.6) 99%(123298.3) 48746.2 25662.7
40 4 72%(455946.1) 75%(154427.3) 116844.0 46239.4
30 5 61%(494223.6) 85%(186701.6) 168184.7 82513.2
40 5 14%(539217.6) 58%(52390.5) 77%(420403.1) 87%(127970.8)
50 5 2%(592953.5) 58%(38212.2) 36%(444729.2) 61%(144981.4)

4.2 RL Selects Proper Objectives in AIS: The Switching Problem

In the Switching problem the target objective is also XdivK as in Section 4.1. There are two auxiliary objectives:
min(OneMax, d) and max(OneMax, d), where d is a switching point. The first auxiliary objective is efficient
for the individuals with less than d bits set to one, while the second one is efficient for the individuals with more
than d one bits. Thus, different objectives are efficient at different stages of optimization.

4.2.1 Efficiency of Selection of Auxiliary Objectives

In the Table 2 the average target fitness after 106 function evaluations is presented. So the higher are values,
the better is performance of a corresponding algorithm. In parentheses, standard deviation is given.

Table 2: Switching problem: average target fitness after a fixed number of generations

n k d AIS AIS+RL EA EA+RL
200 5 165 35.3(0.6) 35.4(0.8) 37.6(0.6) 37.8(0.6)
300 10 245 22.5(0.6) 23.2(0.8) 23.6(0.6) 24.3(1.5)
400 10 266 29.6(0.6) 29.8(0.6) 31.2(0.6) 32.1(2.6)
400 10 333 29.7(0.7) 31.2(1.7) 31.4(0.6) 32.1(1.3)
500 10 415 36.7(0.7) 38.7(2.4) 39.0(0.7) 40.8(2.7)
600 15 460 27.0(0.5) 28.6(1.7) 27.8(0.6) 29.8(3.5)
600 10 495 43.8(0.8) 45.8(2.5) 46.6(0.8) 48.0(2.6)

According to the Table 2, AIS+RL with auxiliary objectives performs better than AIS for all the considered
problem instances. Thus AIS+RL is able to switch between the objectives and take advange of the objective
which is efficient at the current stage of optimization.

In order to perform statistical test, random n and k were generated 20 times and the corresponding problem
instances were optimized with AIS and AIS+RL. Parameter d was set at about 80% of n, as in the Table 2. The
results for each problem instance were averaged and used as an input in the paired Wilcoxon test. Finally, the
obtained p-values were less than 1.9 × 10−6, so using of auxiliary objectives in AIS for the considered problem
is significantly different from optimizing only the target objective.

4.2.2 Dynamics of Selection of Auxiliary Objectives

In the Figure 1, behaviour of RL agent is shown in dynamics for a particular instance of Switching problem
(n = 500, k = 10, d = 415). Horizontal axis corresponds to the number of bits set to one in the current
individual. Each color corresponds to a certain objective, as shown in the legend at the top of the Figure 1.



Figure 1: Percentage of choices of different objectives in the Switching problem

If we fix number of one bits, the height of a colored line will correspond to the percentage of runs when the
corresponding objective was chosen for the individual with the corresponding number of one bits.

Let us analyse the Figure 1. At first, the agent is not trained enough and selects each objective nearly
equiprobably. It should be noticed that at early stages of optimization, a plenty of possibilities exists to
enhance an individual, since many bits are still set to zero. Thus selection of a proper objective is not so
important.

Roughly after a half of bits were set to one, agent finally learns that the max(OneMax, d) is an obstructive
objective for the current stage of optimization, so nearly no selection of this objective is performed. This
observation is reflected in the Figure 1: very little amount of the corresponding color presents between 250 and
415 one bits.

After the switch point d = 415 is reached, the agent learns rather quickly that max(OneMax, d) is the
proper objective for this new stage of optimization. From point 415 to point 426 the agent is still selecting
min(OneMax, d) objective, but the corresponding reward is not high, so after the point 426 the agent starts
to select the proper objective that leads to higher reward. Correspondingly, the color of the proper objective
max(OneMax, d) prevails from the point 426 to the end of the plot.

To sum up, both the efficiency measures and the analysis of dynamics confirm that the RL agent selects
proper objectives at the corresponding stages of optimization.

4.3 RL Ignores Inefficient Objective in AIS: OneMax with ZeroMax Problem

OneMax is a well known benchmark function which is easily optimized by various EAs [13]. At the same time,
OneMax is not so easy for AIS.

We used an obstructive objective ZeroMax in this problem in order to show that RL is able to ignore such
objectives. Since OneMax counts the number of ones in a bit string and ZeroMax is just the opposite and
counts the number of zeros, this is an extreme example of a problem with an obstructive objective.

It was theoretically shown for randomized local search that EA+RL is able to solve the OneMax with
ZeroMax problem asymptotically as fast as a conventional EA without ZeroMax. So it is of interest whether
AIS+RL would be comparable with AIS in this problem.

In the Table 3 the number of generations needed by various algorithms to reach the optimum of OneMax
is presented. In parentheses, standard deviation is given. According to the unpaired Wilcoxon test, AIS+RL
is indistinguishable from AIS, as well as EA+RL is indistinguishable from EA. So the obstructive ZeroMax
objective is successfully ignored both in AIS and EA. The test was performed the same way as described in
Section 4.1.



Table 3: Number of generations needed to optimize OneMax with ZeroMax auxiliary objective

n AIS AIS+RL EA EA+RL
20 931.1(552.2) 874.3(493.2) 60.6(25.1) 59.0(23.3)
30 2089.7(896.8) 2162.3(1069.6) 103.8(39.4) 97.0(35.9)
40 4235.6(1730.2) 4490.4(2052.7) 138.3(38.3) 152.1(55.7)
50 7520.6(3323.1) 7348.5(3826.3) 181.9(53.4) 187.5(53.3)
60 11602.1(4104.2) 11376.8(5443.4) 231.6(74.5) 236.1(69.7)
70 14802.1(4539.8) 15473.6(5679.2) 286.4(91.9) 293.5(88.8)
80 20810.1(8079.7) 21302.1(8377.3) 320.8(89.1) 362.1(109.7)
90 25990.4(9361.7) 28543.3(10554.5) 400.6(106.6) 399.1(100.7)

5 Discussion

5.1 Auxiliary Objectives in AIS: Positive Examples

Three different problems were considered. In the first two cases using of efficient auxiliary objectives helped
to enhance performance of AIS. In the last case, an inefficient auxiliary objective was successfully ignored. So
in all the considered problems multi-objectivization of AIS had the same effect on the performance as multi-
objectivization of EA.

What is more, we saw an example when using of auxiliary objectives even helped AIS perform better
than EA, although EA normally outperforms AIS on the corresponding problem. It is known that AIS may
outperform EA at the early stages of optimization, while it would usually be worse than EA on long runs [8].
So using auxiliary objectives may potentially combine the ability of AIS to perform well at the beginning of
optimization and a good overall performance.

An interesting research direction may be to apply AIS with auxiliary objectives for solving of some practical
problems where multi-objectivization were used. The examples of such problems are job-shop scheduling [11],
protein structure prediction [6, 7] and test case generation [2].

5.2 Auxiliary Objectives in AIS: Negative Examples

In the previous section, using auxiliary objectives was efficient for AIS, as well as for EA. However, results of
using auxiliary objectives in AIS may not always be the same as results for EA. For the sake of brevity, we
present only the general observations of the corresponding cases without giving a detailed description of results.

Consider H-IFF problem [10]. In this problem, AIS performs asymptotically better than EA (more precisely,
RLS) and there is no space for improvement using auxiliary objectives. Indeed, according to our experimental
results, AIS+RL with auxiliary objectives performed just as well as AIS without auxiliary objectives.

One more interesting example was obtained while solving the LeadingOnes problem with the OneMax
auxiliary objective. OneMax is solved by EA asymptotically faster than LeadingOnes, so using of auxiliary
objectives helps to improved performance of EA. However, OneMax is not so easy for AIS, so it could not act
as an efficient auxiliary objective for AIS.

The examples above show that while using of auxiliary objectives may help to improve efficiency of AIS, it is
important to use proper objectives. This proper objectives may not be the same as for EA, since AIS performs
differently from EA on certain problems.

6 Conclusion

In order to investigate the impact of using auxiliary objectives in AIS, several problems were solved. The
auxiliary objectives were selected with reinforcement learning. The results suggest that using of auxiliary
objectives may help to increase performance of AIS. This results were shown to be statistically significant.
However, in certain problems different auxiliary objectives may be needed for AIS comparing to EA, since AIS
may behave differently from EA on these problems.
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