
Runtime Analysis of Random Local Search on
Jump Function with Reinforcement Based Selection

of Auxiliary Objectives
Denis Antipov, Arina Buzdalova

ITMO University
49 Kronverkskiy av., Saint-Petersburg, Russia, 197101
Email: antipovden@yandex.ru, abuzdalova@gmail.com

Abstract—In certain optimization problems, aside from the
target objective, auxiliary objectives can be used. These auxiliary
objectives may be either helpful or not. Often we can not
determine whether an auxiliary objective is helpful. In this
work we consider the EA+RL method that dynamically chooses
auxiliary objectives in random local search using reinforcement
learning. This method’s runtime has already been theoretically
analysed on different monotonic functions, and it was shown
that EA+RL can exclude harmful auxiliary objectives from
consideration. EA+RL has also shown good results on different
real-world problems. However, it has not been theoretically
analysed whether this method can efficiently optimize non-
monotonic functions using simple evolutionary algorithms and
reinforcement learning agents.

In this paper we consider optimization of the non-monotonic
JUMP function with the EA+RL method. We use two auxiliary
objectives. One of them is helpful during the first phase of
optimization and another one is helpful during the last phase.
On other stages they are constant, so they neither help nor slow
optimization down. We show that EA+RL has at least Ω(`

n
)

probability of solving this problem in polynomial time using
random local search, which is impossible for the conventional
random local search without learning. We also propose a modi-
fication of EA+RL that is guaranteed to find the optimum.

I. INTRODUCTION

Single-objective optimization can often be accelerated by
using auxiliary objectives [2], [13], [16], [17], [19]. There exist
different approaches of using auxiliary objectives [7], [12],
[13]. Usually auxiliary objectives help to pass through plateaus
or to escape from local optima.

There are different ways to obtain auxiliary objectives.
Many theoretical works analysed different problems where
auxiliary objectives arise from the decomposition of the target
objective [2], [11], [16], [17]. Sometimes it is possible to
generate auxiliary objectives [5], but in this case it is a
challenging task to learn which of the generated objectives
help the optimizer and which ones prevent it from reaching
its goal. Moreover, sometimes helpfulness of an auxiliary
objectives can change during optimization. It caused the uprise
of methods of dynamic selection of auxiliary objectives [7],
[12]. One of the methods that can dynamically learn which
objectives help the optimizer reach the global optimum is
EA+RL [20].

A. EA+RL: Selecting Objectives with Reinforcement Learning

EA+RL is a method of selecting objectives in multiobjec-
tive optimization problems with only one target objective and a
bunch of auxiliary objectives that may or may not improve the
optimization process. EA+RL has two components: a single-
objective optimization algorithm and a learning agent. On
each iteration of EA+RL, the optimization algorithm performs
one iteration optimizing the objective selected by the learning
agent, then it sends the reward of this iteration (usually the
difference of target objective values) to the learning agent
which updates its selection strategy.

The EA+RL method has shown good results on practical
problems [5] and has been analysed theoretically on different
model problems [1], [4]. In [4] authors investigated the ability
of the EA+RL method to dynamically adapt to changing
helpfulness of the auxiliary objectives. However, they achieved
only preliminary results. The lack of understanding of the
behaviour of the EA+RL method in the situation of changing
helpfulness of the objectives is not the only gap in theoretical
knowledge about this method. Another question that has not
been observed in the theoretical field is how efficiently the
EA+RL method can escape from local optima.

B. Research Questions

We consider two main research questions regarding EA+RL
efficiency: (i) How successful is EA+RL in escaping local
optima? (ii) What is EA+RL’s behaviour in the situation,
when there is more than one auxiliary objective and each
objective is helpful only in particular phase of optimization
while being useless during the other phases.

The first question is a common question for most random
search heuristics. And the second question is specific for
online methods of objective selection, including EA+RL.
The situation, when auxiliary objectives can change their
helpfulness is quite common in practical problems [3], [15].
And the desirable behaviour of the EA+RL method in such
situations is to adapt to the changes and to relearn to select
helpful objectives.

C. Optimizing JUMP Function Using the EA+RL Method

To answer the first research question, we should consider
optimizing a non-monotonic function by the EA+RL method.

978-1-5090-4601-0/17/$31.00 c©2017 IEEE
2169

One of the simplest examples of a non-monotonic function is
the JUMP function that was described in [10], [14]. JUMP is
a pseudoboolean function, i.e. its domain is a space of binary
strings of a fixed length. We analyse the runtime of EA+RL
method optimizing JUMP to get more insights about the ability
of this method to escape local optima.

The previous works that have considered the JUMP function
in the context of evolutionary computation have already shown
the complexity of this function. In [10] it has been proven that
(1+1) EA needs Θ(nl+1) fitness evaluations for every integer
l ∈ [1, bn−1

2 c]. It has been also proven that a certain EA with
crossover can solve JUMP with O(n log3 n) fitness evaluations
if l is a constant and with O(n2c+1 log n) fitness evaluations
if l = dc log ne, where c is a constant. Summing up the results
of all previous works, we can say that the JUMP function is
not easy to optimize with evolutionary algorithms.

Also, unbiased [8] and unrestricted [6] black-box complex-
ity of JUMP has been considered. The work [6] has shown
the best known algorithms that solve JUMP in linear time,
however, they were not evolutionary algorithms.

In our work we consider the EA+RL method that optimizes
JUMP function using two auxiliary objectives that change their
helpfulness during the optimization. Let us notice that we do
not focus on the methods of obtaining helpful objectives in
practical problems, our aim is to answer the second research
question, i.e. analyse how EA+RL relearns helpfulness of
auxiliary objectives.

The structure of the rest of this paper is following. In
Section II we introduce the target objective and auxiliary
objectives for the EA+RL method, as well as the algorithm
itself. In Section III we show that this algorithm has finite
runtime only with probability not greater than 0.5 and show
the upper bounds on the algorithm’s runtime in cases when it
finds the optimum. In Section IV we improve this method, so
that this modification always has finite expected runtime, and
we prove an upper bound on its runtime. Next, in Section V
we compare the obtained theoretical bounds with empirical
results. In the conclusion we sum up our results and discuss
the possibilities for further research.

II. PROBLEM STATEMENT

In this paper we analyse the expected runtime of an opti-
mization algorithm with an objective selection heuristic. First
we will introduce the algorithm itself and then the objectives
that the algorithm operates with.

A. Algorithm Description

The EA+RL method consists of two interacting parts: an
optimization algorithm and a reinforcement learning agent.
EA+RL is an iterative algorithm. On every iteration, the
learning agent chooses one objective to be optimized. Then
the learning agent sends the chosen objective to the opti-
mization algorithm, and the optimization algorithm performs
one iteration optimizing the selected objective. After that, the
optimization algorithm sends to the learning agent the reward,
that depends on the difference of the target objective values

Algorithm 1 RLS controlled by EA+RL using the Q-learning
algorithm

1: x← current individual, vector of N zeros
2: Q← transition quality matrix, N × 3, filled with zeros
3: MUTATE(x)← mutation operator: inverts one random bit
4: while JUMP(x) < N do
5: s← JUMP(x)
6: y ← MUTATE(x)
7: f ← the random objective such that Q(s, f) is maxi-

mum (may be JUMP, LEFTBRIDGE or RIGHTBRIDGE)
8: if f(y) ≥ f(x) then
9: x ← y

10: end if
11: s′ ← JUMP(x)
12: r ← s′ − s
13: Q(s, f)← (1− α)Q(s, f) + α(r+ γ ·maxj Q(s′, j))
14: end while

in the new generation and the previous one, and the state of
the algorithm, that depends on the new generation. Based on
this data, the learning agent updates its selection strategy, and
the next iteration begins.

We have chosen the random local search (RLS) as an
optimization algorithm. There is a single individual in a
population encoded as a bit string. On each iteration RLS
switches one random bit in the individual and substitutes the
old individual with the new one if and only if the fitness of
the new individual is not worse than the fitness of the old one.

The learning agent uses the reinforcement learning algo-
rithm called Q-learning. Agent stores the quality of each
objective a in each state of the algorithm s as the function
Q(s, a). States of the algorithm correspond to values of the
target function calculated each time on a current individual. In
the state s, the learning agent chooses the objective a that has
the largest Q(s, a). If there are several such objectives, agent
chooses one objective uniformly at random.

Just after the initialization Q(s, a) = 0 for all states and
objectives. After the agent receives the reward r from the
optimization algorithm, it modifies Q in the following way:
Q(s, a) = (1 − α)Q(s, a) + α(r + γmaxj Q(s′, j)), where
α ∈ (0, 1] is a learning rate and γ ∈ (0, 1) is a discount
factor.

The pseudocode of the algorithm is shown in Algorithm 1,
the objectives used there are described in Section II-B.

B. Definition of Objectives

In this paper we consider pseudo-Boolean functions that
map bit strings of a fixed length to integers. The most fa-
mous class of such functions is ONEMAX [21]. ONEMAX(x)
function has a hidden bit string z and returns the number of
the bits coinciding in x and z. The considered algorithm does
not work differently with different z, so z can be set as a
bit string of all ones. In the rest of the paper ONEMAX(x)
actually equals the number of ones in x.

Another considered class of pseudo-Boolean functions is
JUMP, which has an integer parameter l ∈ [1, bn−1

2 c], where

2170

n is the length of the bit string in the argument. It is equal
to ONEMAX when ONEMAX(x) ∈ [l + 1, n − l − 1] ∪ {n},
otherwise it returns zero. Formally, it can be defined in the
following way:

JUMP(x) =


ONEMAX(x), l < ONEMAX(x) < n− l,
n, ONEMAX(x) = n,

0, in the rest of the cases.

We can see from the definition that JUMP has one global
optimum in the string x that consists only of one-bits. Also it
has local optima in all x that have exactly n− l− 1 one-bits.

Parameter l is bounded above by the value bn−1
2 c, as for

greater values JUMP turns into the needle function (the one that
has a non-zero value only for single bit string x). This case
can not help to find an answer to the both research questions
formulated in Section I-B: it does not have any local optima to
observe EA+RL behaviour in it, also the whole search space
except the optimal solution is a plateau, so EA+RL method
can not perform any learning in such situation.

We also have two auxiliary objectives that the EA + RL
method can choose during the optimization. They are LEFT-
BRIDGE and RIGHTBRIDGE. We can say that they comple-
ment the target function:

LEFTBRIDGE(x) =

{
ONEMAX(x), ONEMAX(x) ≤ l,
0, otherwise

RIGHTBRIDGE(x) =

{
ONEMAX(x), ONEMAX(x) ≥ n− l,
0, otherwise

The choice of these objectives is justified by the second
research question whether EA+RL can relearn the helpfulness
of the objectives. LEFTBRIDGE seems to help the optimization
process when a current individual x has ONEMAX(x) ≤ l and
RIGHTBRIDGE seems to be helpful when ONEMAX(x) ≥
n − l. Notice that both auxiliary objectives and the target
objective has the same underlying bit string z = (1, .., 1). This
fact is also justified by the need to answer the second research
question, as other underlying bit strings could make these
objectives useless or even harmful throughout the optimization
process. Moreover, in practical problems designers of algo-
rithms usually try to find auxiliary objectives that complement
the target objective, what is intuitively equal to the same
underlying bit string.

The same parameter l for all three considered objectives
can be explained in the following way. If the parameter l was
greater for the auxiliary objectives, this case would be easier
for the EA+RL method, as there would be zones in a search
space, where at least two objectives are helpful. At the same
time, lesser l would cause the presence of the zones where
only random walk can be performed and selection of objectives
does not matter, as every objective would have a plateau in
those zones. So we decided to consider the “hardest case of
all the sensible cases”.

Jump(x)

OneMax(x)

n

n− l − 1

l + 1

0 l + 1 n− l − 1 n

s = 0 s =OneMax(x) s = 0 s = n

LeftBridge(x)

OneMax(x)

l + 1

0 l + 1 n

RightBridge(x)

OneMax(x)

n− l − 1

0 n− l − 1 n

Fig. 1. Illustration of the JUMP function, auxiliary objectives and reinforce-
ment learning states

III. RUNTIME ANALYSIS OF EA+RL

Runtime of an evolutionary algorithm is the number of
fitness evaluations performed by the algorithm before it finds
the optimal solution. In our case, the runtime equals the
number of iterations, as the algorithm performs exactly one
fitness evaluation on each iteration. In this section we evaluate
the upper bounds on the expected runtime of the algorithm that
has been described in Section II-A. In order to do this, we first
split a typical run of the algorithm into three phases:

1) From the first iteration till the moment when a bit string
x such that JUMP(x) 6= 0 is found for the first time.

2) From the end of the first phase till the moment when the
algorithm finds a bit string x such that ONEMAX(x) =
n− l for the first time.

3) From the end of the second phase till the moment of
finding the optimal bit string.

We illustrate the JUMP function in Fig. 1. During the first
phase the algorithm is always in the state s = 0. The second
phase begins with the state s = l + 1 and the algorithm can
visit states s ∈ [l+ 1, n− l− 1]∪ {0}. On the third phase the
algorithm is in the state s = 0 again, but in the worst cases it
can return to the states visited in the second phase. This case
will be considered separately.

We will perform the analysis of each phase separately to
find the upper bounds on the expected number of iterations for
each phase. After that we will use the linearity of mathematical
expectation and sum up the expected runtime of every phase to
get the expected runtime of the algorithm: T = T1 +T2 +T3.

A. The First Phase: Overcoming The First Plateau

In the first phase, the algorithm wades through the first
plateau of JUMP. In this phase, the algorithm is stuck in the
state s = 0 and tries to escape it. As the learning agent has not
learned anything yet, it has all Q(0, i) = 0 for every i. It means
that the learning agent chooses objectives uniformly. But we
know that two objectives has a plateau on the first phase
– JUMP and RIGHTBRIDGE. So the optimization algorithm
can accept both bit strings with more one-bits and with less
one-bits, if one of these objectives has been chosen. Another
objective LEFTBRIDGE does not let the optimization algorithm
accept a bit string x which has less one-bits than the parent
individual. The latter fact helps the algorithm to get to the end
of the first phase faster.

To find the expected runtime for this phase we will use the
multiplicative drift theorem [9].

2171

Theorem 1 (First phase runtime). The expected runtime of the
first phase is at most 3

2n(ln(l + 1) + 1).

Proof: Consider the potential function Φ(x) = l + 1 −
ONEMAX(x). It becomes zero exactly at the moment of the
end of the first phase. Φ(x) has the minimum non-zero value
of 1 and the maximum value of (l + 1). Also to use the drift
theorem we need to consider the expectation of difference of
the potential function. Let Φt be the value of Φ(x) on the t-
th iteration. Consider the expected difference of Φt and Φt+1

when ONEMAX(x) = i 6= l:

E(Φt − Φt+1|Φt) =
n− i
n
· 1− 2i

3n
· 1 =

3n− 5i

3n

≥ 6l − 5i

3n
≥ 3l − 3i+ 3

3n
=

Φt
n
.

(1)

The last inequation is valid, as 6l − 5i = 3l − 3i + (2l −
2i) + l ≥ 3l − 3i + 3. For the ONEMAX(x) = l (when also
Φt = 1) we have:

E(Φt − Φt+1|Φt = 1) =
2(n− i)

3n
· 1− 2i

3n
· 1

=
2

3

n− 2i

n
≥ 2Φt

3n

(2)

As it follows from Eq. 1 and Eq. 2, E(Φt−Φt+1|Φt) ≥ δΦt,
where δ = 2

3n . Now applying the multiplicative drift theorem,
we can estimate the expected runtime of the first phase: T1 ≤
1
δ (ln(Φmax/Φmin) + 1) = 3

2n(ln(l + 1) + 1).

There are two possible scenarios of the end of the first
phase. It can happen either on the iteration when the learning
agent has chosen RIGHTBRIDGE function or on the iteration
when the learning agent has chosen the JUMP function.
Though it does not affect the second phase of the algorithm,
it causes the totally different behaviour on the last phase of
the algorithm that will be considered in Section III-D.

B. The Second Phase: Learning Which Objectives are Helpful

During the first phase, the value of the target objective was
not changing, so the agent did not learn anything, thus it
chose objectives uniformly at random. In the second phase,
the learning plays a greater role in the choices of the agent.
To show it, we need the following lemma.

Lemma 1 (Learning lemma). If the learning parameters α
and γ satisfy the inequality 2α(1−γ) > 1, then the algorithm
will visit each learning state s 6= 0 at most 5 times.

To prove the above lemma, we first need to prove two
auxiliary lemmas. The first lemma states the bounds on the
values of Q(s, a) function which are stored in the learning
agent. The second lemma demonstrates how learning helps to
determine the objectives that can slow optimization down.

Lemma 2 (Maximum Q). During the second phase, the
maximum value of Q(s, a) for every learning state s 6= 0
and every auxiliary objective a is not greater than 1

1−γ and
Q(0, a) for every a is not greater than l + 1

1−γ .

Proof: We will use induction to prove this lemma. Ini-
tially, all the values of Q(s, a) are zeros that is less then both

1
1−γ and l + 1

1−γ .
Now let us assume that on some iteration the conditions of

lemma are satisfied. It is easy to show that they will be also
true on the next iteration, if the current iteration is not the last
one on the second phase. If s 6= 0 and the next state s′ 6= 0,
then the algorithm will modify only one Q(s, a):

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a

Q(s′, a))

≤ (1− α)
1

1− γ + α

(
1 + γ

1

1− γ

)
=

1

1− γ
(3)

If the current state s = l+1 and the next state s′ = 0, then:

Q(l + 1, a) = (1− α)Q(l + 1, a)

+ α(−(l + 1) + γmax
a

Q(0, a))

≤ 1− α
1− γ + α

(
−(l + 1) + γ

(
l +

1

1− γ

))
=

1 + α(1− γ)(γl − l − 2)

1− γ ≤ 1

1− γ
(4)

If the current state s = 0 and the next state s′ = l+1, then:

Q(0, a) = (1− α)Q(0, a)

+ α(−(l + 1) + γmax
a

Q(l + 1, a))

≤ (1− α)

(
l +

1

1− γ

)
+ α

(
(l + 1) +

γ

1− γ

)
= l +

1

1− γ .

In the last case, when s = s′:

Q(s, a) = (1− α)Q(s, a) + αγmax
a

Q(s, a)

< max
a

Q(s, a).

Lemma 3 (Obstructive objective). If 2α(1 − γ) > 1, then if
the algorithm in the second phase decreases the number of
ones in the state s 6= 0, the same objective in this state will
never be chosen again.

Proof: To start with, let us notice that Q(s, JUMP) ≥ 0
for each state, because when the JUMP function is selected,
the reward can not be negative, therefore maxaQ(s, a) ≥
Q(s, JUMP) ≥ 0.

Next, notice that if the algorithm passes from the state s
to the state s′ (0 < s′ < s), then in Eq. 3 r = −1 and
thus Q(s, a) < 0. And if the algorithm passes from the state
s = l+ 1 to the state s′ = 0, then the last inequation in Eq. 4
can be strengthened using the Lemma condition 2α(1−γ) > 1:
Q(l + 1, a) ≤ 1+α(1−γ)(γl−l−2)

1−γ < 0.
Therefore, if the number of one-bits in the current individual

was decreased in the state s 6= 0 after an objective a was se-
lected to be optimized (notice that it can only be LEFTBRIDGE
or RIGHTBRIDGE), then the inequality holds: Q(s, a) < 0 ≤

2172

Q(s, JUMP). Along with the fact that Q(s, JUMP) will always
stay non-negative, it means that the objective a will never be
selected in the state s.

Now we are ready to prove Lemma 1.
Learning Lemma: Using Lemma 3, we can say that in

every state s 6= 0 the number of one-bits in the current bit
string can be decreased only two times. This means that the
state s can be reached from the state s + 1 only twice. The
state s can also be reached from s− 1 only three times, as it
is possible to raise from the state s − 1 only one time more
than it is possible to fall there from s. Thus, the state s can
be visited only 5 times.

After we have proven Lemma 1, we can find the upper
bound on the runtime of the second phase using linearity of
mathematical expectation.

Theorem 2 (Second phase runtime). The expected runtime of
the second phase is not greater than 5n ln n−l−1

l+1 + 2n+ 15.

Proof: The expected runtime of the second phase is the
sum of the expected runtimes that algorithm spends in each
state during the second phase. Algorithm visits states s =
l + 1, ...n− l − 1 and s = 0 during the second phase.

For the states s = l+1, ...n− l−2 the probability to escape
pesc ≥ (n − s)/n. Thus, the expectation of the number of
iterations that algorithm spends in the state s during the second
phase is the expectation of the number of iterations during one
visit multiplied by the number of visits that has been stated
in Lemma 1 to be not greater than 5: Ts ≤ 5n/(n− s).

For the state s = 0 we can estimate the upper bound on
the iterations spent there per visit using the drift theorem and
the potential function Φ again. When algorithm falls to the
state s = 0 during the second phase, the number of ones in
the current individual equals l, thus Φ0 = 1. The expected
difference of the potential function can be upper bounded by
Φt/n. Therefore, the algorithm will spend not more than n
iterations per visit. A simple consequence from Lemma 3 is
that there will be not more than two visits of the state s = 0
during the second phase, so Ts=0 ≤ 2n.

Finally, the state s = n− l − 1 is a special case. If during
the second phase there will be two decreases of the number
of one-bits performed in this state, then the algorithm will get
stuck in this state, and its runtime will be infinite. This case
is considered in more details in Section III-C. Otherwise, the
probability to leave this state is not less than 1/3 and thus
the algorithm will spend there not more than 3 iterations per
visit. There can not be more than 5 visits, so totally algorithm
spends in the state s = n− l − 1 not more than 15 iterations
during the second phase.

Summing up the received expectations we receive the result:
T2 ≤ 5

∑n−l−2
s=l+1

n
n−s + 15 + 2n < 5n ln n−l−1

l+1 + 2n+ 15.

C. The Probability to Finish the Second Phase

The algorithm gets stuck in the state s = n− l−1 if it falls
from the state s = n− l − 1 to the state s = n− l − 2 twice

before finishing the second phase. To find the probability p
of avoiding this case when the algorithm came to the state
s = n − l − 1 at the first time, we can write the following
equation:

p = pchoose · pflip+1 + pchoose · pflip−1 · p′ + pntl · p. (5)

Here pchoose = 2
3 is the probability to choose either LEFT-

BRIDGE or RIGHTBRIDGE, pflip+1 = l+1
n and pflip−1 = n−l−1

n
are the probabilities to increase and decrease the number
of one-bits during mutation respectively, pntl = 1

3 is the
probability not to leave the state s = n − l − 1 and p′ is the
probability to finish the second phase if the algorithm learned
not to choose RIGHTBRIDGE or LEFTBRIDGE.

The probability p′ is the sum of the probability to move
from the current state s = n − l − 1 to the state s = 0
and the probability to stay in the current state and leave it
during the future iterations: p′ = l+1

2n + 1
2p
′, thus, p′ = l+1

n
If we substitute p′ into Eq. 5 with this value, we will get
p = l+1

n

(
1 + n−l−1

n

)
= 1− (n−l−1)2

n2 .

D. The Third Phase: Probably Getting Stuck

As we said in Section III-A, behaviour of the algorithm
during the third phase depends on which objective was selected
by the learning agent in the end of the first phase.

Theorem 3. If the learning agent has chosen RIGHTBRIDGE
in the end of the first phase, then the expected runtime of the
third phase T3 ≤ n(ln l + 1).

Proof: As RIGHTBRIDGE has been chosen in the end
of the second phase, it will always be chosen in the state
s = 0, as Q(0, JUMP) = Q(0, LEFTBRIDGE) = 0 and
Q(0,RIGHTBRIDGE) > 0. And during the third phase al-
gorithm does not leave the state s = 0. RIGHTBRIDGE
does not let the algorithm accept bit strings with less one-
bits than in the current string, and the expected number of
iterations until getting an individual with greater number of
one-bits is n

n−i , where i is the number of one-bits in the
current string. Summing up this estimation for all possible
values of i, we get the expected runtime of the third phase:
T3 =

∑n−1
i=n−l

n
n−i ≤ n(ln l + 1).

In the case of selecting RIGHTBRIDGE in the end of the
first phase we can state a theorem:

Theorem 4. The total expected runtime of the algorithm T ≤
5
2n(ln(l + 1) + 1) + 5n ln n−l+1

l+1 + 2n + 15 = O(n lnn) for
every integer value of l ∈ [1, bn−1

2 c], if RIGHTBRIDGE has
been chosen in the end of the first phase.

This theorem simply follows from Theorems 1, 2 and 3.
In the other case, when the JUMP function was chosen in

the end of the first phase, the algorithm will return to the state
s = n− l−1 with very high probability. This happens because
the probability to decrease the number of one-bits is greater
than the probability to increase it in the third phase. And as
Q(0, JUMP) > 0, the JUMP function will be chosen as the
objective to be optimized, which lets the algorithm accept bit
strings with less number of one-bits in the third phase. After

2173

the state s = n − l − 1 is visited for the second time, the
algorithm gets stuck in this state, because both LEFTBRIDGE
and RIGHTBRIDGE have negative Q(n− l − 1, a).

Therefore, we have shown that the probability to get stuck
in the state s = n− l− 1 is 1− (n−l−1)2

n2 in the second phase
and 1

2 in the third phase. The modified version of the algorithm
that finds the global optimum in all cases will be introduced
in the next section.

IV. MODIFICATION OF THE EA+RL METHOD

Consider a simple modification of the algorithm. According
to this modification, the algorithm is restarted, if the value
of the target objective has not changed over m iterations.
A modified EA+RL method based on a similar idea was
considered in [18].

In our modification m is (c + 1)n(lnn + 1), where c
is some constant that will be chosen in the end of this
section. After the restart, the optimization algorithm forgets
the current individual and the learning agent forgets everything
it has learned. The main result of this section is presented in
Theorem 5.

Theorem 5 (Runtime of EA+RL modification). The upper
bound on the expected runtime of the algorithm modification
is O

(
n2 logn

l

)
.

A. Probability of Restart

To prove Theorem 5, we need to prove the following lemma
first.

Lemma 4. The probability that the algorithm will find an
optimum before the restart occurs pend ≥ C0

(
1− (n−l−1)2

n2

)
,

where C0 = (1 − e−
2
3 c+

1
3) 1

2

(
1− 1

ecnc+1

) (
1
3

) 5

(e2n)c+1 (1 −
e−c).

Proof: To find this probability, let us consider different
scenarios of the restart.

At first, the restart can occur during the first phase, if this
phase took too much time. As the multiplicative drift theorem
was used, we can also use tail bounds to find the probability
that the first phase will take more than m iterations:

p1 = Pr[T1 ≥ m|Φ0 = l + 1]

= Pr[T1 ≥ (c+ 1)n(lnn+ 1)|Φ0 = l + 1]

≤ Pr

[
T1 ≥

(
2

3
c− 1

3
+ 1

)
3

2
n (ln(l + 1) + 1)

]
≤ e− 2

3 c+
1
3 .

Next, if the algorithm has not been restarted during the first
phase, there are two cases of passing to the second phase. If the
algorithm chooses JUMP with the probability of 1 − p1→2 =
1/2, then the current run will end with a restart, because the
algorithm will get stuck in the local optimum in the end of
the second phase.

The probability to restart during a second phase can be
estimated as p2 = p2

s=0

∏n−l−1
i=l+1 p

5
s=i, where ps=i is the

probability to restart while visiting the state s = i. Powers
correspond to the maximum number of visits for each state.

We can bound ps=0 by tail bounds from the drift theorem
using Φ as a potential function: ps=0 ≤ 1 − 1

ecnc+1 . ps=i ≥
(1−(i/n)m), as it is a probability that algorithm will not stay
in the state s = i for m iterations, and the probability not to
leave the current stay is not less than i/n for any iteration.

So the production can be bounded below in the following
way:
n−l−1∏
i=l+1

(
1−

(
i

n

)m)5

≥
(

1−
(
n− l − 1

n

)m)5(n−2l−1)

≥
(

1− e−m(l+1)
n

)5n

=
(

1− (en)−(l+1)(c+1)
)5n

≥ (1/3)
5n

(en)(l+1)(c+1) ≥ (1/3)
5

(e2n)c+1 .

The inequality between the second and the third lines is

justified by inequalities
(
1− (en)−(l+1)(c+1)

)(en)(l+1)(c+1)

≥
(1− e−2)e

2 ≥ 1/3.
Therefore, we get that the probability not to restart at the

second phase is p2 ≥ (1− 1
ecnc+1)

(
1
3

) 5

(e2n)(c+1) .
In the end of the second phase, there is a probability that

the algorithm will not move to the third state. We found this
probability in Section III-C. It is p2→3 = 1− (n−l−1)2

n2 .
The last chance to restart the algorithm is on the third

phase. We also can find the probability of this, using the
multiplicative drift theorem as for the first phase. Consider
the potential function Ψ(x) = n− i, where i = ONEMAX(x).
The expected difference E(Ψt − Ψt+1|Ψt) = n−i

n = Ψt

n .
Ψ0 = l + 1. Ψmin = 1. So using the drift theorem we can
say that p3 = Pr[T3 ≥ (c + 1)n(lnn + 1)] ≤ Pr[T3 ≥
(c+ 1)n(ln l + 1)] ≤ e−c.

Summing up this section, the only way not to restart the
algorithm requires all of the following independent events: 1)
no restart on the first phase (p1 ≥ 1− e− 2

3 c+
1
3); 2) choosing

RIGHTBRIDGE in the end of the first phase (p1→2 = 1
2); 3) no

restart on the second phase (p2 ≥ (1− 1
ecnc+1)

(
1
3

) 5

(e2n)(c+1));
4) ending the second phase (p2→3 ≥ 1 − (n−l−1)2

n2); 5) no
restart on the third phase (p3 ≥ 1− e−c).

So the probability not to restart will be

pend ≥ (1− e− 2
3 c+

1
3)

1

2

(
1− 1

ecnc+1

)(
1

3

) 5

(e2n)(c+1)

×
(

1− (n− l − 1)2

n2

)
(1− e−c).

(6)

(1 − e−
2
3 c+

1
3) 1

2 (1 − e−c) is some constant C1, if c is a

constant, and
(
1− 1

ecnc+1

) (
1
3

) 5

(e2n)(c+1) is (1− o(1)), which
proves the lemma.

B. Expected Runtime of EA+RL Modification

To start with, we should say that the expected number of
runs (including the successful one) is the inverse pend from
Eq. 6: N = 1/pend ≤ 2n2/(C0(n2 − (n− l − 1)2)).

Recall that the runtime of the algorithm when it finds the
optimum is T ≤ 5

2n(ln l+ 1) + 5n ln n−l
l+1 + n. The following

lemma bounds the runtime of a run that ends with a restart.

2174

Lemma 5. If a run ends with a restart, then the expected
runtime of this run Tr ≤ 3

2n(ln(l + 1) + 1) + 5n ln n−l−2
l+2 +

4n+ 19 + (c+ 1)n(lnn+ 1).

Proof: The longest scenario of the restart is the following.
The algorithm goes through the first and the second phases.
While passing from the first phase to the second phase, the
agent selects JUMP. Then the algorithm gets to the state s =
n − l − 1, falls to the state s = 0 and returns from it twice.
Finally, the algorithm gets stuck in the state s = n− l−1 and
spends there m iterations before the restart.

The expected runtime of this case is the sum of the
following expected values:
• Total runtime of the first and the second phases: T1+T2 ≤

3
2n(ln(l + 1) + 1) + 5n ln n−l−2

l+2 + 2n+ 15.
• Two falls from the state s = n− l− 1 to the state s = 0,
Tbefore fall ≤ 4.

• Two returns from the state s = 0 to the state s = n−l−1 :
Tfall ≤ 2n. The proof of this fact uses the multiplicative
drift in the same way as in Theorem 2.

• The number of iterations spent in the same state before
the restart occurs: Tstuck = m = (c+ 1)n(lnn+ 1).

The only thing left to prove the lemma is to sum up these
bounds.

Lemma 4 and Lemma 5 give us the proof of Theorem 5:
Runtime of EA+RL modification: T and Tr are both

O(n log n). So the runtime of the algorithm modification is

Tmod = (N − 1)Tr + T

≤
(

n2

C0(n2 − (n− l − 1)2)
− 1

)(
3

2
n(ln(l + 1) + 1)

+ 5n ln
n− l − 1

l + 1
+ 4n+ 19 + (c+ 1)n(lnn+ 1)

)
+

(
5

2
n(ln(l + 1) + 1) + 5n ln

n− l − 1

l + 1
+ 2n+ 15

)
=

(
n2

C0(n2 − (n− l − 1)2)
− 1

)
O(n log n) +O(n log n)

= O

(
n2

(l + 1)(2n− l − 1)
n log n

)
= O

(
n2 log n

l

)
This result depends on the value of l. When this value is

Ω(n), the algorithm has a runtime of O(n log n), that means
that the “extreme JUMP” is the easiest case for the modified
algorithm. At the same time, the case when l = Θ(1) leads to
the more than quadratic runtime while being the easiest case
for the most simple evolutionary algorithms.

Preliminary experiments showed that for the different values
of l the value of c which provides the lowest value of Tmod
lies in [3.2; 3.85] for different values of l. As it was mentioned
before, the highest expected number of the restarts is achieved
when l = 1. In this case, the best value is c = 3.85, so it has
been selected for the final version of the algorithm.

V. COMPARISON WITH EMPIRICAL RESULTS

We performed a set of experiments to show the precision
of our theoretical results. We run the modified algorithm for

Fig. 2. Upper bound on the expected number of restarts and number of
restarts averaged over 1000 runs

Fig. 3. Upper bound on the expected number of iterations and number of
iterations averaged over 1000 runs for the runs ended with a restart

Fig. 4. Upper bound on the expected number of iterations and number
of iterations averaged over 1000 runs for the runs ended with finding the
optimum

Fig. 5. Upper bound on the expected total number of iterations and number
of iterations averaged over 1000 runs of the modified algorithm

n = 10, 20, 100, 1000, 10000 and for l = n
2 −1, n4 , 1 for every

value of n. For every pair of n and l we performed 1000 runs
of the algorithm.

Table I and the plots in Fig. 2–5 illustrate the results of the
experiments. The plots demonstrate that all received bounds
are always above the real values and are really close to them
for all values of n.

The results also show that the received bound on the
expected number of iterations for the unsuccessful runs does
not exceed the 1.5 factor of the experimentally received value.
As for the successful runs, the upper bound is about 2.5 times
greater than the real value.

The one more interesting fact is that we have never re-
produced restart during the first or the third phase. The only
two reasons of restarts were the two falls back from the state

2175

TABLE I
PERCENT OF RESTARTS CAUSED BY SELECTING JUMP IN THE END OF THE

FIRST PHASE AMONG ALL THE RESTARTS

n 10 20 100
l 4 2 1 9 5 1 49 25 1

% 79.4 67.1 58.5 79.7 67.9 55.2 80.1 65.4 50.9

n 1000 10000
l 499 250 1 4999 2500 1

% 80.3 63.7 50.0 81.6 64.3 50.0

s = n− l− 1 and the choice of the JUMP function in the end
of the first phase. This means that the probability to make an
unneeded restart is small enough, and the algorithm actually
restarts only after it has been stuck in the state s = n−l−1. In
Table I we show the percentage of the latter reason of restart
among all the restarts.

VI. CONCLUSION AND FUTURE WORK

In this work we discovered that EA+RL can not efficiently
manage with local optima of the JUMP function because
of getting stuck in more than a half of runs. However, we
proposed an EA+RL modification with restarts that solved
the problem in a polynomial time. This modification should
be improved in the future work, as in this paper our choice
of the number of iterations before algorithm restarts is based
on the theoretical analysis of the problem that is hard to be
performed on most real-world problems.

We also analysed whether EA+RL method relearns which
objective is helpful in the case when helpfulness of auxiliary
objectives changes during optimization. We intuitively ex-
pected that the method relearns just at that optimization stage
when an objective becomes helpful. But actually, in the consid-
ered problem relearning occurs because EA+RL occasionally
learns to select the proper auxiliary objective before it becomes
helpful. This means that EA+RL may mistakenly learn to
select objectives that will be harmful in the later phases of
the optimization. However, the restart mechanism helps the
method to detect such “false learning” and begin learning from
scratch, which guarantees finite expected runtime.

To the best of our knowledge, it was the first time when
the analysis of selecting auxiliary objectives with EA+RL for
the non-monotonic function was considered and an efficient
method for the JUMP problem with auxiliary objectives was
proposed. This method may be useful for optimization of other
non-monotonic functions with auxiliary objectives.

To sum up, the future work is to expand the algorithm on
some more practical problems by finding the way of selecting
a restart strategy. Also we are interested in other strategies
of escaping local optima like penalizing objectives that do
not change the target fitness value for a long time. Another
direction of future work is further investigation of learning and
finding out if EA+RL can relearn multiple times.

VII. ACKNOWLEDGMENTS

This work was financially supported by the Government of
Russian Federation, Grant 074-U01, and by RFBR according
to the research project No. 16-31-00380 mol a.

REFERENCES

[1] Antipov, D., Buzdalov, M., Doerr, B.: Runtime Analysis of (1+1) Evolu-
tionary Algorithm Controlled with Q-learning using Greedy Exploration
Strategy on OneMax+ZeroMax Problem. In: Evolutionary Computation
in Combinatorial Optimization, pp. 160–172. No. 9026 in Lecture Notes
in Computer Science (2015)

[2] Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F.,
Zitzler, E.: On the effects of adding objectives to plateau functions. IEEE
Transactions on Evolutionary Computation 13(3), 591–603 (2009)

[3] Buzdalov, M., Buzdalova, A.: Adaptive selection of helper-objectives
for test case generation. In: 2013 IEEE Congress on Evolutionary
Computation. vol. 1, pp. 2245–2250 (2013)

[4] Buzdalov, M., Buzdalova, A.: OneMax helps optimizing XdivK: Theo-
retical runtime analysis for RLS and EA+RL. In: Proceedings of Genetic
and Evolutionary Computation Conference Companion. pp. 201–202.
ACM (2014)

[5] Buzdalov, M., Buzdalova, A., Petrova, I.: Generation of tests for
programming challenge tasks using multi-objective optimization. In:
Proceedings of Genetic and Evolutionary Computation Conference Com-
panion. pp. 1655–1658. ACM (2013)

[6] Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box com-
plexity of jump functions. Evolutionary Computation 24(4), 719–744
(2016)

[7] Buzdalova, A., Buzdalov, M.: Increasing efficiency of evolutionary
algorithms by choosing between auxiliary fitness functions with rein-
forcement learning. In: Proceedings of the International Conference on
Machine Learning and Applications. vol. 1, pp. 150–155 (2012)

[8] Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of
jump functions. In: Proceedings of Genetic and Evolutionary Computa-
tion Conference. pp. 769–776 (2014)

[9] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis.
Algorithmica 64(4), 673–697 (2012)

[10] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1)
evolutionary algorithm. Theor. Comput. Sci. 276(1-2), 51–81 (2002)

[11] Handl, J., Lovell, S.C., Knowles, J.D.: Multiobjectivization by decompo-
sition of scalar cost functions. In: Parallel Problem Solving from Nature
– PPSN X, pp. 31–40. No. 5199 in Lecture Notes in Computer Science,
Springer (2008)

[12] Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary al-
gorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization. Journal of Mathematical Modelling and
Algorithms 3(4), 323–347 (2004)

[13] Knowles, J.D., Watson, R.A., Corne, D.: Reducing local optima in
single-objective problems by multi-objectivization. In: Proceedings of
the First International Conference on Evolutionary Multi-Criterion Op-
timization. pp. 269–283. Springer-Verlag (2001)

[14] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In:
Proceedings of Genetic and Evolutionary Computation Conference. pp.
1441–1448. ACM (2010)

[15] Lochtefeld, D.F., Ciarallo, F.W.: Deterministic helper-objective se-
quences applied to Job-Shop scheduling. In: Proceedings of Genetic
and Evolutionary Computation Conference. pp. 431–438. ACM (2010)

[16] Neumann, F., Wegener, I.: Minimum spanning trees made easier via
multi-objective optimization. Natural Computing 5(3), 305–319 (2006)

[17] Neumann, F., Wegener, I.: Can single-objective optimization profit
from multiobjective optimization? In: Multiobjective Problem Solving
from Nature, pp. 115–130. Natural Computing Series, Springer Berlin
Heidelberg (2008)

[18] Petrova, I., Buzdalova, A., Buzdalov, M.: Improved selection of auxiliary
objectives using reinforcement learning in non-stationary environment.
In: Proceedings of the International Conference on Machine Learning
and Applications. pp. 580–583 (2014)

[19] Segura, C., Coello, C.A.C., Miranda, G., Léon, C.: Using multi-objective
evolutionary algorithms for single-objective optimization. 4OR 3(11),
201–228 (2013)

[20] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA (1998)

[21] Witt, C.: Optimizing linear functions with randomized search heuristics
– the robustness of mutation. In: Proceedings of the 29th Annual
Symposium on Theoretical Aspects of Computer Science. pp. 420–431
(2012)

2176

