
Comparing Self-Adjusting (1+ λ) EAs under Large
Dimensions: A Case Study

Arina Buzdalova (ITMO) Carola Doerr (Sorbonne) Anna
Rodionova (ITMO) Kirill Antonov (ITMO)

Working Group Workshop
COST Action CA15140

February 19, 2019

Experiment description

I (1+ λ) EA with “practice-aware” shift mutation
I 4 self-adjusting (1+ λ) EAs:

I 2 different rules for updating mutation rate
I 2-rate: asymptotically optimal runtime for large enough λ

(theoretically proven)
I Ab: chooses number of bits close to optimal (empirically

shown)
I 2 different mutation lower bounds: 1/n and 1/n2

I Problem: OneMax
I Dimensions

I problem size n = 10000, 20000, . . . 100000
I population size λ = 1, 5, 10, 50, 100, 200, 400, 800, 1600, 3200

I 100 independent runs of each algorithm

1 / 13

Compared algorithms: (1+ λ) EA0→1

Algorithm 1: The (1+ λ) EA0→1 with mutation rate p ∈ (0, 1) for
the maximization of f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n u.a.r.;
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample `(i) from Bin0→1(n, p), sample y (i) ← flip`(i)(x) and

evaluate f (y (i));

5 Sample x∗ from argmax{f (y (1)), . . . , f (y (λ))} u.a.r.;
6 if f (x∗) ≥ f (x) then x ← x∗;

2 / 13

Compared algorithms: 2-rate (1+ λ) EAr/2,2r

Algorithm 2: The 2-rate (1 + λ) EAr/2,2r with adaptive mutation
rates proposed in [DoerrGWY17]

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f (x);
2 Initialize r ← r init; // We use r init = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , bλ/2c do
5 Sample `(i) ∼ Bin0→1(n, r/(2n)), create y (i) ← flip`(i) (x), and evaluate

f (y (i));

6 for i = bλ/2c+ 1, . . . , λ do
7 Sample `(i) ∼ Bin0→1(n, 2r/n), create y (i) ← flip`(i) (x), and evaluate

f (y (i));

8 x∗ ← argmax{f (y (1)), . . . , f (y (λ))} (ties broken u.a.r.);
9 if f (x∗) ≥ f (x) then x ← x∗;

10 Perform one of the following two actions with prob. 1/2 :
I replace r with the mutation rate that x∗ has been created with;
I replace r with either 2r or r/2 equiprobably.

r ← min{max{2, r}, n/4};

3 / 13

Compared algorithms: (1+ λ) EA(A, b)

Algorithm 3: The (1 + λ) EA(A, b) with adaptive mutation rates
and update strengths A > 1, 0 < b < 1

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and
evaluate f (x);

2 Initialize p ← 1/n; Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do

4 Sample `(i) ∼ Bin0→1(n, p), create y (i) ← flip`(i)(x), and
evaluate f (y (i));

5 N ← |{i ∈ [λ] | f (x (i)) ≥ f (x)}|;
6 if N ≥ d0.05λe then p ← min{1/2,Ap} else

p ← max{1/n, bp};
7 x∗ ← argmax{f (x (1)), . . . , f (x (λ))} (ties broken u.a.r.);
8 if f (x∗) ≥ f (x) then x ← x∗;

4 / 13

Comparison regarding different population sizes
Number of generations:

I Almost opposite ranking for small and large population sizes λ
I For both algorithms, 1/n2 lower bound is better for small λ,

1/n is better for large λ

5 / 13

Comparison regarding different population sizes
Number of fitness evaluations:

6 / 13

Comparison regarding different population sizes
Number of generations averaged by 100 runs and its standard deviation. Shift
mutation operator is used in all algorithms, avg.=average, r.dev.=relative standard
deviation.

λ (1+ λ) EA0→1 2-rate (1/n) Ab (1/n) 2-rate (1/n2) Ab (1/n2)
avg. r.dev. avg. r.dev. avg. r.dev. avg. r.dev. avg. r.dev.

n = 100000
1 1,873,666 13.4% 2,222,691 10.9% 1,860,718 13.4% 1,143,933 11.7% 1,122,686 10.6%
5 389,110 10.2% 716,372 13.6% 420,165 10.4% 253,747 11.7% 264,171 8.5%

10 205,086 12.0% 414,043 10.4% 248,184 9.7% 146,132 8.2% 167,244 7.0%
50 60,200 6.2% 98,223 8.7% 76,772 5.6% 59,357 5.7% 62,693 3.8%

100 42,151 5.0% 57,325 6.9% 41,520 4.1% 48,659 6.6% 35,814 4.1%
200 31,762 3.4% 37,588 6.8% 28,215 3.7% 41,634 4.6% 25,431 2.2%
400 25,846 2.1% 26,227 5.0% 20,900 2.6% 37,583 8.3% 19,984 1.6%
800 22,229 1.2% 20,055 3.2% 16,681 1.4% 34,965 9.3% 16,691 0.9%

1,600 19,744 0.7% 16,325 2.0% 14,112 1.0% 32,494 11.6% 14,691 0.6%
3,200 17,956 0.4% 13,966 1.1% 12,296 0.6% 29,796 11.1% 13,344 0.5%

n = 10000
1 147,008 14.8% 177,568 14.8% 148,182 14.1% 90,459 13.0% 91,563 15.6%
5 31,738 17.5% 56,940 17.3% 34,514 13.0% 20,657 13.0% 21,999 13.6%

10 16,373 13.1% 32,054 15.3% 20,662 9.2% 12,036 11.1% 14,252 7.9%
50 5,254 7.5% 8,029 12.9% 6,855 6.7% 5,198 8.7% 5,740 3.7%

100 3,790 4.6% 4,922 9.4% 3,824 5.8% 4,211 9.7% 3,360 4.0%
200 2,955 3.6% 3,323 8.2% 2,647 3.7% 3,603 10.5% 2,447 2.8%
400 2,486 2.1% 2,420 5.7% 2,001 2.4% 3,227 11.8% 1,943 1.8%
800 2,164 1.1% 1,903 3.8% 1,633 1.8% 2,932 13.8% 1,639 1.3%

1,600 1,945 0.8% 1,582 2.1% 1,393 1.2% 2,576 11.1% 1,450 0.8%
3,200 1,776 0.6% 1,379 1.8% 1,227 0.8% 2,305 12.3% 1,323 0.8%

7 / 13

Comparison regarding different problem sizes

0

2500

5000

7500

10000

50 100 500 1000

n = 10 000

0

5000

10000

15000

20000

50 100 500 1000

n = 20 000

0

10000

20000

30000

50 100 500 1000

n = 30 000

0

10000

20000

30000

40000

50 100 500 1000

n = 40 000

0

10000

20000

30000

40000

50000

50 100 500 1000

n = 50 000

0

20000

40000

60000

50 100 500 1000

n = 60 000

0

20000

40000

60000

80000

50 100 500 1000

n = 70 000

0

20000

40000

60000

80000

50 100 500 1000

n = 80 000

0

25000

50000

75000

100000

50 100 500 1000

n = 90 000

8 / 13

Fixed Budget Results: small population size λ = 10

9 / 13

Fixed Budget Results: medium population size λ = 400

10 / 13

Fixed Budget Results: large population size λ = 1600

11 / 13

Fast implementation of the standard mutation operator

12 / 13

Conclusion

I (1+ λ) EA and 4 self-adjusting (1+ λ) EAs were compared on
OneMax for n = 104 . . . 105, λ = 2 . . . 3200

I Results strongly influenced by the population size:
1. Ranking in terms of runtime
2. Ranking in terms of fixed budget
3. Relative standard deviation

I (1), (3) does not depend so much on problem size
I Possible consequences for benchmarking:

I In a benchmarking framework, plotting against wide parameter
range should be available

I Fast implementation of fitness evaluation and standard
operators may be needed

13 / 13

