Comparing Self-Adjusting $(1+\lambda)$ EAs under Large Dimensions: A Case Study

Arina Buzdalova (ITMO) Carola Doerr (Sorbonne) Anna Rodionova (ITMO) Kirill Antonov (ITMO)

Working Group Workshop
COST Action CA15140
February 19, 2019

Experiment description

- $(1+\lambda)$ EA with "practice-aware" shift mutation
- 4 self-adjusting $(1+\lambda)$ EAs:
- 2 different rules for updating mutation rate
- 2-rate: asymptotically optimal runtime for large enough λ (theoretically proven)
- Ab: chooses number of bits close to optimal (empirically shown)
- 2 different mutation lower bounds: $1 / n$ and $1 / n^{2}$
- Problem: OneMax
- Dimensions
- problem size $n=10000,20000, \ldots 100000$
- population size $\lambda=1,5,10,50,100,200,400,800,1600,3200$
- 100 independent runs of each algorithm

Compared algorithms: $(1+\lambda) \mathrm{EA}_{0 \rightarrow 1}$

Algorithm 1: The $(1+\lambda) \mathrm{EA}_{0 \rightarrow 1}$ with mutation rate $p \in(0,1)$ for the maximization of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
1 Initialization: Sample $x \in\{0,1\}^{n}$ u.a.r.;
2 Optimization: for $t=1,2,3, \ldots$ do
3 for $i=1, \ldots, \lambda$ do
Sample $\ell^{(i)}$ from $\operatorname{Bin}_{0 \rightarrow 1}(n, p)$, sample $y^{(i)} \leftarrow f \operatorname{fli}_{\ell^{(i)}}(x)$ and evaluate $f\left(y^{(i)}\right)$;

Sample x^{*} from $\arg \max \left\{f\left(y^{(1)}\right), \ldots, f\left(y^{(\lambda)}\right)\right\}$ u.a.r.; if $f\left(x^{*}\right) \geq f(x)$ then $x \leftarrow x^{*}$;

Compared algorithms: 2-rate $(1+\lambda) \mathrm{EA}_{r / 2,2 r}$

Algorithm 2: The 2-rate $(1+\lambda) \mathrm{EA}_{r / 2,2 r}$ with adaptive mutation rates proposed in [DoerrGWY17]
Initialization: Sample $x \in\{0,1\}^{n}$ uniformly at random and evaluate $f(x)$;
Initialize $r \leftarrow r^{\text {init }}$; // We use $r^{\text {init }}=2$;
3 Optimization: for $t=1,2,3, \ldots$ do
$4 \quad$ for $i=1, \ldots,\lfloor\lambda / 2\rfloor$ do
Sample $\ell^{(i)} \sim \operatorname{Bin}_{0 \rightarrow 1}(n, r /(2 n))$, create $y^{(i)} \leftarrow \mathrm{flip}_{\ell^{(i)}}(x)$, and evaluate $f\left(y^{(i)}\right)$;
for $i=\lfloor\lambda / 2\rfloor+1, \ldots, \lambda$ do
Sample $\ell^{(i)} \sim \operatorname{Bin}_{0 \rightarrow 1}(n, 2 r / n)$, create $y^{(i)} \leftarrow \operatorname{flip}_{\ell^{(i)}}(x)$, and evaluate $f\left(y^{(i)}\right)$;
$x^{*} \leftarrow \arg \max \left\{f\left(y^{(1)}\right), \ldots, f\left(y^{(\lambda)}\right)\right\}$ (ties broken u.a.r.);
if $f\left(x^{*}\right) \geq f(x)$ then $x \leftarrow x^{*}$;
Perform one of the following two actions with prob. 1/2:

- replace r with the mutation rate that x^{*} has been created with;
- replace r with either $2 r$ or $r / 2$ equiprobably.
$r \leftarrow \min \{\max \{2, r\}, n / 4\} ;$

Compared algorithms: $(1+\lambda) \mathrm{EA}(A, b)$

$\overline{\text { Algorithm 3: The }(1+\lambda) \operatorname{EA}(A, b) \text { with adaptive mutation rates }}$ and update strengths $A>1,0<b<1$
1 Initialization: Sample $x \in\{0,1\}^{n}$ uniformly at random and evaluate $f(x)$;
2 Initialize $p \leftarrow 1 / n$; Optimization: for $t=1,2,3, \ldots$ do
3 for $i=1, \ldots, \lambda$ do
4
Sample $\ell^{(i)} \sim \operatorname{Bin}_{0 \rightarrow 1}(n, p)$, create $y^{(i)} \leftarrow \operatorname{flip}_{\ell^{(i)}}(x)$, and evaluate $f\left(y^{(i)}\right)$;

$$
\text { if } N \geq\lceil 0.05 \lambda\rceil \text { then } p \leftarrow \min \{1 / 2, A p\} \text { else }
$$

$$
p \leftarrow \max \{1 / n, b p\}
$$

$$
N \leftarrow\left|\left\{i \in[\lambda] \mid f\left(x^{(i)}\right) \geq f(x)\right\}\right| ;
$$

$$
x^{*} \leftarrow \arg \max \left\{f\left(x^{(1)}\right), \ldots, f\left(x^{(\lambda)}\right)\right\} \text { (ties broken u.a.r.) }
$$

$$
\text { if } f\left(x^{*}\right) \geq f(x) \text { then } x \leftarrow x^{*}
$$

Comparison regarding different population sizes

Number of generations:

- Almost opposite ranking for small and large population sizes λ
- For both algorithms, $1 / n^{2}$ lower bound is better for small λ, $1 / n$ is better for large λ

Comparison regarding different population sizes
Number of fitness evaluations:

Comparison regarding different population sizes

Number of generations averaged by 100 runs and its standard deviation. Shift mutation operator is used in all algorithms, avg.=average, r.dev.= relative standard deviation.

Comparison regarding different problem sizes

$n=80000$

Fixed Budget Results: small population size $\lambda=10$

Fixed Budget Results: medium population size $\lambda=400$

Fixed Budget Results: large population size $\lambda=1600$

Fast implementation of the standard mutation operator

```
calc_fitness (patch, best_individual, best_fitness, mask) {
        patch_fitness := best_fitness
        for (i in patch){
            if (best_individual[i] == mask[i])
                        patch_fitness := patch_fitness - 1
            else
                        patch_fitness := patch_fitness + 1
    }
    return patch_fitness
}
apply_patch(patch, best_individual) {
    for (i in patch)
        best_individual[i] := 1 - best_individual[i]|
}
```


Conclusion

- $(1+\lambda)$ EA and 4 self-adjusting $(1+\lambda)$ EAs were compared on OneMax for $n=10^{4} \ldots 10^{5}, \lambda=2 \ldots 3200$
- Results strongly influenced by the population size:

1. Ranking in terms of runtime
2. Ranking in terms of fixed budget
3. Relative standard deviation

- (1), (3) does not depend so much on problem size
- Possible consequences for benchmarking:
- In a benchmarking framework, plotting against wide parameter range should be available
- Fast implementation of fitness evaluation and standard operators may be needed

