Comparing Self-Adjusting $(1 + \lambda)$ EAs under Large Dimensions: A Case Study

Arina Buzdalova (ITMO) Carola Doerr (Sorbonne) Anna Rodionova (ITMO) Kirill Antonov (ITMO)

Working Group Workshop COST Action CA15140 February 19, 2019

Experiment description

- $(1 + \lambda)$ EA with "practice-aware" shift mutation
- 4 self-adjusting $(1 + \lambda)$ EAs:
 - 2 different rules for updating mutation rate
 - 2-rate: asymptotically optimal runtime for large enough λ (theoretically proven)
 - Ab: chooses number of bits close to optimal (empirically shown)
 - 2 different mutation lower bounds: 1/n and $1/n^2$
- Problem: OneMax
- Dimensions
 - ▶ problem size *n* = 10000, 20000, ... 100000
 - ▶ population size $\lambda = 1, 5, 10, 50, 100, 200, 400, 800, 1600, 3200$
- ▶ 100 independent runs of each algorithm

Compared algorithms: (1 + λ) EA_{0 \rightarrow 1}

Algorithm 1: The $(1 + \lambda)$ EA_{0 \rightarrow 1} with mutation rate $p \in (0, 1)$ for the maximization of $f : \{0, 1\}^n \rightarrow \mathbb{R}$

- 1 Initialization: Sample $x \in \{0, 1\}^n$ u.a.r.;
- 2 Optimization: for $t = 1, 2, 3, \ldots$ do
- 3 for $i = 1, ..., \lambda$ do 4 Sample $\ell^{(i)}$ from $\text{Bin}_{0 \to 1}(n, p)$, sample $y^{(i)} \leftarrow \text{flip}_{\ell^{(i)}}(x)$ and evaluate $f(y^{(i)})$;

5 Sample
$$x^*$$
 from $\arg \max\{f(y^{(1)}), \dots, f(y^{(\lambda)})\}$ u.a.r.;
6 if $f(x^*) \ge f(x)$ then $x \leftarrow x^*$;

Compared algorithms: 2-rate $(1 + \lambda) EA_{r/2,2r}$

Algorithm 2: The 2-rate $(1 + \lambda) EA_{r/2,2r}$ with adaptive mutation rates proposed in [DoerrGWY17]

1 Initialization: Sample $x \in \{0, 1\}^n$ uniformly at random and evaluate f(x); Initialize $r \leftarrow r^{\text{init}}$; // We use $r^{\text{init}} = 2$; 2 Optimization: for $t = 1, 2, 3, \ldots$ do 3 for $i = 1, \ldots, |\lambda/2|$ do 4 Sample $\ell^{(i)} \sim \text{Bin}_{0 \to 1}(n, r/(2n))$, create $y^{(i)} \leftarrow \text{flip}_{\ell(i)}(x)$, and evaluate 5 $f(\mathbf{v}^{(i)})$: for $i = |\lambda/2| + 1, \ldots, \lambda$ do 6 Sample $\ell^{(i)} \sim \text{Bin}_{0 \to 1}(n, 2r/n)$, create $y^{(i)} \leftarrow \text{flip}_{\ell^{(i)}}(x)$, and evaluate 7 $f(\mathbf{v}^{(i)})$ $x^* \leftarrow \arg \max\{f(y^{(1)}), \dots, f(y^{(\lambda)})\}$ (ties broken u.a.r.); 8 if $f(x^*) > f(x)$ then $x \leftarrow x^*$: 9 Perform one of the following two actions with prob. 1/2: 10 • replace r with the mutation rate that x^* has been created with; replace r with either 2r or r/2 equiprobably. $r \leftarrow \min\{\max\{2, r\}, n/4\};$

Compared algorithms: $(1 + \lambda) EA(A, b)$

Algorithm 3: The $(1 + \lambda)$ EA(A, b) with adaptive mutation rates and update strengths A > 1, 0 < b < 1

- 1 Initialization: Sample $x \in \{0,1\}^n$ uniformly at random and evaluate f(x):
- 2 Initialize $p \leftarrow 1/n$; Optimization: for $t = 1, 2, 3, \dots$ do
- 3

5

for $i = 1, \ldots, \lambda$ do 4 Sample $\ell^{(i)} \sim \text{Bin}_{0 \to 1}(n, p)$, create $y^{(i)} \leftarrow \text{flip}_{\ell^{(i)}}(x)$, and evaluate $f(y^{(i)})$;

$$N \leftarrow |\{i \in [\lambda] \mid f(x^{(i)}) \ge f(x)\}|;$$

if $N \ge [0.05\lambda]$ then $p \leftarrow \min\{1/2, Ap\}$ else $p \leftarrow \max\{1/n, bp\};$ 6

7
$$x^* \leftarrow \arg \max\{f(x^{(1)}), \dots, f(x^{(\lambda)})\}$$
 (ties broken u.a.r.);
8 $if f(x^*) \ge f(x)$ then $x \leftarrow x^*$;

Comparison regarding different population sizes

Number of generations:

- Almost opposite ranking for small and large population sizes λ
- ▶ For both algorithms, $1/n^2$ lower bound is better for small λ , 1/n is better for large λ

Comparison regarding different population sizes

Number of fitness evaluations:

Comparison regarding different population sizes

Number of generations averaged by 100 runs and its standard deviation. Shift mutation operator is used in all algorithms, avg.=average, r.dev.=relative standard deviation.

λ	$(1 + \lambda) EA_{0 \rightarrow 1}$		2-rate (1/n)		Ab (1/n)		2-rate (1/n ²)		Ab (1/n ²)	
	avg.	r.dev.	avg.	r.dev.	avg.	r.dev.	avg.	r.dev.	avg.	r.dev.
n = 100000										
1	1,873,666	13.4%	2,222,691	10.9%	1,860,718	13.4%	1,143,933	11.7%	1,122,686	10.6%
5	389,110	10.2%	716,372	13.6%	420,165	10.4%	253,747	11.7%	264,171	8.5%
10	205,086	12.0%	414,043	10.4%	248,184	9.7%	146,132	8.2%	167,244	7.0%
50	60,200	6.2%	98,223	8.7%	76,772	5.6%	59,357	5.7%	62,693	3.8%
100	42,151	5.0%	57,325	6.9%	41,520	4.1%	48,659	6.6%	35,814	4.1%
200	31,762	3.4%	37,588	6.8%	28,215	3.7%	41,634	4.6%	25,431	2.2%
400	25,846	2.1%	26,227	5.0%	20,900	2.6%	37,583	8.3%	19,984	1.6%
800	22,229	1.2%	20,055	3.2%	16,681	1.4%	34,965	9.3%	16,691	0.9%
1,600	19,744	0.7%	16,325	2.0%	14,112	1.0%	32,494	11.6%	14,691	0.6%
3,200	17,956	0.4%	13,966	1.1%	12,296	0.6%	29,796	11.1%	13,344	0.5%
n = 10000										
1	147,008	14.8%	177,568	14.8%	148,182	14.1%	90,459	13.0%	91,563	15.6%
5	31,738	17.5%	56,940	17.3%	34,514	13.0%	20,657	13.0%	21,999	13.6%
10	16,373	13.1%	32,054	15.3%	20,662	9.2%	12,036	11.1%	14,252	7.9%
50	5,254	7.5%	8,029	12.9%	6,855	6.7%	5,198	8.7%	5,740	3.7%
100	3,790	4.6%	4,922	9.4%	3,824	5.8%	4,211	9.7%	3,360	4.0%
200	2,955	3.6%	3,323	8.2%	2,647	3.7%	3,603	10.5%	2,447	2.8%
400	2,486	2.1%	2,420	5.7%	2,001	2.4%	3,227	11.8%	1,943	1.8%
800	2,164	1.1%	1,903	3.8%	1,633	1.8%	2,932	13.8%	1,639	1.3%
1,600	1,945	0.8%	1,582	2.1%	1,393	1.2%	2,576	11.1%	1,450	0.8%
3,200	1,776	0.6%	1,379	1.8%	1,227	0.8%	2,305	12.3%	1,323	0.8%

Comparison regarding different problem sizes

Fixed Budget Results: small population size $\lambda = 10$

Fixed Budget Results: medium population size $\lambda = 400$

Fixed Budget Results: large population size $\lambda = 1600$

Fast implementation of the standard mutation operator

```
calc_fitness (patch, best individual, best fitness, mask) {
     patch fitness := best fitness
     for (i in patch) {
          if (best individual[i] == mask[i])
               patch fitness := patch fitness - 1
          else
               patch fitness := patch fitness + 1
     }
     return patch fitness
}
apply patch(patch, best individual) {
     for (i in patch)
          best individual[i] := 1 - best individual[i]
}
```

Conclusion

- (1 + λ) EA and 4 self-adjusting (1 + λ) EAs were compared on OneMax for n = 10⁴ ... 10⁵, λ = 2... 3200
- Results strongly influenced by the population size:
 - 1. Ranking in terms of runtime
 - 2. Ranking in terms of fixed budget
 - 3. Relative standard deviation
- \blacktriangleright (1), (3) does not depend so much on problem size
- Possible consequences for benchmarking:
 - In a benchmarking framework, plotting against wide parameter range should be available

137

 Fast implementation of fitness evaluation and standard operators may be needed

