
Is it necessary to perform multi-objective
optimization when doing multi-objectivization?

Arina Buzdalova Irina Petrova Maxim Buzdalov

Arina Buzdalova and Irina Petrova were supported by RFBR
according to the research project No. 16-31-00380 mol_a.

Theory of Randomized Optimization Heuristics
Dagstuhl Seminar 17191

May 12, 2017



What is multi-objectivization?

I Goal: find the global optimum of the target objective in less
number of fitness evaluations

I Multi-objectivization: introducing of Auxiliary objectives
I predefined finite set
I do not have to optimize them

1 / 14



Techniques of using auxiliary objectives

2 / 14



Practical Example: Job-Shop Scheduling Problem
I Problem formulation:

I A job: a predefined sequence of operations
I Each operation has a specified processing time and a machine
I No two operations of a job can be processed simultaneously
I Each machine can process only one operation at time

I Target objective: total flow-time [Lochtefeld, Ciarallo, 2011]
I Auxiliary objectives: flow-time of k jobs

http://support.sas.com/documentation/cdl/en/orcpug/59630/HTML/default/viewer.htm 3 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0

6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1

6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0

4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0

6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1

6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0

4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0 6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1

6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0

4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0 6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1 6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0

4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0 6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1 6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0 4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Problem

Target: OneMaxd 1 1 1 1 1 1 1 0 0 0 6

Aux 1: OneMax 1 1 1 1 1 1 1 1 1 1 6

Aux 2: ZeroMax 0 0 0 0 0 0 0 0 0 0 4

Example 1 0 0 1 1 1 0 1 0 0

Properties

I Auxiliary objectives are conflicting
I They can not speed up optimization of the target objective
I We look at how much they slow down

4 / 14



Analyzed Algorithm: RLS

1: Individual x ← a randomly generated individual
2: while stopping criterion is not reached do
3: Individual x ′ ← mutate x (flip one bit)
4: if F (x ′) ≥ F (x) then
5: x ← x ′

6: end if
7: end while

Let me recall: E [TRLS(OneMax of length n)] = Θ(n log n)

5 / 14



Analyzed Algorithm: RLS

1: Individual x ← a randomly generated individual
2: while stopping criterion is not reached do
3: Individual x ′ ← mutate x (flip one bit)
4: if F (x ′) ≥ F (x) then
5: x ← x ′

6: end if
7: end while

Let me recall: E [TRLS(OneMax of length n)] = Θ(n log n)

5 / 14



Analyzed Algorithm: SEMO

1: Population P ← { a randomly generated individual }
2: while stopping criterion is not reached do
3: Randomly select individual x from P
4: Individual x ′ ← mutate x (flip one bit)
5: Select non-dominated individuals P ′ from P ∪ {x ′}
6: if ∃y ∈ P ′ : f (y) = f (x ′) and y 6= x ′ then
7: Remove y from P ′

8: end if
9: P ← P ′

10: end while

Theorem
If expected population size is at most S , then:

E [TSEMO ] ≤ S ·min
i

E [TRLS | i-th objective is used ]

6 / 14



Analyzed Algorithm: SEMO

1: Population P ← { a randomly generated individual }
2: while stopping criterion is not reached do
3: Randomly select individual x from P
4: Individual x ′ ← mutate x (flip one bit)
5: Select non-dominated individuals P ′ from P ∪ {x ′}
6: if ∃y ∈ P ′ : f (y) = f (x ′) and y 6= x ′ then
7: Remove y from P ′

8: end if
9: P ← P ′

10: end while

Theorem
If expected population size is at most S , then:

E [TSEMO ] ≤ S ·min
i

E [TRLS | i-th objective is used ]

6 / 14



Analyzed Algorithm: SEMO

1: Population P ← { a randomly generated individual }
2: while stopping criterion is not reached do
3: Randomly select individual x from P
4: Individual x ′ ← mutate x (flip one bit)
5: Select non-dominated individuals P ′ from P ∪ {x ′}
6: if ∃y ∈ P ′ : f (y) = f (x ′) and y 6= x ′ then
7: Remove y from P ′

8: end if
9: P ← P ′

10: end while

Theorem
If expected population size is at most S , then:

E [TSEMO ] ≤ S ·min
i

E [TRLS | i-th objective is used ]

6 / 14



Helper Objectives

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen at random every k iterations

Analysis

I Population grows by at most 1 on every iteration
I At OneMax↔ ZeroMax switch, population becomes O(1)

I Running time: O(max(n, k) · n log n)

7 / 14



Helper Objectives

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen at random every k iterations

Analysis

I Population grows by at most 1 on every iteration

I At OneMax↔ ZeroMax switch, population becomes O(1)

I Running time: O(max(n, k) · n log n)

7 / 14



Helper Objectives

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen at random every k iterations

Analysis

I Population grows by at most 1 on every iteration
I At OneMax↔ ZeroMax switch, population becomes O(1)

I Running time: O(max(n, k) · n log n)

7 / 14



Helper Objectives

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen at random every k iterations

Analysis

I Population grows by at most 1 on every iteration
I At OneMax↔ ZeroMax switch, population becomes O(1)

I Running time: O(max(n, k) · n log n)

7 / 14



Helper Objectives

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen at random every k iterations

Analysis

I Population grows by at most 1 on every iteration
I At OneMax↔ ZeroMax switch, population becomes O(1)

I Running time: O(max(n, k) · n log n)

7 / 14



Simultaneous Optimization of All Objectives

Setup

I SEMO running with {OneMaxd ,OneMax,ZeroMax}

Analysis

I Idea 1: Population size is at most n + 1
I E [T ] ≤ (n + 1) ·Θ(n log n)→ E [T ] = O(n2 log n)

I Idea 2: for small and large d :
I the distance between initial and final OneMax value is Θ(n)
I since the middle of the way, the population size is Θ(n)
I this yields the Ω(n2 log n) bound

I The intuition says Ω(n2 log n) bound should hold in general

8 / 14



Simultaneous Optimization of All Objectives

Setup

I SEMO running with {OneMaxd ,OneMax,ZeroMax}

Analysis

I Idea 1: Population size is at most n + 1

I E [T ] ≤ (n + 1) ·Θ(n log n)→ E [T ] = O(n2 log n)

I Idea 2: for small and large d :
I the distance between initial and final OneMax value is Θ(n)
I since the middle of the way, the population size is Θ(n)
I this yields the Ω(n2 log n) bound

I The intuition says Ω(n2 log n) bound should hold in general

8 / 14



Simultaneous Optimization of All Objectives

Setup

I SEMO running with {OneMaxd ,OneMax,ZeroMax}

Analysis

I Idea 1: Population size is at most n + 1
I E [T ] ≤ (n + 1) ·Θ(n log n)→ E [T ] = O(n2 log n)

I Idea 2: for small and large d :
I the distance between initial and final OneMax value is Θ(n)
I since the middle of the way, the population size is Θ(n)
I this yields the Ω(n2 log n) bound

I The intuition says Ω(n2 log n) bound should hold in general

8 / 14



Simultaneous Optimization of All Objectives

Setup

I SEMO running with {OneMaxd ,OneMax,ZeroMax}

Analysis

I Idea 1: Population size is at most n + 1
I E [T ] ≤ (n + 1) ·Θ(n log n)→ E [T ] = O(n2 log n)

I Idea 2: for small and large d :
I the distance between initial and final OneMax value is Θ(n)
I since the middle of the way, the population size is Θ(n)
I this yields the Ω(n2 log n) bound

I The intuition says Ω(n2 log n) bound should hold in general

8 / 14



Simultaneous Optimization of All Objectives

Setup

I SEMO running with {OneMaxd ,OneMax,ZeroMax}

Analysis

I Idea 1: Population size is at most n + 1
I E [T ] ≤ (n + 1) ·Θ(n log n)→ E [T ] = O(n2 log n)

I Idea 2: for small and large d :
I the distance between initial and final OneMax value is Θ(n)
I since the middle of the way, the population size is Θ(n)
I this yields the Ω(n2 log n) bound

I The intuition says Ω(n2 log n) bound should hold in general

8 / 14



Reinforcement Learning for Single Objective

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

I It can learn wrong
objective

I E [T ] =∞
for d ∈ [2; n − 2]

I Ex.: mask = 1001;
1010→ 1011→ 1111

d d+1 n-1 n

d

d+1

n-d+1

n

OMd

OM1n-2

n-d

state d

state d+1

state n-d

state n-d+1

state n

n-d-1

n-3

state n-d-1

A

B

C

9 / 14



Reinforcement Learning for Single Objective

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

Q-Learning 
Agent

s(t + 1)

r(t + 1)

reward r(t)

state s(t)

fitness 
function

Evolutionary Algorithm

Q(s, h) ← Q(s, h) + α(r + γmaxh′∈H Q(s ′, h′)−Q(s, h)), s –
state, H – set of objectives

I It can learn wrong
objective

I E [T ] =∞
for d ∈ [2; n − 2]

I Ex.: mask = 1001;
1010→ 1011→ 1111

d d+1 n-1 n

d

d+1

n-d+1

n

OMd

OM1n-2

n-d

state d

state d+1

state n-d

state n-d+1

state n

n-d-1

n-3

state n-d-1

A

B

C

9 / 14



Reinforcement Learning for Single Objective

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

I Actions: {OneMaxd ,OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

I It can learn wrong
objective

I E [T ] =∞
for d ∈ [2; n − 2]

I Ex.: mask = 1001;
1010→ 1011→ 1111

d d+1 n-1 n

d

d+1

n-d+1

n

OMd

OM1n-2

n-d

state d

state d+1

state n-d

state n-d+1

state n

n-d-1

n-3

state n-d-1

A

B

C

9 / 14



Reinforcement Learning for Single Objective

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

I Actions: {OneMaxd ,OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

I It can learn wrong
objective

I E [T ] =∞
for d ∈ [2; n − 2]

I Ex.: mask = 1001;
1010→ 1011→ 1111

d d+1 n-1 n

d

d+1

n-d+1

n

OMd

OM1n-2

n-d

state d

state d+1

state n-d

state n-d+1

state n

n-d-1

n-3

state n-d-1

A

B

C

9 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

Q-Learning 
Agent

s(t + 1)

r(t + 1)

reward r(t)

state s(t)

fitness 
function

Evolutionary Algorithm

Q(s, h) ← Q(s, h) + α(r + γmaxh′∈H Q(s ′, h′)−Q(s, h)), s –
state, H – set of objectives

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

I Actions: {OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

Analysis

I We are elitistic in OneMaxd → it only increases
I Thus we never visit a state for which we learned something
I This means we always select second objective at random
I Runtime is O(n log n)

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

I Actions: {OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

Analysis

I We are elitistic in OneMaxd → it only increases

I Thus we never visit a state for which we learned something
I This means we always select second objective at random
I Runtime is O(n log n)

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

I Actions: {OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

Analysis

I We are elitistic in OneMaxd → it only increases
I Thus we never visit a state for which we learned something

I This means we always select second objective at random
I Runtime is O(n log n)

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

I Actions: {OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

Analysis

I We are elitistic in OneMaxd → it only increases
I Thus we never visit a state for which we learned something
I This means we always select second objective at random

I Runtime is O(n log n)

10 / 14



Reinforcement Learning for Second Objective

Setup

I SEMO running with two objectives: {OneMaxd , ∗}
I Second objective is chosen by reinforcement learning

I Actions: {OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

Analysis

I We are elitistic in OneMaxd → it only increases
I Thus we never visit a state for which we learned something
I This means we always select second objective at random
I Runtime is O(n log n)

10 / 14



Preserving the best solution (single-objective)

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

I Actions: {OneMaxd ,OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

I Target-worsening individuals are not accepted (even if the
auxiliary objective allows)

I Ti = 3
2 · (1 + i

n−i )

I Runtime expectation:
n−1∑
i=0

Ti = O(n log n)

I Works as good as the multi-objective
algorithm

i+1

i n+2i
3n

2(n-i)
3n

...

...

11 / 14



Preserving the best solution (single-objective)

Setup

I Optimizing using RLS
I The objective is chosen by reinforcement learning

I Actions: {OneMaxd ,OneMax,ZeroMax}
I Reward: the change of OneMaxd

I State: the value of OneMaxd

I Target-worsening individuals are not accepted (even if the
auxiliary objective allows)

I Ti = 3
2 · (1 + i

n−i )

I Runtime expectation:
n−1∑
i=0

Ti = O(n log n)

I Works as good as the multi-objective
algorithm

i+1

i n+2i
3n

2(n-i)
3n

...

...

11 / 14



Problem with useful and harmful auxiliary objectives

I Target objective: LeadingOnes
I Notice: OneMax can be solved faster and has the same

optimum
I Dynamic auxiliary objectives based on OneMax and ZeroMax:

h2

h1

p length

p

x

fitness

0 x1 x2

12 / 14



Empirical results: RL in single-objective algorithm
Number of fitness evaluations until optimum is found (averaged)

Preserving Preserving, no learn. when bad No preserving
Parameters RLS ss, ε = 0.1 ts, ε = 0 ts, ε = 0.1 ss, ε = 0.1 ts, ε = 0 ts, ε = 0.1 all setups
n LeadingOnes
141 1.00 · 104 4.61 · 103 7.20 · 103 7.80 · 103 1.36 · 104 1.49 · 104 1.49 · 104 ∞
151 1.13 · 104 5.08 · 103 8.33 · 103 8.90 · 103 1.57 · 104 1.72 · 104 1.72 · 104 ∞
161 1.30 · 104 5.44 · 103 9.39 · 103 1.01 · 104 1.81 · 104 1.94 · 104 1.96 · 104 ∞
171 1.45 · 104 6.04 · 103 1.06 · 104 1.13 · 104 2.05 · 104 2.18 · 104 2.19 · 104 ∞
181 1.65 · 104 6.60 · 103 1.18 · 104 1.27 · 104 2.29 · 104 2.47 · 104 2.46 · 104 ∞
191 1.81 · 104 7.28 · 103 1.33 · 104 1.41 · 104 2.58 · 104 2.73 · 104 2.73 · 104 ∞
n, d Generalized OneMax
100, 50 4.51 · 102 4.93 · 102 5.65 · 102 5.69 · 102 6.49 · 102 6.75 · 102 6.81 · 102 ∞
200, 100 1.04 · 103 1.09 · 103 1.26 · 103 1.31 · 103 1.47 · 103 1.55 · 103 1.57 · 103 ∞
300, 150 1.72 · 103 1.74 · 103 2.03 · 103 2.05 · 103 2.40 · 103 2.51 · 103 2.51 · 103 ∞
400, 200 2.43 · 103 2.43 · 103 2.80 · 103 2.90 · 103 3.42 · 103 3.56 · 103 3.53 · 103 ∞
500, 250 3.12 · 103 3.16 · 103 3.65 · 103 3.72 · 103 4.34 · 103 4.58 · 103 4.60 · 103 ∞

I ss – single state, ts – target state
I ε – exploration parameter
I Q(s, h) ← Q(s, h) + α(r + γmaxh′∈H Q(s ′, h′)−Q(s, h)), s –

state, H – set of objectives

13 / 14



Conclusion

I Concluding observations on auxiliary objective selection:
I Conflicting objectives can surprisingly help
I Multi-objective optimization works good because it preserves

the best found solution
I Therefore, it is enough to use single-objective optimization

with the same feature
I Future work:

I Analyze simultaneous optimization of all objectives on
Generalized OneMax (should be Θ(n2 log(n)) vs O(n log n) for
dynamic selection)

I Analyze reinforcement learning with single state (not random
in this case!)

I Empirically test preserving of the best found solution on the
Job Shop Scheduling problem

Thank you for listening!

14 / 14



Conclusion

I Concluding observations on auxiliary objective selection:
I Conflicting objectives can surprisingly help
I Multi-objective optimization works good because it preserves

the best found solution
I Therefore, it is enough to use single-objective optimization

with the same feature
I Future work:

I Analyze simultaneous optimization of all objectives on
Generalized OneMax (should be Θ(n2 log(n)) vs O(n log n) for
dynamic selection)

I Analyze reinforcement learning with single state (not random
in this case!)

I Empirically test preserving of the best found solution on the
Job Shop Scheduling problem

Thank you for listening!

14 / 14


