Is it necessary to perform multi-objective optimization when doing multi-objectivization?

Arina Buzdalova Irina Petrova Maxim Buzdalov

Arina Buzdalova and Irina Petrova were supported by RFBR according to the research project No. 16-31-00380 mol_a.

Theory of Randomized Optimization Heuristics Dagstuhl Seminar 17191 May 12, 2017

What is multi-objectivization?

 Goal: find the global optimum of the target objective in less number of fitness evaluations

- Multi-objectivization: introducing of Auxiliary objectives
 - predefined finite set
 - do not have to optimize them

Techniques of using auxiliary objectives

Practical Example: Job-Shop Scheduling Problem

Problem formulation:

- A job: a predefined sequence of operations
- Each operation has a specified processing time and a machine
- No two operations of a job can be processed simultaneously
- Each machine can process only one operation at time
- ► Target objective: total flow-time [Lochtefeld, Ciarallo, 2011]
- Auxiliary objectives: flow-time of k jobs

Target:	OneMax _d	1	1	1	1	1	1	1	0	0	0
Aux 1:	OneMax	1	1	1	1	1	1	1	1	1	1
Aux 2:	ZeroMax	0	0	0	0	0	0	0	0	0	0
	Example	1	0	0	1	1	1	0	1	0	0

4/14

Properties

- Auxiliary objectives are conflicting
- They can not speed up optimization of the target objective
- We look at how much they slow down

Analyzed Algorithm: RLS

- 1: Individual $x \leftarrow$ a randomly generated individual
- 2: while stopping criterion is not reached do
- 3: Individual $x' \leftarrow$ mutate x (flip one bit)
- 4: if $F(x') \ge F(x)$ then
- 5: $x \leftarrow x'$
- 6: end if
- 7: end while

Analyzed Algorithm: RLS

- 1: Individual $x \leftarrow$ a randomly generated individual
- 2: while stopping criterion is not reached do
- 3: Individual $x' \leftarrow$ mutate x (flip one bit)
- 4: if $F(x') \ge F(x)$ then
- 5: $x \leftarrow x'$
- 6: end if
- 7: end while

Let me recall: $E[T_{RLS}(OneMax \text{ of length } n)] = \Theta(n \log n)$

Analyzed Algorithm: SEMO

Population P ← { a randomly generated individual }
while stopping criterion is not reached do
Randomly select individual x from P
Individual x' ← mutate x (flip one bit)
Select non-dominated individuals P' from P ∪ {x'}
if ∃y ∈ P' : f(y) = f(x') and y ≠ x' then
Remove y from P'
and if

- 8: end if
- 9: $P \leftarrow P'$
- 10: end while

Analyzed Algorithm: SEMO

1: Population $P \leftarrow \{$ a randomly generated individual $\}$ 2: while stopping criterion is not reached do 3: Randomly select individual x from P4: Individual $x' \leftarrow$ mutate x (flip one bit) 5: Select non-dominated individuals P' from $P \cup \{x'\}$ 6: if $\exists y \in P' : f(y) = f(x')$ and $y \neq x'$ then 7: Remove y from P'8: end if

9:
$$P \leftarrow P$$

10: end while

Analyzed Algorithm: SEMO

1: Population $P \leftarrow \{ \text{ a randomly generated individual } \}$ 2: while stopping criterion is not reached do 3: Randomly select individual x from P 4: Individual $x' \leftarrow \text{ mutate } x$ (flip one bit) 5: Select non-dominated individuals P' from $P \cup \{x'\}$ 6: if $\exists y \in P' : f(y) = f(x')$ and $y \neq x'$ then 7: Remove y from P' 8: end if 9: $P \leftarrow P'$ 10: end while

Theorem

If expected population size is at most S, then:

 $E[T_{SEMO}] \leq S \cdot \min_{i} E[T_{RLS} \mid i\text{-th objective is used }]$

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen at random every k iterations

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen at random every k iterations

Analysis

Population grows by at most 1 on every iteration

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen at random every k iterations

- Population grows by at most 1 on every iteration
- At ONEMAX \leftrightarrow ZEROMAX switch, population becomes O(1)

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen at random every k iterations

- Population grows by at most 1 on every iteration
- At ONEMAX \leftrightarrow ZEROMAX switch, population becomes O(1)

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen at random every k iterations

- Population grows by at most 1 on every iteration
- At ONEMAX \leftrightarrow ZEROMAX switch, population becomes O(1)

Setup

► SEMO running with {ONEMAX, ONEMAX, ZEROMAX}

Setup

► SEMO running with {ONEMAX, ONEMAX, ZEROMAX}

Analysis

• Idea 1: Population size is at most n + 1

Setup

► SEMO running with {ONEMAX, ONEMAX, ZEROMAX}

- Idea 1: Population size is at most n+1
 - $E[T] \leq (n+1) \cdot \Theta(n \log n) \rightarrow E[T] = O(n^2 \log n)$

Setup

▶ SEMO running with {ONEMAX, ONEMAX, ZEROMAX}

- Idea 1: Population size is at most n + 1
 - ► $E[T] \leq (n+1) \cdot \Theta(n \log n) \rightarrow E[T] = O(n^2 \log n)$
- ▶ Idea 2: for small and large *d*:
 - the distance between initial and final ONEMAX value is $\Theta(n)$
 - since the middle of the way, the population size is $\Theta(n)$
 - this yields the $\Omega(n^2 \log n)$ bound

Setup

► SEMO running with {ONEMAX, ONEMAX, ZEROMAX}

- Idea 1: Population size is at most n + 1
 - $E[T] \leq (n+1) \cdot \Theta(n \log n) \rightarrow E[T] = O(n^2 \log n)$
- Idea 2: for small and large d:
 - the distance between initial and final ONEMAX value is $\Theta(n)$
 - since the middle of the way, the population size is $\Theta(n)$
 - this yields the Ω(n² log n) bound
- The intuition says $\Omega(n^2 \log n)$ bound should hold in general

- Optimizing using RLS
- The objective is chosen by reinforcement learning

Setup

- Optimizing using RLS
- ► The objective is chosen by reinforcement learning

 $Q(s, h) \leftarrow Q(s, h) + \alpha(r + \gamma \max_{h' \in H} Q(s', h') - Q(s, h)), s$ state, H - set of objectives

- Optimizing using RLS
- ► The objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ONEMAX, ZEROMAX}
 - Reward: the change of $ONEMAX_d$
 - State: the value of $ONEMAX_d$

- Optimizing using RLS
- ► The objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ONEMAX, ZEROMAX}
 - Reward: the change of $ONEMAX_d$
 - State: the value of $ONEMAX_d$
- It can learn wrong objective
- $E[T] = \infty$ for $d \in [2; n-2]$
- ► Ex.: mask = 1001; 1010 → 1011 → 1111

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning

 $Q(s, h) \leftarrow Q(s, h) + \alpha(r + \gamma \max_{h' \in H} Q(s', h') - Q(s, h)), s -$ state, H - set of objectives

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ZEROMAX}
 - ▶ Reward: the change of ONEMAX_d
 - State: the value of $ONEMAX_d$

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ZEROMAX}
 - ▶ Reward: the change of ONEMAX_d
 - State: the value of $ONEMAX_d$

Analysis

• We are elitistic in $ONEMAX_d \rightarrow it$ only increases

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ZEROMAX}
 - ▶ Reward: the change of ONEMAX_d
 - ▶ State: the value of ONEMAX_d

- We are elitistic in $ONEMAX_d \rightarrow it$ only increases
- Thus we never visit a state for which we learned something

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ZEROMAX}
 - Reward: the change of $ONEMAX_d$
 - ▶ State: the value of ONEMAX_d

- We are elitistic in $ONEMAX_d \rightarrow it$ only increases
- Thus we never visit a state for which we learned something
- This means we always select second objective at random

Setup

- ▶ SEMO running with two objectives: {ONEMAX_d,*}
- Second objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ZEROMAX}
 - Reward: the change of $ONEMAX_d$
 - ▶ State: the value of ONEMAX_d

- We are elitistic in $ONEMAX_d \rightarrow it$ only increases
- Thus we never visit a state for which we learned something
- This means we always select second objective at random
- Runtime is O(n log n)

Preserving the best solution (single-objective)

- Optimizing using RLS
- ► The objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ONEMAX, ZEROMAX}
 - ▶ Reward: the change of ONEMAX_d
 - State: the value of $ONEMAX_d$
 - Target-worsening individuals are not accepted (even if the auxiliary objective allows)

Preserving the best solution (single-objective)

- Optimizing using RLS
- ► The objective is chosen by reinforcement learning
 - ► Actions: {ONEMAX, ONEMAX, ZEROMAX}
 - Reward: the change of $ONEMAX_d$
 - State: the value of $ONEMAX_d$
 - Target-worsening individuals are not accepted (even if the auxiliary objective allows)

$$T_i = \frac{3}{2} \cdot \left(1 + \frac{i}{n-i}\right)$$

- Runtime expectation: $\sum_{i=0}^{n-1} T_i = O(n \log n)$
- Works as good as the multi-objective algorithm

Problem with useful and harmful auxiliary objectives

- Target objective: LeadingOnes
- Notice: OneMax can be solved faster and has the same optimum
- Dynamic auxiliary objectives based on OneMax and ZeroMax:

Empirical results: RL in single-objective algorithm

Number of fitness evaluations until optimum is found (averaged)

		Preserving			Preserving	No preserving				
Parameters	RLS	ss, $\varepsilon = 0.1$	ts, $\varepsilon = 0$	ts, $\varepsilon = 0.1$	ss, $\varepsilon = 0.1$	ts, $\varepsilon = 0$	ts, $\varepsilon = 0.1$	all setups		
n	LeadingOnes									
141	$1.00 \cdot 10^{4}$	$4.61 \cdot 10^{3}$	$7.20 \cdot 10^{3}$	$7.80 \cdot 10^{3}$	$1.36 \cdot 10^{4}$	$1.49 \cdot 10^{4}$	$1.49 \cdot 10^{4}$	∞		
151	$1.13\cdot 10^4$	$5.08 \cdot 10^{3}$	$8.33 \cdot 10^3$	$8.90 \cdot 10^{3}$	$1.57 \cdot 10^{4}$	$1.72 \cdot 10^{4}$	$1.72 \cdot 10^{4}$	∞		
161	$1.30\cdot 10^4$	$5.44 \cdot 10^{3}$	$9.39 \cdot 10^{3}$	$1.01 \cdot 10^{4}$	$1.81 \cdot 10^{4}$	$1.94 \cdot 10^{4}$	$1.96 \cdot 10^{4}$	∞		
171	$1.45\cdot 10^4$	$6.04 \cdot 10^{3}$	$1.06 \cdot 10^4$	$1.13 \cdot 10^4$	$2.05 \cdot 10^{4}$	$2.18 \cdot 10^4$	$2.19 \cdot 10^4$	∞		
181	$1.65\cdot 10^4$	$6.60 \cdot 10^{3}$	$1.18\cdot 10^4$	$1.27 \cdot 10^{4}$	$2.29 \cdot 10^{4}$	$2.47 \cdot 10^{4}$	$2.46 \cdot 10^{4}$	∞		
191	$1.81\cdot 10^4$	$7.28 \cdot 10^{3}$	$1.33\cdot 10^4$	$1.41\cdot 10^4$	$2.58 \cdot 10^4$	$2.73\cdot 10^4$	$2.73 \cdot 10^4$	∞		
n, d	Generalized OneMax									
100, 50	$4.51 \cdot 10^{2}$	$4.93 \cdot 10^{2}$	$5.65 \cdot 10^{2}$	$5.69 \cdot 10^{2}$	$6.49 \cdot 10^{2}$	$6.75 \cdot 10^{2}$	$6.81 \cdot 10^{2}$	∞		
200, 100	$1.04\cdot 10^3$	$1.09 \cdot 10^{3}$	$1.26 \cdot 10^{3}$	$1.31 \cdot 10^{3}$	$1.47 \cdot 10^{3}$	$1.55 \cdot 10^{3}$	$1.57 \cdot 10^{3}$	∞		
300, 150	$1.72 \cdot 10^3$	$1.74 \cdot 10^{3}$	$2.03 \cdot 10^{3}$	$2.05 \cdot 10^{3}$	$2.40 \cdot 10^{3}$	$2.51 \cdot 10^{3}$	$2.51 \cdot 10^{3}$	∞		
400, 200	$2.43 \cdot 10^3$	$2.43 \cdot 10^{3}$	$2.80 \cdot 10^{3}$	$2.90 \cdot 10^{3}$	$3.42 \cdot 10^{3}$	$3.56 \cdot 10^{3}$	$3.53 \cdot 10^{3}$	∞		
500, 250	$3.12\cdot 10^3$	$3.16 \cdot 10^3$	$3.65\cdot 10^3$	$3.72 \cdot 10^3$	$4.34 \cdot 10^3$	$4.58\cdot10^3$	$4.60 \cdot 10^{3}$	∞		

- ss single state, ts target state
- ε exploration parameter
- ► $Q(s, h) \leftarrow Q(s, h) + \alpha(r + \gamma \max_{h' \in H} Q(s', h') Q(s, h))$, s state, H set of objectives

Conclusion

- Concluding observations on auxiliary objective selection:
 - Conflicting objectives can surprisingly help
 - Multi-objective optimization works good because it preserves the best found solution
 - Therefore, it is enough to use single-objective optimization with the same feature
- Future work:
 - ► Analyze simultaneous optimization of all objectives on Generalized OneMax (should be Θ(n² log(n)) vs O(n log n) for dynamic selection)
 - Analyze reinforcement learning with single state (not random in this case!)
 - Empirically test preserving of the best found solution on the Job Shop Scheduling problem

Conclusion

- Concluding observations on auxiliary objective selection:
 - Conflicting objectives can surprisingly help
 - Multi-objective optimization works good because it preserves the best found solution
 - Therefore, it is enough to use single-objective optimization with the same feature
- Future work:
 - ► Analyze simultaneous optimization of all objectives on Generalized OneMax (should be Θ(n² log(n)) vs O(n log n) for dynamic selection)
 - Analyze reinforcement learning with single state (not random in this case!)
 - Empirically test preserving of the best found solution on the Job Shop Scheduling problem

Thank you for listening!