Is it necessary to perform multi-objective
optimization when doing multi-objectivization?

Arina Buzdalova Irina Petrova Maxim Buzdalov

Arina Buzdalova and Irina Petrova were supported by RFBR
according to the research project No. 16-31-00380 mol a.

ITMO UNIVERSITY

Theory of Randomized Optimization Heuristics
Dagstuhl Seminar 17191
May 12, 2017

What is multi-objectivization?

» Goal: find the global optimum of the target objective in less
number of fitness evaluations

EA Target

» Multi-objectivization: introducing of Auxiliary objectives

» predefined finite set
» do not have to optimize them

1/14

Techniques of using auxiliary objectives

EA Target

/

—

\ MOEA

Target

+

EA

Aux, No selection
Good aux objectives needed

Select randomly
or ad hoc

Select
using reinforcement

J. D. Knowles, R. A. Watson, D.
W. Corne.

Reducing Local Optima in
Single-Objective Problems by
Multi-objectivization. EMO 2001.

M. T. Jensen.

Helper-Objectives: Using Multi-
Objective Evolutionary
Algorithms for Single-Objective
Optimization.

J. Math. Model. Algorithms 2004.

A. Buzdalova, M. Buzdalov.
Increasing Efficiency of
Evolutionary Algorithms by
Choosing between Auxiliary
Fitness Functions with
Reinforcement Learning.
ICMLA 2012.

2/14

Practical Example: Job-Shop Scheduling Problem

» Problem formulation:
» A job: a predefined sequence of operations
» Each operation has a specified processing time and a machine
» No two operations of a job can be processed simultaneously
» Each machine can process only one operation at time
» Target objective: total flow-time [Lochtefeld, Ciarallo, 2011]
» Auxiliary objectives: flow-time of k jobs

JOB] B0 120 180 240 300 360 420 480 540 600 6BO 720 TEO 840 900
| L L L L L L 1 L L L L L

1 | I I

2 Il | I S .

3 I I

4 N . |] B

5 L]] | 7

3] | | |

7 | | | I

8 L] | | | []

9 | | b

10 | N |] |

R47

I MO I 1 M2 M3 M4
— 5 — 5 — M7 — 8 — 19

http://support.sas.com/documentation/cdl/en/orcpug/59630/HTML /default/viewer.htm 3 / 14

Analyzed Problem

Target: ONEMAXy [1[1]1[1[1]1][1][0]0]0]

Aux1: ONEMAX |[1][1][1]1]

[
]
=]
]
]
=]

Aux 2: ZeroMax [0]oJofofJoofJofofo]o]

4/14

Analyzed Problem

4/14

Analyzed Problem

4/14

Target: ONEMAXy [1[1[1]1]1]1]1]0]o0]o0] 6

Analyzed Problem

Aux 2: ZeEroMax [o0]oJofofo]o]

4/14

Analyzed Problem

Target: ONeMax, [L[1[1[1]4[1]1]0]0]0] 6

Awct: ONeMax [TL[T]A[1[1]A[1]1]1] 6

Aux 2: ZeroMax [o0]oofofJoJofJofofo]o] 4
Example [1]0[0]1]1[1[0]1]0]0]

4/14

Analyzed Problem

Target: ONEMAXy [1[1]1]1]1]1]1][0]0]0] 6

Aux1: ONEMAX [1[1]1]1[1[1]1]1]1]1] 6

Aux2: ZeroMax [o0]oJofofJofofofofo]o] 4

Example [1]o]o[1][1][1]o]1]o]0]

Properties

» Auxiliary objectives are conflicting
» They can not speed up optimization of the target objective

» We look at how much they slow down

4/14

Analyzed Algorithm: RLS

1: Individual x < a randomly generated individual
2: while stopping criterion is not reached do

3: Individual x” <~ mutate x (flip one bit)
4 if F(x') > F(x) then

5: x X'

6 end if

7: end while

5/14

Analyzed Algorithm: RLS

1: Individual x < a randomly generated individual
2: while stopping criterion is not reached do

3: Individual x” <~ mutate x (flip one bit)

4: if F(x’) > F(x) then

5: x X'

6: end if

7: end while

Let me recall: E[Tr s(ONEMAX of length n)] = ©(nlog n)

5/14

Analyzed Algorithm: SEMO

1. Population P < { a randomly generated individual }
2: while stopping criterion is not reached do

3:

9:

© N Tk

Randomly select individual x from P

Individual x" < mutate x (flip one bit)

Select non-dominated individuals P’ from P U {x'}

if 3y € P': f(y) = f(x') and y # x’ then
Remove y from P’

end if

P« P

10: end while

6/14

Analyzed Algorithm: SEMO

1. Population P < { a randomly generated individual }
2: while stopping criterion is not reached do

3: Randomly select individual x from P
4: Individual x" < mutate x (flip one bit)
5: Select non-dominated individuals P’ from P U {x’}
6: if 3y € P': f(y) = f(x') and y # x’ then
7: Remove y from P’
8: end if
9: P« P ® ®
10: end while P
° ®
°
° °
°

6/14

Analyzed Algorithm: SEMO

1. Population P < { a randomly generated individual }
2: while stopping criterion is not reached do
3: Randomly select individual x from P

4: Individual x" < mutate x (flip one bit)

5: Select non-dominated individuals P’ from P U {x'}
6: if 3y € P': f(y) = f(x') and y # x’ then

7: Remove y from P’

8: end if

9: P+ P

10: end while

Theorem
If expected population size is at most S, then:
E[Tsemo] < S -min E[Tgrs | i-th objective is used |
1

6/14

Helper Objectives

Setup

» SEMO running with two objectives: {ONEMAXy, *}

» Second objective is chosen at random every k iterations

7/14

Helper Objectives

Setup

» SEMO running with two objectives: {ONEMAXy, *}

» Second objective is chosen at random every k iterations

Analysis

» Population grows by at most 1 on every iteration

7/14

Helper Objectives

Setup

» SEMO running with two objectives: {ONEMAXy, *}

» Second objective is chosen at random every k iterations
Analysis

» Population grows by at most 1 on every iteration

» At ONEMAX <+ ZEROMAX switch, population becomes O(1)

7/14

Helper Objectives

Setup

» SEMO running with two objectives: {ONEMAXq, *}

» Second objective is chosen at random every k iterations
Analysis

» Population grows by at most 1 on every iteration

» At ONEMAX <+ ZEROMAX switch, population becomes O(1)

7/14

Helper Objectives

Setup

» SEMO running with two objectives: {ONEMAXq, *}

» Second objective is chosen at random every k iterations
Analysis

» Population grows by at most 1 on every iteration

» At ONEMAX <+ ZEROMAX switch, population becomes O(1)

» Running time: O(max(n, k) - nlog n)

7/14

Simultaneous Optimization of All Objectives

Setup
» SEMO running with {ONEMAXy, ONEMAX, ZEROMAX}

8/14

Simultaneous Optimization of All Objectives

Setup
» SEMO running with {ONEMAXy, ONEMAX, ZEROMAX}

Analysis

» |dea 1: Population size is at most n+ 1

8/14

Simultaneous Optimization of All Objectives

Setup
» SEMO running with {ONEMAXy, ONEMAX, ZEROMAX}

Analysis

» |dea 1: Population size is at most n+ 1
» E[T] < (n+1)-O(nlogn) — E[T] = O(n?log n)

8/14

Simultaneous Optimization of All Objectives

Setup
» SEMO running with {ONEMAXy, ONEMAX, ZEROMAX}

Analysis
» |dea 1: Population size is at most n+ 1
» E[T] < (n+1)-O(nlogn) — E[T] = O(n?log n)

> Idea 2: for small and large d:
» the distance between initial and final ONEMAX value is ©(n)

» since the middle of the way, the population size is ©(n)
> this yields the Q(n?log n) bound

8/14

Simultaneous Optimization of All Objectives

Setup
» SEMO running with {ONEMAXy, ONEMAX, ZEROMAX}

Analysis
» |dea 1: Population size is at most n+ 1
» E[T] < (n+1)-O(nlogn) — E[T] = O(n?log n)

> Idea 2: for small and large d:
» the distance between initial and final ONEMAX value is ©(n)

» since the middle of the way, the population size is ©(n)
> this yields the Q(n?log n) bound

» The intuition says Q(n?log n) bound should hold in general

8/14

Reinforcement Learning for Single Objective

Setup
» Optimizing using RLS

» The objective is chosen by reinforcement learning

9/14

Reinforcement Learning for Single Objective

Setup

» Optimizing using RLS

» The objective is chosen by reinforcement learning

state s(t)

Q-Learning

reward r(t)

w(t+ 1)

» Agent

e —

Evolutionary Algorithm

s(t+1)

fitness
function

Q(s, h) < Q(s, h) + a(r +ymaxpyepy Q(s', h') — Q(s, h)), s —
state, H — set of objectives

9/14

Reinforcement Learning for Single Objective

Setup

» Optimizing using RLS
» The objective is chosen by reinforcement learning

» Actions: {ONEMAX4, ONEMAX, ZEROMAX}
» Reward: the change of ONEMAXy
» State: the value of ONEMAXy

9/14

Reinforcement Learning for Single Objective

Setup

>

>

Optimizing using RLS
The objective is chosen by reinforcement learning

» Actions: {ONEMAX4, ONEMAX, ZEROMAX}
» Reward: the change of ONEMAXy
» State: the value of ONEMAXy

It can learn wrong OMdI o
objective n-d+1 B state n-d+1
E[T] = 00 n-d V\C state n-d
for d € [2;n — 2] o S e
Ex.: mask = 1001,

d+1{ ¢ state d+1
1010 — 1011 — 1111 o e

ddF¥1 " ASn2nI h OM;

9/14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}

» Second objective is chosen by reinforcement learning

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}

» Second objective is chosen by reinforcement learning

state s(t)

Q-Learning
reward r(t) Agent
r(t+1)
;‘ Evolutionary Algorithm
s(t+1)

fitness
function

Q(S¢ h) — Q(S, h) + Oé(l’ + vy maxyeH Q(sla h/) - Q(57 h))v S—
state, H — set of objectives

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}
» Second objective is chosen by reinforcement learning

» Actions: {ONEMAX, ZEROMAX}
» Reward: the change of ONEMAX,
» State: the value of ONEMAXy

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}
» Second objective is chosen by reinforcement learning

» Actions: {ONEMAX, ZEROMAX}
» Reward: the change of ONEMAX,
» State: the value of ONEMAXy

Analysis

» We are elitistic in ONEMAXy — it only increases

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}
» Second objective is chosen by reinforcement learning

» Actions: {ONEMAX, ZEROMAX}
» Reward: the change of ONEMAX,
» State: the value of ONEMAXy

Analysis

» We are elitistic in ONEMAXy — it only increases

» Thus we never visit a state for which we learned something

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}
» Second objective is chosen by reinforcement learning

» Actions: {ONEMAX, ZEROMAX}
» Reward: the change of ONEMAX,
» State: the value of ONEMAXy

Analysis

» We are elitistic in ONEMAXy — it only increases
» Thus we never visit a state for which we learned something

» This means we always select second objective at random

10/ 14

Reinforcement Learning for Second Objective

Setup

» SEMO running with two objectives: {ONEMAXy, *}
» Second objective is chosen by reinforcement learning

» Actions: {ONEMAX, ZEROMAX}
» Reward: the change of ONEMAX,
» State: the value of ONEMAXy

Analysis

v

We are elitistic in ONEMAXy — it only increases

v

Thus we never visit a state for which we learned something

v

This means we always select second objective at random

v

Runtime is O(nlog n)

10/ 14

Preserving the best solution (single-objective)

Setup

» Optimizing using RLS
» The objective is chosen by reinforcement learning
» Actions: {ONEMAX4, ONEMAX, ZEROMAX}
Reward: the change of ONEMAXy
State: the value of ONEMAXy
Target-worsening individuals are not accepted (even if the
auxiliary objective allows)

vV vVvYyy

11/14

Preserving the best solution (single-objective)

Setup

v

v

v

Optimizing using RLS
The objective is chosen by reinforcement learning

» Actions: {ONEMAX4, ONEMAX, ZEROMAX}
Reward: the change of ONEMAXy
State: the value of ONEMAXy

vV vVvYyy

auxiliary objective allows)

Ti=35-(1+55)

n—1
Runtime expectation: > T; = O(nlog n)
i=0

Works as good as the multi-objective
algorithm

Target-worsening individuals are not accepted (even if the

Problem with useful and harmful auxiliary objectives

» Target objective: LeadingOnes

» Notice: OneMax can be solved faster and has the same
optimum

» Dynamic auxiliary objectives based on OneMax and ZeroMax:

fitness

0 X1 Xz Ien'gth

12/ 14

Empirical results: RL in single-objective algorithm

Number of fitness evaluations until optimum is found (averaged)

| Preserving ‘ Preserving, no learn. when bad ‘ No preserving
Parameters | RLS ‘ ss,e=01 ts,e=0 ts, =0.1 ‘ ss,e=01 ts,e=0 ts, e=0.1 ‘ all setups
n LeadingOnes
141 1.00-10* [461-10° 7.20-10° 7.80-10° [1.36-10* 1.49-10° 1.49-10° [~
151 1.13-10* | 5.08-10° 833-10® 8.90-10° | 157-10* 1.72-10* 1.72-10* | o
161 1.30-10* | 5.44-10° 9.39-10° 1.01-10* |1.81-10* 1.94-10* 1.96-10* | o
171 1.45-10* | 6.04-10° 1.06-10* 1.13-10* |205-10* 2.18-10* 219-10* | o
181 1.65-10* | 6.60-10° 1.18-10* 1.27-10* |229-10* 2.47-10* 246-10* |
191 1.81-10* | 7.28-10° 1.33-10* 1.41-10* |258-10* 2.73-10* 273-10* | o
n, d Generalized OneMax
100, 50 451-10%" 4.93-10> 5.65-10° 5.69-10° [6.49-10° 6.75-10° 6.81-10° | oo
200, 100 1.04-10® 1.09-10° 1.26-10% 1.31-10° |1.47-10% 1.55-10° 157-10®° |
300, 150 1.72-10° 1.74-10° 203-10% 2.05-10° |240-10% 251-10° 251-10® | o
400, 200 243-10° 2.43-.10° 2.80-10° 2.90-10° |[3.42-10° 356-10° 3.53-10° |
500, 250 3.12-10° 3.16-10° 3.65-10° 3.72-10° |4.34-10° 458-10° 4.60-10° | o

> ss — single state, ts — target state

» ¢ — exploration parameter
» Q(s,h) < Q(s, h) +a(r+ymaxpey Q(s', h') — Q(s, h)), s —

state, H — set of objectives

13/ 14

Conclusion

» Concluding observations on auxiliary objective selection:

» Conflicting objectives can surprisingly help

» Multi-objective optimization works good because it preserves
the best found solution

» Therefore, it is enough to use single-objective optimization
with the same feature

» Future work:

» Analyze simultaneous optimization of all objectives on
Generalized OneMax (should be ©(n?log(n)) vs O(nlog n) for
dynamic selection)

» Analyze reinforcement learning with single state (not random
in this casel)

» Empirically test preserving of the best found solution on the
Job Shop Scheduling problem

14 / 14

Conclusion

» Concluding observations on auxiliary objective selection:

» Conflicting objectives can surprisingly help

» Multi-objective optimization works good because it preserves
the best found solution

» Therefore, it is enough to use single-objective optimization
with the same feature

» Future work:

» Analyze simultaneous optimization of all objectives on
Generalized OneMax (should be ©(n?log(n)) vs O(nlog n) for
dynamic selection)

» Analyze reinforcement learning with single state (not random
in this casel)

» Empirically test preserving of the best found solution on the
Job Shop Scheduling problem

Thank you for listening!

14 / 14

