
Selection of Auxiliary Objectives Using
Landscape Features and Offline Learned

Classifier

Anton Bassin(B) and Arina Buzdalova

ITMO University, 49 Kronverksky Pr., Saint-Petersburg, Russia 197101
anton.bassin@gmail.com, abuzdalova@gmail.com

Abstract. In order to increase the performance of an evolutionary algo-
rithm, additional auxiliary optimization objectives may be added. It is
hard to predict which auxiliary objectives will be the most efficient at
different stages of optimization. Thus, the problem of dynamic selection
between auxiliary objectives appears. This paper proposes a new method
for efficient selection of auxiliary objectives, which uses fitness landscape
information and problem meta-features. An offline learned meta-classifier
is used to dynamically predict the most efficient auxiliary objective dur-
ing the main optimization run performed by an evolutionary algorithm.
An empirical evaluation on two benchmark combinatorial optimization
problems (Traveling Salesman and Job Shop Scheduling problems) shows
that the proposed approach outperforms similar known methods of aux-
iliary objective selection.

Keywords: Evolutionary algorithms · Multi-objective optimization ·
Auxiliary objectives · Fitness landscape features

1 Introduction

Evolutionary algorithms (EAs) are generic meta-heuristic optimization algo-
rithms. An EA searches solution candidates based on the current state whilst pre-
viously reached historical states are not taken into account during the runtime.
The information derived from the fitness landscape and from the optimization
problem instance may be used to determine the state of an evolutionary algo-
rithm. In these terms, the optimization problem transforms into searching the
EA states which correspond to global optima on the fitness landscape. Auxiliary
objectives may be used instead of the target objective or along with the tar-
get objective. Auxiliary objectives serve to multi-objectivise a single objective
problem. In some cases this transformation may increase efficiency of an EA.

An auxiliary objective is efficient if its usage leads to decrease of the time
needed to find the optimum of the target objective. Different auxiliary objectives
have different efficiency on various stages of optimization. For example, at the
stagnation point of the EA the most aggressive auxiliary objective may move
the optimization process away from getting stuck in a local optimum. Inversely,
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 173–188, 2017.
DOI: 10.1007/978-3-319-55453-2 12



174 A. Bassin and A. Buzdalova

if the current algorithm state corresponds to the situation where solution candi-
dates are located near the global optimum, we would want to use less aggressive
auxiliary objectives.

At present time, researchers are looking for new ways of parameterizing fit-
ness landscape features and applying received techniques in the evolutionary
computation field [1,2]. Authors of paper [3] suggested a method to multi-
objectivise single objective problems by using an elementary landscape decom-
position of their objective function. However, to the best of our knowledge,
landscape features have never been used to guide dynamical selection of auxil-
iary objectives. The existing objective selection algorithms use random selection
based on the number of iterations [4] or reinforcement learning based on differ-
ences in target objective values [5].

One of the first approaches to transform a single-objective problem into a
multi-objective one was proposed by Knowles et al. in [6]. The authors sug-
gest decomposing the target objective into several components, which should be
independent. The decomposed objectives are optimized simultaneously. Another
method belongs to Jensen [4]. The idea is to use auxiliary objectives in com-
bination with the target objective. Furthermore, the auxiliary objectives used
in paper [4] are changed dynamically. The author concluded from the obtained
experimental results that using one auxiliary objective at a time is the best
approach, but he also underlined questions on when to change the auxiliary
objective and to which objective it should be changed. There also exists an
adaptive auxiliary objective selection method based on reinforcement learning
called EA+RL [5]. The main idea is to use the reinforcement learning to train
online (during the EA runtime) an agent, which tries to predict the most efficient
auxiliary objective on each evolutionary iteration. The aforementioned method
was improved by Petrova et al. in [7].

We tested the efficiency of the method that we propose in the present paper
on multiple instances of two benchmark problems: The Traveling Salesman Prob-
lem (TSP) and The Job Shop Scheduling Problem (JSSP). However, the pro-
posed method is not designed for solving any specific optimization problem, it is a
general approach for selection of the most efficient auxiliary objective during EA
runtime. Therefore, we compared the proposed method with other approaches of
objective selection. Additionally, to confirm the reliability of the obtained results
we checked the corresponding values for statistical distinguishability.

The rest of the paper is organized as follows. In Sect. 2 discusses the
main aspects of the proposed method of auxiliary objective selection. Section 3
presents experiment results of solving TSP. Section 4 presents the results for the
JSSP, and we conclude in Sect. 5.

2 The OLHP Method

We propose a new auxiliary objective selection strategy named The Offline
Learned Helper Picker (OLHP). The term Offline is used because the meta-
classifier for auxiliary objective selection is trained offline with machine learning
methods. The learning dataset is gathered from the training EA runs on train-
ing instances of an optimization problem. The learning dataset vector contains



Selection of Auxiliary Objectives Using Landscape Features 175

properties of the problem instance and feature values of the fitness landscape of
the current EA population. The term Helper is used as a synonym to “auxiliary
objective”. The OLHP consists of two main phases: the meta-classifier learning
and objective selection during the EA runtime. The implementation of OLHP,
along with experimental evaluation results, is available at Bitbucket repository1.

2.1 Learning the Meta-Classifier Phase

The meta-classifier is learned only once for each optimization problem T . Input
parameters of this phase are: 1. A set of training problem instances L ⊂ T , L
consists of any � ∈ T , where T is the set of all possible instances of a particular
optimization problem. 2. A set of rules for auxiliary objectives generation G =
{g(i)}, g(i) = hi : IN → H, where H is the set of all possible auxiliary objectives
for the considered optimization problem.

At the considered phase we construct the dataset of learning samples and
then build the meta-classifier. To do this we need to perform n runs of the EA
for each training problem instance. The value of the constant n may be manually
tuned to find better meta-classifier metrics.

The current EA state is described by two components: static meta-features
of the problem instance and features of the target objective landscape at the
current population, which are extracted dynamically during the runtime. From
each particular EA state stj we make k runs (k = |Hk| is the total number of
used auxiliary objectives, G(H) = Hk = {hi} is a set of generated auxiliary
objectives) in parallel for niter = Imax

k iterations, where Imax corresponds to the
maximum number of iterations in a training run of the EA. Thus, the maximum
number of considered EA states is j = k. Accordingly, there is a chance for
each auxiliary objective to be picked at each EA state. All parallel EA threads
optimize different auxiliary objective function hi simultaneously with the target
objective. After performing latter evaluations we can make an assumption on
which auxiliary objective hi would be the most efficient if using it from the EA
state stj for niter EA iterations.

We identify an efficiency of an auxiliary objective by comparing the values
of target objective for the best solution candidate in the beginning of each EA
thread and in the end of its work. If several threads showed an equal increase in
the target fitness value of the best solution, then the best auxiliary objective for
the EA state stj is selected from the first thread. Thereby, we have one learning
dataset vector which is comprised of the meta-features of the problem instance
and the fitness landscape features corresponding to the EA state stj . The target
value (or class value) of this vector is number i, which corresponds to the most
efficient auxiliary objective hi.

After performing the training evaluations from the EA state stj , we move
forward to a new state stj+1. As the state stj+1 we pick an EA state after using
the most efficient auxiliary objective hj . The steps described above are processed
until the maximum number of EA iterations Imax is reached. The final thing to

1 https://bitbucket.org/BASSIN/2017-olhp-tsp-jssp/src.

https://bitbucket.org/BASSIN/2017-olhp-tsp-jssp/src


176 A. Bassin and A. Buzdalova

do is to train and save the meta-classifier for selection of auxiliary objectives.
Algorithm 1 presents the pseudocode of the meta-classifier learning phase.

Algorithm 1. Learning of the meta-classifier
1: procedure LearnSelector(Inststr, G) � Inststr is a set of training instances,

G - set of auxiliary objective gener-

ating rules
2: r ← the number of runs for each training instance

3: for all tr in Inststr do

4: metaFeatures ← extractMetaFeatures(tr)

5: Hk ← G(tr) � Generate auxiliary objectives for

train problem instance tr
6: i ← 0

7: while i < r do

8: Imax ← calculateMaxIterationNumber(tr)

9: niter ← Imax
|Hk| � Setting iterations number between

algorithm states
10: EA.initialize(tr) � Initialize evolutionary algorithm

with train instance tr
11: j ← 0

12: while j < Imax do

13: stj ← saveState(EA, metaFeatures)

14: for all h in Hk do � For each auxiliary objective

15: EA.run(niter, h) � Run EA with auxiliary objective h for

niter iterations
16: fitnessRaiseh ← calculateF itnessDiff(EA)

17: sth ← saveState(EA)

18: end for

19: hbest ← findBestHelper(∀fitnessRaiseh) � Identify the most

efficient auxiliary

objective
20: dataset.put(hbest, stj .getMetaFeatures(), stj .getLandscapeFeatures())

21: EA.setState(sthbest ) � Set EA state to the state after

using the best auxiliary objective
22: j ← j + niter

23: end while

24: i ← i + 1

25: end while

26: end for

27: classifier.train(dataset) � Learn the meta-classifier for objective selection

28: classifier.serialize() � Serialize trained model for future usages

29: end procedure

2.2 Objective Selection During the EA Runtime

This subsection describes the algorithm that dynamically selects and applies
auxiliary objectives during EA runtime. The input parameters for this OLHP
phase are: 1. An instance of the optimization problem we want to solve � ∈ T ,
where T is a space of all possible instances of a particular optimization problem;
2. A set of rules for generation of auxiliary objectives G = {g(i)}, g(i) = hi :



Selection of Auxiliary Objectives Using Landscape Features 177

IN → H, where H is the set of all possible auxiliary objective functions we are
working with. 3. A meta-classifier learned beforehand on problem instances from
T : predict(v) = k, g(k) = hbest, where v is the vector of fitness landscape features
of the current population and static meta-features of the problem instance.

The first step of this phase is initialization of all required structures and dese-
rialization of the meta-classifier for considered optimization problem. At the next
step, we start an evolutionary algorithm. Each niter = Imax

k (k = |Hk| = |G(H)|)
iteration period we predict the most efficient auxiliary objective basing on the
problem instance static features and fitness landscape features of the current EA
population. The predicted objective hbest is used by the EA simultaneously with
the target objective for the next niter iterations. Restriction on optimization by
only one additional objective is made for making it possible to learn and solve
many problem instances of various sizes for a reasonable computational time.
Algorithm 2 presents the detailed pseudocode for this OLHP phase.

Algorithm 2 Solving the problem instance
1: procedure SolveProblem(inst, G, cl) � inst is a problem instance to opti-

mize, cl – learned classifier
2: cl.deserialize()
3: metaFeatures ← extractMetaFeatures(inst)
4: Hk ← G(inst) � Generate auxiliary objectives for the

problem instance
5: Imax ← calculateMaxIterationNumber(inst)
6: niter ← Imax

|Hk| � Setting iterations number between algo-
rithm states

7: EA.initialize(inst) � Initialize EA with optimization problem
instance

8: j ← 0
9: while j < Imax do

10: if j mod niter = 0 then � Time for switching an auxiliary objective
11: stj ← getState(EA, metaFeatures, getLandscapeFeatures(EA))
12: hpredicted ← cl.predict(stj)
13: EA.setHelper(hpredicted)
14: end if
15: EA.runIteration() � Make one iteration of EA
16: j ← j + 1
17: end while
18: EA.saveBestSolution() � Save the optimization result
19: end procedure

2.3 Fitness Landscape Features

We use generic fitness landscape features of an EA population which are eligible
for almost any optimization problem. A population of size p may be represented
as a set of random variables P = {si}, i = 1..p. On each EA iteration we can
obtain values of random variables si. Hence, we can calculate statistical metrics
of set P .



178 A. Bassin and A. Buzdalova

Since we are solving meta-classification task for any instance of optimization
problem T, we need to normalize the values of received landscape features. For
such a normalization, we propose to use the ratio of the target objective value on
current solution candidate to the best known solution candidate value: G(si)

G(sbest)
=

xi, where G(s) is the target objective function. The set of random variables
{xi} = Pnormalized is normalized for all instances of problem T . Thus, we suggest
to use the following statistical metrics calculated on the set Pnormalized as fitness
landscape features:

1. Med – the median value.
2. x̄ = 1

p

∑p
i=1 xi – the arithmetical mean.

3. Hmean = p∑p
i=1

1
xi

, xi > 0 – the harmonic mean.

4. Dev – the standard deviation.
5. Qmean =

√
1
p

∑p
i=1(xi − x̄)2 – the sample variance.

3 Applying OLHP to Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classic NP-hard problem in com-
binatorial optimization. Each TSP instance may be described by a set of cities
{ci},∀i = 1 . . . N and a distance matrix M of size N ×N . Elements of M repre-
sent the distance between a pair of cities. For example, M(ci, cj) is the distance
between the cities ci and cj . The TSP asks the following question: “What is
the shortest possible route that visits each city once and returns to the origin
city?”. In other words, we need to find a Hamiltonian path with the lowest total
distance. For the path vector ρ = (ρ1, ρ2, . . . , ρN ) we can calculate the total
distance cost using (1):

D(ρ) =
N∑

i=1

M(cρ[i] , cρ[i⊕1]),

where i ⊕ 1 =

{
i + 1, if i < N

1, if i = N

(1)

In experimental evaluations, we use symmetric TSP problem instances. In the
symmetric TSP problem, the value of a path from one city to another is equal to
the value of the reverse path: M(ci, cj) = M(cj , ci). More detailed explanation
of the TSP may be found in [8].

3.1 TSP Meta-Features

We need to specify TSP meta-features which we would use as a part of machine
learning vector. Meta-features should contain information, which represents
the properties of a particular TSP instance. The following features meet this
requirement:



Selection of Auxiliary Objectives Using Landscape Features 179

1. Vnum – the number of cities.
2. Emin – the minimum distance between a pair of cities.
3. Emax – the maximum distance.
4. Eavg – the average distance.
5. Emed – the median distance.
6. DevE – the standard deviation of distances.
7. QE−avg – the number of distances shorter than Eavg.
8. SumminE

– the sum of Vnum minimal distances.

The latter TSP meta-features were successfully used by Kanda et al. in [9] to
classify Traveling Salesman Problems and in [10] to recommend meta-heuristics
for solving TSP.

3.2 TSP Auxiliary Objectives Generation

In the OLHP method, an auxiliary objective is required to have some prop-
erty, which depends only on the problem instance, but not on the individual or
the iteration number. Unfortunately, the existing approaches of auxiliary objec-
tive generation [4,6] do not provide us objectives with such kind of a property,
because in these approaches objectives are generated using randomly picked
cities.

To generate auxiliary objectives which depend only on the problem instance,
we propose a new method of auxiliary objective generation inspired by the k-
nearest neighbor classification algorithm [11].

In [4], the following auxiliary objective function was proposed:

h(ρ, s) =
|s|∑

i=1

(M(cρ[ρ−1[s[i]�1], cs[i]) + M(cs[i], c[ρ−1[s[i]]⊕1]), (2)

where s is the subset of the set of cities C = {1, 2, . . . , N}, ρ−1(x) is the position
of x in ρ, �1 is the reverse operator to ⊕ 1.

In our approach, we use Eq. (2) to generate auxiliary objectives. We generate
subsets of cities (the s parameter in (2)) by partitioning the set of cities C =
{ci}, i = 1 . . . N using the following algorithm:

1. Sort the set of all cities C by the following criteria:

Knn(C) → SC = {c1, c2, . . . , cN}, (3)

where Knn(C) is the sorting operator, SC – is the ordered set.
For each pair of elements from SC :

ci�knncj , (4)

where i, j = 1 . . . N and the relation �knn is true when the total distance
from city ci to k nearest neighbor cities is less or equal to the corresponding
total distance for the city cj .



180 A. Bassin and A. Buzdalova

2. Divide the ordered set SC into subsets sj ⊂ SC , j = 1 . . . r of equal cardinality.
The number of elements in the last subset sr may be less than the number of
elements in the other subsets.

Note that si ∩ sj = ∅, ∀i, j = 1 . . . r, i �= j. This fact means that the gener-
ated auxiliary objectives h(ρ, sj) have disjoint properties on a problem instance.
This should make possible for each auxiliary objective to be the most efficient
objective at different stages of optimization process.

3.3 Experimental Evaluation on TSP

We compare the OLHP method with the following approaches of optimizing
the target objective with auxiliary objectives. First, we consider the method
proposed by Jensen [4], where the auxiliary objective is dynamically rese-
lected after a fixed number of EA iterations. In the second considered app-
roach [7], named Multi-Objective Evolutionary Algorithm + Reinforcement
Learning (MOEA+RL), RL agent learns to select auxiliary objectives during
the EA runtime and non-stationarity of the environment is taken into account.
The last considered approach is a modified combination of two known algorithms.
Two auxiliary objectives are composed in the manner described by Jähne et al.
in [12] and the first selected auxiliary objective is switched to another one at the
half of the EA runtime as suggested in [4].

The TSP instances for the experimental evaluation were taken from TSPLIB2

library. The crossover and mutation operators were identical to the correspond-
ing operators from the papers mentioned above. Also, the 2-opt local search
heuristic [13] was used.

The crossover probability was equal to 40%. The population size was Psize =
100. The limit of target objective evaluations for each EA run was calculated
in the manner proposed in [12]: evmax(N,m) =

√
N3 ∗ m, where N is the total

number of cities, m is a manually chosen parameter (in our experiments we used
m = 10). The number of EA runs for each training problem instance was n = 4.

The auxiliary objectives for the methods proposed by Jensen and Jähne were
generated using the rules, which are provided in the related papers. The results
for both the OLHP and MOEA+RL algorithms were obtained using the same
auxiliary objectives, namely the K-nn auxiliary objectives proposed in Sect. 3.2.
We used the following parameters to generate auxiliary objectives: k = 5, r = 5.

The comparison with MOEA+RL was intended to evaluate the efficiency of
the proposed objective selection scheme without the influence of the objective
generation approach, as the both OLHP and MOEA+RL algorithms are in equal
conditions in terms of the used auxiliary objectives. At the same time, in the
Jensen and Jähne/Jensen methods, the original auxiliary objectives from the
corresponding works were applied, so the comparison with these methods was
performed to evaluate the efficiency of the entire proposed approach for the TSP
optimization.

2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95


Selection of Auxiliary Objectives Using Landscape Features 181

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [14] was used
as the base evolutionary algorithm in all experiments. The program code was
written in Java and Groovy languages. The following frameworks were used:
Watchmaker3 – for evolutionary computations, Weka4 – for the OLHP machine
learning operations.

Learning of Meta-Classifier. The Random Forest classifier was used for
building the OLHP auxiliary objective selector. The Random Forest parame-
ters had default5 values from the Weka framework.

To obtain train and test sets, TSP instances from the TSPLIB were divided
into subsets. We were guided by the idea that train and test instances should
have items with similar meta-properties. The train TSP instances are listed in
Appendix A.

To estimate how accurately our predictive model would perform in practice,
we cross-validated our classifier. For the same limitation on similarity of train and
test problem instances we were forced to use a special set of problems for cross-
validation. We made 10-fold cross-validation on instances listed in Appendix A.
The performance metric values of our classification model on TSP after the cross-
validation were: Estimated Error Rate = 0.16, Precision = 0.90, Recall = 0.96, F-
measure = 0.93. The latter values confirm that there exists a correlation between
the EA state features and selection of the most efficient auxiliary objective.

Results of Solving TSP. We used 44 TSP instances to perform experiments.
Further, the final solution results for each method of auxiliary objective selection
were obtained η = 40 times and averaged.

Table 1 shows mean and standard deviation of the best obtained value of the
target objective for the OLHP, MOEA+RL, Jensen and Jensen/Jähne methods.
Cells with the best values are marked with bold text. The last row of Table 1
shows the total number of instances, on which the particular method has out-
performed other approaches. Note that the sum of the values in the last row is
not equal to the number of total considered test instances. It is explained by the
situation when several methods showed the best mean target value. In this case,
we increment the corresponding counters for each such method. To summarize,
it can be concluded from Table 1 that the newly proposed OLHP method out-
performed the considered approaches of auxiliary objective selection on the set
of test TSP instances.

Statistical Testing. According to [15], we used the Wilcoxon signed-rank test
to detect significant differences in behavior of two algorithms. The pairwise sta-
tistical test was applied on the average results obtained on test instances for each
pair of the considered approaches. In order to perform multiple comparisons and

3 http://watchmaker.uncommons.org.
4 http://www.cs.waikato.ac.nz/ml/weka.
5 http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html.

http://watchmaker.uncommons.org
http://www.cs.waikato.ac.nz/ml/weka
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html


182 A. Bassin and A. Buzdalova

Table 1. Mean and standard deviation of resulting fitness (TSP)

Problem Best OLHP MOEA+RL Jensen häJ/neJ
a280 2579 2597.9 ± 13.1 2599.4 ± 13.4 2597.2 ± 16.3 2597.2 ± 11.8
ali535 202339 204624.4 ± 1587.0 204382.0 ± 1482.5 205909.5 ± 1505.1 204853.0 ± 1463.7
att48 10628 10628.5 ± 2.2 10629.1 ± 4.9 10631.4 ± 6.5 10645.1 ± 17.7
bier127 118282 118337.3 ± 116.0 118436.2 ± 259.4 118320.6 ± 83.0 118358.1 ± 187.9
brg180 1950 1952.8 ± 4.5 1952.5 ± 4.3 1950.0 ± 0.0 1950.0 ± 0.0
ch150 6528 6548.0 ± 12.4 6550.8 ± 12.7 6544.4 ± 12.6 6547.6 ± 12.9
d1291 50801 51585.9 ± 210.2 51594.4 ± 240.7 51592.7 ± 191.1 51560.5 ± 270.5
d657 48912 49292.3 ± 151.9 49353.6 ± 141.5 49285.6 ± 127.6 49358.0 ± 131.0

dsj1000 18659688
18860887.9
±45886.0

18870762.9
±50593.3

18861694.6
±60582.9

18887428.3
±61706.0

eil76 538 544.4 ± 0.0 544.5 ± 0.5 544.7 ± 0.9 544.4 ± 0.1
fl417 11861 11927.0 ± 5.2 11926.8 ± 6.0 11942.1 ± 13.9 11939.7 ± 22.4
gr137 69853 69862.6 ± 28.5 69878.8 ± 57.9 69878.8 ± 44.4 69864.0 ± 29.3
gr229 134602 135130.0 ± 400.5 135087.3 ± 346.0 135048.9 ± 346.7 135051.8 ± 267.1
gr666 294358 297940.3 ± 1536.3 298189.9 ± 1454.3 297663.3 ± 1336.9 297826.6 ± 1426.5
gr96 55209 55305.2 ± 58.1 55312.6 ± 77.0 55352.1 ± 60.6 55326.9 ± 70.2
kroA100 21282 21287.0 ± 9.5 21287.0 ± 10.0 21287.0 ± 10.0 21285.4 ± 0.0
kroA200 29368 29393.5 ± 59.2 29398.2 ± 67.6 29426.1 ± 111.9 29395.7 ± 62.3
kroB100 22141 22140.9 ± 11.1 22148.2 ± 28.7 22141.3 ± 13.3 22145.9 ± 21.6
kroB150 26130 26148.2 ± 49.5 26190.0 ± 64.9 26162.5 ± 60.7 26149.8 ± 51.1
kroC100 20749 20750.8 ± 0.0 20750.8 ± 0.0 20750.8 ± 0.0 20750.8 ± 0.5
kroD100 21294 21311.2 ± 30.1 21333.5 ± 45.0 21374.0 ± 31.8 21314.5 ± 33.2
lin105 14379 14383.0 ± 0.0 14383.0 ± 0.0 14383.0 ± 0.0 14383.0 ± 0.0
lin318 42029 42321.6 ± 175.3 42323.7 ± 180.6 42314.6 ± 154.1 42297.7 ± 167.8
pcb1173 56892 57909.2 ± 166.2 57982.5 ± 250.3 57885.9 ± 199.6 57909.2 ± 201.1
pcb442 50778 51263.1 ± 132.1 51305.7 ± 199.0 51312.8 ± 202.1 51307.3 ± 167.3
pr1002 259045 262779.5 ± 868.7 263100.1 ± 1115.0 263427.5 ± 786.9 263178.0 ± 942.0
pr107 44303 44328.9 ± 39.9 44337.7 ± 50.8 44372.1 ± 74.5 44336.6 ± 50.0
pr124 59030 59030.7 ± 0.0 59030.7 ± 0.0 59032.9 ± 9.6 59030.7 ± 0.0
pr144 58537 58535.2 ± 0.0 58536.1 ± 5.2 58562.5 ± 14.8 58565.3 ± 19.9
pr152 73682 73697.4 ± 41.3 73711.2 ± 55.0 73783.6 ± 61.2 73691.6 ± 49.9
pr226 80369 80374.6 ± 12.4 80374.4 ± 12.4 80382.9 ± 38.8 80385.8 ± 29.7
pr299 48191 48320.1 ± 111.8 48370.7 ± 165.5 48434.7 ± 210.8 48398.6 ± 134.6
pr439 107217 107600.7 ± 424.3 107597.9 ± 354.4 107666.0 ± 498.6 107875.6 ± 510.4
rat195 2323 2340.6 ± 5.5 2344.9 ± 6.3 2343.1 ± 5.2 2342.9 ± 6.1
rat783 8806 8932.3 ± 23.8 8949.3 ± 25.4 8946.2 ± 25.5 8941.6 ± 22.8
rd100 7910 7912.3 ± 8.3 7911.9 ± 5.4 7914.7 ± 12.5 7914.7 ± 11.4
rd400 15281 15394.0 ± 54.6 15428.7 ± 58.8 15386.8 ± 54.3 15377.9 ± 55.8
si1032 92650 92650.0 ± 0.2 92656.6 ± 19.8 92720.3 ± 43.9 92673.4 ± 22.2
si535 48450 48496.4 ± 17.4 48496.2 ± 22.6 48543.2 ± 33.1 48487.8 ± 16.2
tsp225 3916 3876.3 ± 21.1 3877.8 ± 21.1 3873.1 ± 21.5 3869.2 ± 16.8
u1060 224094 226731.1 ± 671.0 226627.1 ± 721.0 226825.6 ± 690.4 226962.5 ± 687.4
u159 42080 42075.7 ± 0.0 42075.7 ± 0.0 42075.7 ± 0.0 42075.7 ± 0.0
u724 41910 42298.9 ± 137.3 42337.1 ± 119.3 42247.3 ± 96.4 42280.5 ± 121.7
vm1084 239297 241691.7 ± 962.0 241953.6 ± 898.0 241432.7 ± 704.0 241822.2 ± 770.0

Total best 21 10 12 12

control the family-wise error rate we adjusted the obtained p-values by using the
Holm–Bonferroni correction method.

The adjusted p-values for pairs of methods of auxiliary objective selection
were the following: OLHP – MOEA+RL = 1.0e-03, OLHP – Jensen = 4.2e-
02, OLHP – Jensen/Jähne = 4.2e-02. Therefore, the OLHP method shows a
significant improvement over MOEA+RL, Jensen and Jensen/Jähne approaches,
with the level of significance α = 0.05.



Selection of Auxiliary Objectives Using Landscape Features 183

4 Applying OLHP to Job Shop Scheduling Problem

The OLHP method was applied to the Job Shop Scheduling Problem (JSSP)
for further verification of its efficiency. Similarly to TSP, JSSP is a well-known
NP-hard combinatorial optimization problem.

A JSSP instance of size n × m consists of n jobs {J1, J2, . . . , Jn} = J and m
machines {M1,M2, . . . ,Mm} = M . Each job Ji contains a sequence of m opera-
tions (oi1, oi2, . . . , oim). Jobs and machines have mutual constraints, because an
operation oij may be processed only on the corresponding machine Mj . Each
operation oij takes the corresponding processing time τij ∈ IN. All jobs from
the set J need to be scheduled properly on the given machines, while trying to
minimize the amount of spent time resources. We consider the following JSSP
variation: each machine may process only one operation at the same time, oper-
ations related to one job can not be processed concurrently and processing of an
operation can not be interrupted.

There are several types of target objective which can be used in evolutionary
computations for the JSSP. We minimize the total flow-time of the schedule S:

F (S) =
n∑

i=1

(S(omaxi
) + τomaxi

), (5)

where omaxi
is the operation of the job Ji with the maximum start time in the

schedule S, S(omaxi) defines the start time value of operation omaxi and τomaxi

is the processing time of operation omaxi
.

4.1 JSSP Meta-Features

The JSSP meta-features were developed similarly to the TSP meta-features from
Sect. 3.1. The following features present the JSSP instance properties:

1. Mnum – the number of machines.
2. Jnum – the number of jobs.
3. MJratio = Mnum

Jnum
– the ratio between the number of machines and the number

of jobs.
4. τmin – the minimum operation processing time.
5. τmax – the maximum operation processing time.
6. τmean – the mean operation processing time.
7. Devτ – the standard deviation of the operation processing time.

8. τavgM =
∑m

j=1

∑n
i=1 oij

n

m – the average processing time, which is also averaged
per machine.

4.2 JSSP Auxiliary Objectives Generation

The restriction mentioned in the Sect. 3.2 (an auxiliary objective should have
some property defined by the problem instance) is reached by the The Shortest



184 A. Bassin and A. Buzdalova

Job First (SJF) auxiliary objective generating method proposed by Lochtefeld
et al. in [16].

Each particular job Ji has a minimum processing time, which can be calcu-
lated by the following equation: Fmin(Ji) =

∑m
j=1 oij . The next step is to define

the subset of jobs Hk, which would be used in the k-th auxiliary objective.
Then, the Eq. (5) evaluates the value of each auxiliary objective. The following
algorithm is used to determine a subset of jobs Hk of the particular auxiliary
objective:

1. The minimum processing times of all jobs Fmini
, i = 1 . . . n are calculated.

2. The set of all jobs J is sorted with respect to the minimum processing time:

Sort(J) → SJ = J1, J2, . . . , Jn,whereFmin(Ji) ≤ Fmin(Jj). (6)

3. The sorted set of all jobs SJ is divided into r subsets with equal number of
elements. Such a subset defines the auxiliary objective.

More details about the SJF auxiliary objectives can be found at [17].
The subsets Hk for the objectives can also be formed in a random way. Such a

technique is used by Jensen in [4]. We test performance of the random composed
subsets of jobs and the subsets generated by the SJF algorithm.

4.3 Experimental Evaluation on JSSP

In [4], Jensen also suggests using random auxiliary objectives for the JSSP prob-
lem. In [18] Petrova et al. apply the MOEA + RL method to this problem. We
also consider the problem specific approach proposed by Lochtefeld et al. [16],
based on job prioritization for auxiliary objective selection order. The OLHP
method was compared with the aforementioned algorithms.

The JSSP instances were taken from the Beasley’s OR Library6. The Gen-
eralized Order Crossover (GOX) [19] and the Position Based Mutation (PBM)
were used in all the considered algorithms. EA solution candidates were repre-
sented as an ordered permutation list of different operations with repetitions.
For example, an individual for a 2×3 problem may be encoded as (1, 2, 2, 1, 1, 2),
where the first “1” is the first operation of the job J1, the second “1” is the sec-
ond operation of J1 and so forth. Furthermore, the Giffler-Thompson schedule
builder [20] is used to transform genome to the proper solution candidate.

The crossover probability was set to 80%. The population size was Psize =
100. The stopping condition was whether an EA reached the limit of iterations.
This limit was calculated as follows: itermax(N,M) = N ∗ M ∗ 2, where N was
the total number of machines, M was the total number of jobs in the prob-
lem instance. Likewise in the TSP experiments, we used NSGAII algorithm.
The number of EA runs for each training instance was n = 4. For the OLHP,
Lochtefeld’s, MOEA+RL methods we used 4 different SJF auxiliary objectives
(remember that only one auxiliary objective was optimized simultaneously with

6 http://people.brunel.ac.uk/∼mastjjb/jeb/.

http://people.brunel.ac.uk/~mastjjb/jeb/


Selection of Auxiliary Objectives Using Landscape Features 185

Table 2. Mean and standard deviation of resulting fitness (JSSP)

Problem Best OLHP MOEA+RL Lochtefeld Jensen
abz6 7808 8180.2 ± 143.8 8261.3 ± 137.6 8213.2 ± 134.3 8244.6 ± 125.9
abz7 12561 13116.1 ± 167.3 13272.3 ± 180.7 13193.5 ± 188.9 13150.7 ± 179.7
abz9 12813 13441.6 ± 187.7 13574.6 ± 172.9 13475.9 ± 191.0 13463.0 ± 216.9
ft06 265 272.7 ± 7.0 272.0 ± 7.1 272.2 ± 7.0 270.4 ± 6.8
ft20 14279 16047.1 ± 516.4 16892.9 ± 542.8 16370.6 ± 499.5 16426.7 ± 590.5
la01 4832 4989.6 ± 81.7 5043.2 ± 96.6 5015.2 ± 87.6 5003.3 ± 71.3
la03 4175 4236.4 ± 68.2 4328.6 ± 70.5 4271.8 ± 64.6 4280.6 ± 73.9
la05 4094 4189.0 ± 59.5 4270.0 ± 61.6 4215.3 ± 63.5 4263.4 ± 66.1
la06 8694 9298.3 ± 162.3 9693.7 ± 201.4 9442.8 ± 215.1 9435.1 ± 189.1
la08 8176 8708.9 ± 202.6 9175.4 ± 194.6 8929.1 ± 221.8 8947.6 ± 229.2
la09 9452 9777.7 ± 140.6 10166.5 ± 170.2 9932.6 ± 170.4 9952.9 ± 211.5
la10 9230 9557.7 ± 161.7 10015.0 ± 214.6 9698.0 ± 176.8 9762.9 ± 189.8
la11 14801 15840.5 ± 321.2 16786.1 ± 367.3 16197.8 ± 339.1 16253.5 ± 434.1
la12 12484 13449.3 ± 263.5 14319.7 ± 301.4 13783.4 ± 339.3 13928.9 ± 377.5
la14 15595 16199.8 ± 268.9 17119.5 ± 300.9 16568.6 ± 338.3 16624.7 ± 341.3
la16 7393 7836.2 ± 136.7 7984.5 ± 151.4 7893.9 ± 158.1 7872.4 ± 145.4
la17 6555 6847.5 ± 99.5 6907.5 ± 96.3 6850.9 ± 88.1 6866.2 ± 99.5
la20 7427 7751.9 ± 117.6 7832.4 ± 144.0 7794.4 ± 124.8 7773.9 ± 119.5
la21 12953 13940.4 ± 203.1 14272.6 ± 200.6 14083.7 ± 253.4 14068.1 ± 219.9
la22 12106 13120.0 ± 221.2 13251.0 ± 213.5 13094.6 ± 208.3 13132.4 ± 223.9
la25 12465 13154.3 ± 222.3 13445.0 ± 243.1 13344.7 ± 260.6 13246.0 ± 214.8
la26 20234 22351.7 ± 309.0 22823.0 ± 312.0 22467.0 ± 272.3 22449.4 ± 311.8
la29 20404 21498.7 ± 394.6 22047.7 ± 386.5 21707.8 ± 383.1 21733.0 ± 392.2
la30 22333 23725.8 ± 472.4 24323.1 ± 382.8 24026.2 ± 471.2 23948.2 ± 419.7
la31 39007 44400.9 ± 619.9 45201.8 ± 541.6 44548.8 ± 580.2 44524.4 ± 614.9
la35 44059 46014.8 ± 638.6 46843.0 ± 633.2 46382.7 ± 679.1 46161.3 ± 784.9
la36 17073 18461.3 ± 289.8 18565.4 ± 244.1 18485.6 ± 272.2 18484.2 ± 270.3
la38 16621 17346.9 ± 290.6 17595.4 ± 280.3 17474.5 ± 280.0 17439.8 ± 282.9
la40 16618 17667.4 ± 264.3 17894.0 ± 270.7 17771.0 ± 267.2 17726.0 ± 274.6
orb02 7353 7684.6 ± 123.8 7753.5 ± 118.9 7739.5 ± 125.5 7708.2 ± 125.8
orb03 8280 8772.8 ± 170.3 8895.3 ± 194.0 8774.7 ± 189.7 8784.9 ± 235.5
orb06 8418 8950.3 ± 205.2 9113.8 ± 221.3 8979.7 ± 202.7 8950.6 ± 203.8
orb07 3296 3505.6 ± 61.5 3551.1 ± 74.9 3523.7 ± 63.2 3510.5 ± 74.1
orb09 7582 8025.0 ± 180.5 8231.8 ± 233.7 8062.8 ± 162.9 8149.8 ± 198.5
orb10 8043 8335.7 ± 125.8 8419.0 ± 146.9 8358.3 ± 147.4 8367.5 ± 134.5
swv01 20688 24859.5 ± 711.2 25710.4 ± 649.8 25441.2 ± 630.2 25461.3 ± 709.7
swv03 23266 24617.6 ± 623.1 25547.2 ± 633.0 25023.4 ± 668.7 25150.6 ± 652.5
swv04 24271 25665.5 ± 574.4 26457.5 ± 543.8 25978.6 ± 642.5 25957.5 ± 660.7
swv07 27385 32738.5 ± 710.4 33407.3 ± 652.0 32744.2 ± 711.8 32843.7 ± 755.0
swv08 32976 36043.0 ± 775.3 36655.9 ± 765.7 36136.3 ± 852.7 36265.8 ± 724.1
swv09 31841 33783.7 ± 696.4 34350.2 ± 744.4 34037.0 ± 855.6 33920.3 ± 788.5
swv11 108842 140735.9 ± 2939.1 145240.3 ± 3350.8 142351.2 ± 3360.4 141638.6 ± 3386.9
swv12 109128 140695.3 ± 3173.4 145495.7 ± 3093.0 142674.0 ± 2961.3 141281.9 ± 3247.0
swv14 126333 137137.8 ± 3101.6 141119.4 ± 3524.9 137850.9 ± 2779.5 137362.5 ± 3225.5
swv15 131037 139467.0 ± 3991.3 143849.0 ± 3676.6 140435.0 ± 3224.6 140211.6 ± 3476.1
swv16 113398 117369.9 ± 1303.0 119494.0 ± 1008.8 117937.3 ± 1045.1 117466.7 ± 1194.2
swv17 110145 113689.1 ± 1020.0 115666.0 ± 1042.6 114240.4 ± 981.0 113760.8 ± 1444.7
swv20 109742 112866.7 ± 1060.6 115285.1 ± 977.5 113277.0 ± 1038.2 113184.2 ± 1043.8
yn1 17317 18199.5 ± 234.9 18397.8 ± 212.6 18236.6 ± 210.0 18229.1 ± 227.3
yn4 19107 19916.3 ± 253.7 20115.0 ± 220.2 19997.4 ± 244.7 19959.7 ± 222.8

Total best 48 0 1 1

the target objective). Jensen’s method was compared with the approach based
on random generating of auxiliary objectives. We used the same OLHP imple-
mentation and the same frameworks as for the TSP.



186 A. Bassin and A. Buzdalova

Meta-Classifier Learning. The meta-classifier for selection of auxiliary objec-
tives was trained on 32 JSSP instances (see Appendix A). The considered train-
ing instances were not so diverse as the training instances for the TSP. So we
could cross-validate the learned classifier model on the training set of JSSP
instances with high probability not to have a situation, when we would try to
validate on some data, which was not considered in the learning process. The
performance measure values of our classification model on JSSP after the 10-fold
cross-validation were: Estimated Error Rate = 0.21, Precision = 0.72, Recall =
0.74, F-measure = 0.73. The correlation between the EA state features and
selection of the most efficient auxiliary objective also exists for this benchmark
problem.

Results of Solving the JSSP. There were 50 various JSSP test instances. Each
instance was solved η = 100 times with NSGAII and each auxiliary objective
selection method. We present comparison results in the same way as for the TSP
problem. The averaged results for each method of objective selection with the
standard deviations are listed in Table 2. The calculated comparison results show
that the OLHP method has significantly outperformed all the other methods of
auxiliary objective selection. It is also worth mentioning that we were not able
to find sources with the best known solutions for the Beasley’s OR Library
problems. So we run a single objective EA 1000 times on each instance and
gathered the best found results.

Statistical Testing. As in the TSP problem experiments, we used the Wilcoxon
signed-rank test and the Holm-Bonferroni correction method for statistical ver-
ification of the results. We obtained the following adjusted p-values for pairs of
objective selection methods: OLHP – MOEA+RL = 2.3e-09, OLHP – Lochte-
feld = 2.3e-09, OLHP – Jensen = 2.3e-09. The aforementioned adjusted p-values
show that average performance of the OLHP method and the other considered
algorithms was significantly different. Moreover, the confidence level of this fact
is more than 99%.

5 Conclusion and Future Work

The new method for selection of the most efficient auxiliary objective named The
Offline Learned Helper Picker is proposed in this paper. The OLHP approach
consists of two stages. At first, training instances of an optimization problem are
used to build a meta-classifier for selection of auxiliary objectives. Properties of a
problem instance and features derived from the fitness landscape of the current
EA population compose the state of the evolutionary algorithm, i.e. the data
vector for machine learning. Further, the trained meta-classifier is used to predict
the most efficient auxiliary objective at different EA runtime points. Specifically,
the selected auxiliary objective is predicted and optimized simultaneously with
the target objective during a number of EA iterations.



Selection of Auxiliary Objectives Using Landscape Features 187

The OLHP method was compared with similar approaches of objective selec-
tion on two NP-hard combinatorial problems: The Traveling Salesman Problem
and The Job Shop Scheduling Problem. The newly proposed method outper-
formed the considered algorithms. Statistical significance of the obtained results
was confirmed by the Wilcoxon signed-rank test followed by the Holm-Bonferroni
correction.

In the future work we plan to use additional well-known statistical, proba-
bilistic and informational measures for fitness landscapes. This should increase
performance of the meta-classifier used for selection of auxiliary objectives. It
is also desirable to use more computational power for obtaining experimental
evaluation on real world problems. Better computational performance will also
provide an opportunity to automatically find and use the most efficient para-
meters for EA with OLHP and other auxiliary objective selection methods. For
example, the most efficient algorithm settings may be found with tools such as
the irace package [21].

A Appendix: TSP and JSSP Instances Lists

TSP Train: att532, bays29, brazil58, ch130, d198, d493, eil101, gil262, gr120, gr202, gr24, gr431,

hk48, kroA150, kroB200, kroE100, p654, pa561, pr136, pr264, rat575, rat99, si175, st70, ts225, u574,

ulysses22. TSP Cross-validate: a280, att48, bayg29, bays29, berlin52, bier127, brazil58, brg180,

burma14, ch130, ch150, d198, d493, dantzig42, eil101, eil51, eil76, fl417, fri26, gil262, gr17, gr21,

gr24, gr48, gr96, gr120, gr137, gr202, gr229, gr431, hk48, kroA100, kroA150, kroA200, kroB100,

kroB150, kroB200, kroC100, kroD100, kroE100, lin105, lin318, pcb442, pr76, pr107, pr124, pr136,

pr144, pr152, pr226, pr264, pr299, pr439, rat195, rat99, rd100, rd400, si175, st70, swiss42, ts225,

tsp225, u159, ulysses16, ulysses22.

JSSP Train and Cross-validate: abz5, abz8, ft10, la02, la04, la07, la13, la15, la18, la19, la23,

la24, la27, la28, la32, la33, la34, la37, la39, orb01, orb04, orb05, orb08, swv02, swv05, swv06, swv10,

swv13, swv18, swv19, yn2, yn3.

References

1. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
In: Fodor, J., Klempous, R., Araujo, C.P.S. (eds.) Recent Adv. Intell. Eng. Syst.,
pp. 161–191. Springer, Heidelberg (2012)

2. Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 815–822. ACM (2014)

3. Ceberio, J., Calvo, B., Mendiburu, A., Lozano, J.A.: Multi-objectivising the
quadratic assignment problem by means of an elementary landscape decomposi-
tion. In: Puerta, J.M., Gámez, J.A., Dorronsoro, B., Barrenechea, E., Troncoso, A.,
Baruque, B., Galar, M. (eds.) CAEPIA 2015. LNCS (LNAI), vol. 9422, pp. 289–
300. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24598-0 26

4. Jensen, T.: Helper-objectives: using multi-objective evolutionary algorithms for
single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2005)

http://dx.doi.org/10.1007/978-3-319-24598-0_26


188 A. Bassin and A. Buzdalova

5. Buzdalova, A., Buzdalov, M.: Increasing efficiency of evolutionary algorithms by
choosing between auxiliary fitness functions with reinforcement learning. In: 2012
11th International Conference on Machine Learning and Applications (ICMLA),
vol. 1, pp. 150–155. IEEE (2012)

6. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). doi:10.1007/3-540-44719-9 19

7. Petrova, I., Buzdalova, A., Buzdalov, M.: Improved selection of auxiliary objectives
using reinforcement learning in non-stationary environment. In: 2014 13th Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp. 580–583.
IEEE (2014)

8. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2011)

9. Kanda, J., Carvalho, A., Hruschka, E., Soares, C.: Using meta-learning to classify
traveling salesman problems. In: 2010 Eleventh Brazilian Symposium on Neural
Networks, pp. 73–78. IEEE (2010)

10. Kanda, J.Y., de Carvalho, A.C., Hruschka, E.R., Soares, C.: Using meta-learning
to recommend meta-heuristics for the traveling salesman problem. In: 2011 10th
International Conference on Machine Learning and Applications and Workshops
(ICMLA), pp. 346–351. IEEE (2011)

11. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

12. Jähne, M., Li, X., Branke, J.: Evolutionary algorithms and multi-objectivization
for the travelling salesman problem. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pp. 595–602. ACM (2009)

13. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case in study
local optimization. Local Search Comb. Optim. 1, 215–310 (1997)

14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

15. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

16. Lochtefeld, D.F., Ciarallo, F.W.: Deterministic helper-objective sequences applied
to job-shop scheduling. In: Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation, pp. 431–438. ACM (2010)

17. Lochtefeld, D.F., Ciarallo, W.: Helper-objective optimization strategies for the job-
shop scheduling problem. Appl. Soft Comput. 11(6), 4161–4174 (2011)

18. Petrova, I., Buzdalova, A., Buzdalov, M.: Improved helper-objective optimization
strategy for job-shop scheduling problem. In: 2013 12th International Conference
on Machine Learning and Applications (ICMLA), pp. 374–377, vol 2. IEEE (2013)

19. Bierwirth, C.: A generalized permutation approach to job shop scheduling with
genetic algorithms. Oper. -Res. -Spektrum 17(2–3), 87–92 (1995)

20. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling prob-
lems. Oper. Res. 8(4), 487–503 (1960)

21. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

http://dx.doi.org/10.1007/3-540-44719-9_19

	Preface
	Organization
	Contents
	A Computational Study of Neighborhood Operators for Job-Shop Scheduling Problems with Regular Objectives
	1 Introduction
	2 The Job-Shop Scheduling Problem
	3 Neighborhood Structures for Job Shop Scheduling
	4 Experimental Study
	4.1 Experimental Evaluation
	4.2 Iterative Best Improvement Versus Iterative First Improvement for Single Neighborhoods
	4.3 First-Improvement Variable Neighborhood Descent
	4.4 Iterated Local Search Algorithm

	5 Conclusions
	References

	A Genetic Algorithm for Multi-component Optimization Problems: The Case of the Travelling Thief Problem
	1 Introduction
	2 Travelling Thief Problem
	3 Multi-component Genetic Algorithm
	4 Methodology and Results
	5 Conclusion and Future Work
	References

	A Hybrid Feature Selection Algorithm Based on Large Neighborhood Search
	1 Introduction
	2 Literature Review
	3 WFLNS: A Wrapper Filter Feature Selection Based on LNS
	3.1 Encoding Representation and Initialization
	3.2 Destroy and Repair Methods
	3.3 Objective Function
	3.4 Acceptance Method

	4 Experimental Results and Discussion
	4.1 Classification Accuracy
	4.2 Effect of Destruction Degree Parameter
	4.3 Effect of Acceptance Criteria

	5 Conclusion
	References

	A Memetic Algorithm to Maximise the Employee Substitutability in Personnel Shift Scheduling
	1 Introduction
	2 Problem Definition and Formulation
	3 A Memetic Algorithm to Maximise the Employee Substitutability
	3.1 Population Initialisation
	3.2 Local Search (LS)
	3.3 Repair (R)
	3.4 Evolutionary Cycle

	4 Computational Experiments
	4.1 Test Design
	4.2 Validation of the Proposed Procedure

	5 Conclusions
	References

	Construct, Merge, Solve and Adapt Versus Large Neighborhood Search for Solving the Multi-dimensional Knapsack Problem: Which One Works Better When?
	1 Introduction
	1.1 Our Contribution
	1.2 Outline of the Paper

	2 General Description of the Algorithms
	2.1 Large Neighborhood Search
	2.2 Construct, Merge, Solve and Adapt
	2.3 Search Space Reduction in LNS and CMSA

	3 Application to the MDKP
	3.1 Solving the Sub-instances to Optimality
	3.2 Constructing Solutions for the MDKP
	3.3 Partial Destruction of Solutions in LNS

	4 Empirical Study
	4.1 Problem Instances
	4.2 Tuning
	4.3 Results

	5 Conclusions and Future Work
	A Appendix: Tuning results
	References

	Decomposing SAT Instances with Pseudo Backbones
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Identifying Application Instances with Potential Decomposability
	5 Computing Pseudo Backbone from Good Local Optima
	6 Improving Decomposition on SAT Instances
	6.1 Empirical Results

	7 Conclusion and Future Work
	References

	Efficient Consideration of Soft Time Windows in a Large Neighborhood Search for the Districting and Routing Problem for Security Control
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Optimal Arrival Time Problem
	4.1 Lower and Upper Bounds for Arrival Times
	4.2 Linear Programming Model

	5 Hybrid Heuristic for the OATP
	5.1 Feasibility Check
	5.2 Greedy Heuristic
	5.3 Efficiently Solving a Relaxation by Dynamic Programming
	5.4 DP-Based Heuristic for OATP

	6 Large Neighborhood Search for the DRPSC-STW
	6.1 Variable Neighborhood Descent

	7 Computational Results
	8 Conclusions and Future Work
	References

	Estimation of Distribution Algorithms for the Firefighter Problem
	1 Introduction
	2 Problem Definition
	3 Estimation of Distribution Algorithms
	3.1 The EH-PBIL Method
	3.2 The State-Position Model

	4 Experiments and Results
	5 Conclusion
	References

	LCS-Based Selective Route Exchange Crossover for the Pickup and Delivery Problem with Time Windows
	1 Introduction
	2 Problem Formulation
	3 Related Literature
	4 Memetic Algorithm for the PDPTW
	4.1 Algorithm Outline
	4.2 Longest Common Subsequence Based SREX

	5 Experimental Results
	5.1 Analysis and Discussion

	6 Conclusions and Future Work
	References

	Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO
	1 Introduction
	2 Related Work
	3 Beam Search
	3.1 Multi-objective Heuristics
	3.2 Probabilistic Branching
	3.3 Hybridization with Ant Colony Optimization
	3.4 Pareto Elitism

	4 The GTOC5 Trajectory Design Problem
	5 Bilevel Optimization of GTOC5 Trajectories
	5.1 Orbital Phasing Indicators as Heuristic Estimators
	5.2 Optimization of Transfer Legs
	5.3 Trajectory Evaluation, Ranking, and Selection

	6 Experimental Evaluation
	6.1 Setup
	6.2 Results

	7 Analysis and Discussion
	8 Conclusion
	References

	Optimizing Charging Station Locations for Electric Car-Sharing Systems
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Algorithm Description
	4.1 Variable Neighborhood Search for the Upper Level Problem
	4.2 Path-Based Heuristic

	5 Computational Results
	5.1 Instance Description
	5.2 Comparison to Exact Algorithms
	5.3 Pathfinder Results for Larger Instances

	6 Conclusions and Future Work
	References

	Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier
	1 Introduction
	2 The OLHP Method
	2.1 Learning the Meta-Classifier Phase
	2.2 Objective Selection During the EA Runtime
	2.3 Fitness Landscape Features

	3 Applying OLHP to Traveling Salesman Problem
	3.1 TSP Meta-Features
	3.2 TSP Auxiliary Objectives Generation
	3.3 Experimental Evaluation on TSP

	4 Applying OLHP to Job Shop Scheduling Problem
	4.1 JSSP Meta-Features
	4.2 JSSP Auxiliary Objectives Generation
	4.3 Experimental Evaluation on JSSP

	5 Conclusion and Future Work
	A  Appendix: TSP and JSSP Instances Lists
	References

	Sparse, Continuous Policy Representations for Uniform Online Bin Packing via Regression of Interpolants
	1 Introduction
	2 Previous Approaches for Online One-Dimensional Bin Packing
	3 Learning Mechanisms for Packing Policies
	4 Experimental Framework and Results
	4.1 Comparison Between Interpolants and Previous Results in the Literature

	5 Conclusions
	References

	The Weighted Independent Domination Problem: ILP Model and Algorithmic Approaches
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 An ILP Model
	3 Greedy Heuristics
	4 Heuristic Based on the ILP Model
	5 PBIG: Population-Based Iterated Greedy
	6 Experimental Evaluation
	6.1 Benchmark Instances
	6.2 Tuning of PBIG
	6.3 Numerical Results

	7 Conclusions and Future Work
	References

	Towards Landscape-Aware Automatic Algorithm Configuration: Preliminary Experiments on Neutral and Rugged Landscapes
	1 Introduction
	2 Initial Considerations on Pseudo-Boolean Landscapes
	2.1 NK-, NKq- and NKp-Landscapes
	2.2 NKq"026A30C p-Landscapes Features

	3 Feature-Based Algorithm Configuration
	3.1 Feature-Aware Iterated Racing
	3.2 Memetic Algorithm and Parameter Space
	3.3 Experimental Setup
	3.4 Experimental Results

	4 Conclusions
	References

	Understanding Phase Transitions with Local Optima Networks: Number Partitioning as a Case Study
	1 Introduction
	2 Background and Related Work
	2.1 The Number Partitioning Fitness Landscape
	2.2 Multiple Funnels in Combinatorial Landscapes

	3 Definitions and Algorithms
	3.1 Preliminaries
	3.2 Local Optima Networks
	3.3 Detecting the Funnel Structures

	4 Results and Analysis
	4.1 Experimental Setting
	4.2 Visualisation
	4.3 Metrics

	5 Conclusions
	References

	Author Index



