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ABSTRACT

E�ciency of single-objective optimization can be improved by in-

troducing auxiliary objectives. In practice, they may be e�cient on

some optimization stages but obstructive on others. We propose to

modify the EA+RL method which dynamically selects objectives

using reinforcement learning. �e proposed modi�cation prevents

from losing the best found solution.

We analysed the proposed modi�cation and compared it with the

EA+RL method and Random Local Search on XdivK, Generalized

OneMax and LeadingOnes problems. �e proposed modi�cation

outperforms the EA+RL method on all problem instances. It out-

performs the single objective approach on most problem instances

as well. We also present theoretical analysis of the proposed modi-

�cation on the XdivK problem.
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1 INTRODUCTION

An evolutionary algorithm (EA) can reach the optimum of the

target objective in less number of �tness evaluations using auxiliary
objectives [1, 6, 8, 10, 12]. In practice, objectives can be generated

automatically and may be e�cient on some optimization stages but

obstructive on others [9]. We call such objectives non-stationary.

One of the approaches to deal with such objectives is dynamic

selection of the best objective at the current stage of optimization.
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�e objectives may be selected randomly [7]. Another method is

EA+RL which uses reinforcement learning (RL) [4, 13].

In reinforcement learning (RL) an agent applies an action to an

environment. �en the environment returns a numerical reward
and a representation of its state and the process repeats. �e goal

of the agent is to maximize the total reward [13]. In the EA+RL

method, EA is treated as an environment. To make an action means

to select an objective to be optimized in the current generation of

EA. �e reward is equal to di�erence of the best target objective

value in two consecutive generations.

It was theoretically shown for a number of optimization prob-

lems that EA+RL e�ciently works with stationary objectives [2, 3].

However, theoretical analysis of EA+RL with non-stationary objec-

tives showed that EA+RL does not ignore obstructive objectives on

the XdivK and the Generalized OneMax problems [5, 11]. Selection

of an ine�cient objective causes loss of the best found solution and

the algorithm needs a lot of steps to �nd a good solution again.

We propose a modi�cation of EA+RL which preserves the best

found solution and analyse it theoretically on XdivK and experi-

mentally on XdivK, Generalized OneMax and LeadingOnes. �e

full version of the paper is available at arXiv
1
.

2 MODIFIED EA+RL

In the EA+RL method, if the newly generated individual is be�er

than the existing one according to the selected objective, the new

individual is accepted. However, if the selected objective is obstruc-

tive, the new individual may be worse than the existing individual

in terms of the target objective. In this case EA loses the individual

with the best target objective value.

In the modi�ed EA+RL, if the newly generated individual is bet-

ter than the existing one according to the selected objective, but

is worse according to the target objective, the new individual is

rejected. As in the recent theoretical works, we use RLS as opti-

mization algorithm and apply Q-learning to select objectives [11].

Population consists of a single individual. Individuals are repre-

sented as bit strings, the �ip-one-bit mutation is used. �e modi�ed

EA+RL is presented in Algorithm 1. In Q-learning, the e�ciency of

selecting an objective h in a state s is measured by Q(s,h), which is

updated dynamically as shown in line 10 of the pseudocode, where

α is the learning rate and γ is the discount factor.

We consider two versions of modi�ed EA+RL with di�erent ways

of reward calculation. In both these versions a reward is equal to

the di�erence of the target value in two consecutive generations,

except the following case. If the new individual is be�er than the

1
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Algorithm 1 Modi�ed EA+RL

1: Individual y ← random bit string

2: Construct set H of auxiliary objectives and target objective

3: Q(s,h) ← 0 for each state s and objective h ∈ H
4: while (Optimum of target objective t is not found) do

5: Calculate current state s
6: Individual y′← mutate y (�ip random bit)

7: Objective h: Q(s,h) = maxh′∈H Q(s,h′) . If Q-values are

equal, objectives are selected equiprobably

8: if h(y′) ≥ h(y) and t(y′) ≥ t(y) then y ← y′

9: Calculate state s ′ and reward r
10: Q(s,h) ← Q(s,h) + α(r +maxh′∈H Q(s ′,h′) −Q(s,h))

current one according to the selected objective, but its target value is

lower, the new individual is rejected. In the �rst version of modi�ed

EA+RL the agent achieves zero reward because the individual is not

changed. In the second version the agent achieves negative reward,

as if the new individual was accepted. �ereby, in the �rst version

the agent does not learn if the action was ine�cient and learns

only if the target objective was increased. We call this algorithm

modi�cation of EA+RL without learning on mistakes (EA+RLnM). In

the second version the agent learns in both cases: when the action

was e�cient and ine�cient. We call this algorithm modi�cation of
EA+RL with learning on mistakes (EA+RLM).

In the existing theoretical works on EA+RL, an RL state is de�ned

as the target objective value [2, 5]. We denote it as target state,

which we use in this work. However, if the individual with the best

target value is preserved, the algorithm will never return to the

state where it achieved a positive reward. So the agent never knows

which objective is helpful. It only can learn that an objective is

obstructive if the agent achieved a negative reward for it. �erefore,

we also consider the single state. �is state is the same during the

optimization process so the agent can learn which objective is good.

3 MODEL PROBLEMS

We consider three model problems: Generalized OneMax, XdivK

and LeadingOnes, which were used in studies of EA+RL [3, 5, 11].

In all considered problems, an individual is a bit string of length n.

�e target objective of Generalized OneMax, denoted as OMd ,

is calculated as the number of bits in an individual that matches a

given bit mask. �e bit mask has d 0-bits and n−d 1-bits. If d = 0 or

d = n the OMd problem is called OneMax or ZeroMax respectively.

�e XdivK is calculated as b xk c, where x is the number of 1-bits, k
is a constant, k divides n. �e target objective of LeadingOnes is

equal to the length of the maximal pre�x of 1-bits.

We used two non-stationary auxiliary objectives de�ned in (1)

for all the considered problems. �ese auxiliary objectives can be

OneMax (OM) or ZeroMax (ZM) at di�erent stages of optimization.

�ey switch at a switch point de�ned by the parameter p.

h1(x) =
{
OM,x ≤ p

ZM,p < x ≤ n
h2(x) =

{
ZM,x ≤ p

OM,p < x ≤ n
(1)

In LeadingOnes and XdivK problems the objective which is

equal to OneMax at the current stage of optimization is helpful

and ZeroMax is obstructive [3, 11]. In the OMd problem, both

objectives may be obstructive or neutral [5].

4 THEORETICAL ANALYSIS

Previously, it was shown that the EA+RL method gets stuck in local

optima on XdivK with non-stationary objectives [11]. Below we

present theoretical runtime analysis of the proposed EA+RLnM

on this problem. �e target state is used. To compute the ex-

pected runtime of the algorithm, we construct the Markov chain

that represents the corresponding optimization process [2, 11]. We

distinguish between RL states determined by the target objective

value and states of the Markov chain, which we call Markov states.

Markov states correspond to the number of 1-bits in an individual.

�erefore, an RL state includes k Markov states with di�erent num-

ber of 1-bits. To analyse the runtime of EA+RLnM, we also need to

construct Markov chain for RLS without auxiliary objectives.

�e Markov chains for the XdivK problem are shown in the

Fig. 1. �e labels on transitions have the format F, M, where F is

a �tness function that can be chosen for this transition, M is the

corresponding e�ect of mutation.

dk+1

dk

dk+2

h1, 0   1
h2, 1   0

t,   1   0
h1, 1   0

h1, 1   0
h2, 0   1
h2, 1   0
t,   1   0

dk+k

...

...

RL state (d-1)

RL state d

RL state (d+1)

h1 = ZeroMax
h2 = OneMax

h1 = OneMax
h2 = ZeroMax

p = dk

dk-1

t,  0   1
h2, 0   1

t,   0   1
h1, 0   1

(a)

dk+1

dk

dk+2

t, 1   0

dk+k

...

...

dk-1

t, 0   1

t, 0   1

t, 1   0

(b)

Figure 1: Markov chains on XdivK: EA+RLnM (a), RLS (b)

�e expected runtime of EA+RLnM is equal to the number of

�tness evaluations needed to get from the Markov state 0 to n. Each

transition in the chain corresponds to one �tness evaluation. So

the expected runtime is equal to the number of transitions. Denote

it as T (n) = ∑n−1

i=0
E(i → i + 1), where E(i → i + 1) is the expected

number of transitions needed to reach the state i + 1 from i .
Consider two cases for the state i . �e �rst one is i = dk , where

d is a constant. �e expected number of transitions needed to reach

the state dk +1 from dk is evaluated using probabilities of mutation

and objective selection as zdk =
2

3
· (n−dk )n ·1+( 2

3
· dkn +

1

3
) ·(1+zdk ).

From this we obtain that zdk =
3n

2(n−dk ) .
�e second case is i = dk + t , where 1 ≤ t ≤ k − 1. �e expected

number of transitions needed to reach the state dk + t + 1 from

the state dk + t is evaluated as zdk+t =
2(n−dk−t )

3n +
2(dk+t )

3n · (1 +
zdk+t−1

+ zdk+t ) + (dk+t3n + n−dk−t
3n ) · (1 + zdk+t ). From this we

obtain that zdk+t = zdk+t−1
· dk+t
n−dk−t +

3n
2(n−dk−t ) .

To estimate the e�ciency of EA+RLnM, we calculate the expected

runtime of RLS without auxiliary objectives. �e total runtime is

calculated as T (n) from the EA+RLnM analysis. Analogically to

EA+RLnM, we consider two cases: i = dk and i = dk + t . �e

expected number of transitions needed to reach the state dk + 1

1436
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from the state dk is evaluated as adk =
(n−dk )

n · 1 + dk
n · (1 + adk ).

From this we obtain that adk =
n

(n−dk ) . �e expected value of

transitions needed to reach the state dk + t + 1 from the state dk + t
is evaluated as adk+t =

(n−dk−t )
n · 1+ dk+t

n · (1+adk+t−1
+adk+t ).

From this we obtain that adk+t = adk+t−1
· dk+t
n−dk−t +

n
(n−dk−t ) .

From the equations for zdk and adk we obtain that zdk =
3

2
adk .

From the equations for T (n), zdk+t , adk+t using mathematical in-

duction we obtain that the runtime of EA+RLnM for XdivK with

non-stationary objectives is 1.5 times greater than the runtime of

RLS. �erefore, the EA+RLnM has asymptotically the same runtime

as RLS, which is bounded by Ω(nk ) and O(nk+1) [2]. Recall that

asymptotic of EA+RL runtime is worse [11]. So EA+RLnM be�er

deals with non-stationary objectives. Also from the Markov chain

we can see that transitions and, as a consequence, performance of

EA+RLnM does not depend on the number and positions of switch

points.

5 EXPERIMENT DESCRIPTION AND RESULTS

We empirically analysed EA+RLM, EA+RLnM, EA+RL and RLS on

OMd , XdivK and LeadingOnes. �e non-stationary objectives

described in (1) were used for all the problems. For XdivK we

analysed two cases of the switch point position. �e �rst case is the

worst case [11], when the switch point is in the end of optimization

process, p = n − k + 1. In the second case, the switch point is in

the middle of optimization process, p = n/2. For each algorithm we

analysed two state de�nitions: the single state (ss) and the target

state (ts). Also we studied applying of ε-greedy strategy when the

agent selects the objective with the maximum expected reward

with probability 1 − ε and with probability ε the agent selects a

random objective. We used the Q-learning algorithm with α = 0.5

and γ = 0.5 [11]. �e ε-greedy strategy was used with ε = 0.1.

�e obtained numbers of �tness evaluations needed to reach the

optimum averaged by 1000 runs are presented in Table 1. �e best

and the second best results are colored dark grey and grey. None

of the algorithms reached the optimum using the single state and

ε = 0, so these results are not presented. Whenever the optimum

has not been reached within 10
9

iterations, the corresponding result

is marked as∞.

We can see from Table 1 that EA+RLM using the single state and

ε = 0.1 is the most e�cient algorithm on OMd , LeadingOnes and

XdivK with switch point in the middle. On two la�er problems

EA+RLM achieves be�er results than RLS and on OMd the results

are almost the same. On XdivK with switch point in the end the best

results are achieved using RLS and EA+RLnM. For each problem, we

picked the best con�guration of each algorithm and compared them

by Mann-Whitney test with Bonferroni correction. �e algorithms

were statistically distinguishable with p-value less than 0.05.

6 DISCUSSION OF RESULTS

We can see from the results that EA+RLM outperforms EA+RLnM

on LeadingOnes and XdivK with switch point in the middle. �ere-

fore, learning on mistakes is useful because it allows the agent to

remember that the objective is obstructive and not to select it sub-

sequently. However, on the XdivK problem with switch point in

the end, the best results are achieved using EA+RLnM. Below we

explain why sometimes it is be�er not to learn on mistakes.

In EA+RLM, if the agent obtained a negative reward for some

objective, it will take a lot of steps to re-learn when this objective

becomes e�cient. �e agent re-learns when a su�cient amount of

positive reward is obtained using this objective. �e agent obtains

a positive reward when the target objective is increased. To make

things worse, in the XdivK problem it is not always possible to

increase the target objective in one iteration of the algorithm. Let

the number of 1-bits be dk , so the RL state is d . To move to the

state d + 1, the algorithm needs to mutate k 0-bits. Let switch

point p be equal to dk + l , where 0 < l < k . �en if the number

of 1-bits is greater than dk + l , the algorithm can increase the

number of 1-bits only if 0-bit is mutated and the target objective is

selected. However, whatever bit is mutated and whatever objective

is selected, the target objective value stays unchanged until an

individual with dk + k 1-bits is obtained. So the agent does not

recognize if its action is good or bad because the reward is equal

to zero. �erefore, to increase the target objective value algorithm

needs a lot of steps.

Consider the worst switch point position. If the switch point is

in the end of optimization, probability to mutate a 0-bit and select

the target objective at the same time is low. �e worst case is when

the switch point is equal to n − k + 1, because the agent needs to

select the target objective and increase the number of 1-bits during

k − 1 iterations. EA+RLnM does not have this drawback: as it can

be seen from Section 4, it does not depend on the number of switch

points and their positions.

Consider in�uence of the state de�nition. In the single state the

rewards are accumulated during the whole optimization process,

while in the target state if the agent obtains a positive reward it

moves to a new state and loses the previous experience. So the

single state (unlike the target one) allows to learn which objective

is helpful. �us the single state is be�er than the target state for

EA+RLM. However, in the single state it is more di�cult to re-learn

that the objective which was helpful became obstructive. �erefore,

when the single state with ε = 0 is used, none of the algorithms

reaches the optimum. Also EA+RL does not reach the optimum

using the single state. For EA+RLnM single state is also ine�cient

because the agent does not learn if the objective became obstructive

and the only way to stop selection of this objective is to re-learn.

On the contrast, the target state allows agent to move to the new

state where it has no experience.

7 CONCLUSION

We proposed a modi�cation of the EA+RL method which preserves

the best found solution. We considered two versions of the proposed

modi�cation called EA+RLnM and EA+RLM. In EA+RLnM, the RL

agent learns only when it �nds a be�er solution. In EA+RLM, the

RL agent also learns when it obtains an ine�cient solution.

We considered two auxiliary objectives which change their ef-

�ciency at a switch point. We experimentally analysed the two

proposed modi�cations and the EA+RL method on Generalized

OneMax (OMd ), LeadingOnes, XdivK with switch point in the

middle of optimization and XdivK with switch point in the end.

Two RL states were considered: the single state and the target state.

Both proposed modi�cations reached the optimum on OMd
and LeadingOnes unlike the EA+RL method did. EA+RLM with
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Table 1: Averaged number of �tness evaluations needed to reach the global optimum

EA+RLM EA+RLnM EA+RL

Parameters RLS ss, ε = 0.1 ts, ε = 0 ts, ε = 0.1 ss, ε = 0.1 ts, ε = 0 ts, ε = 0.1 ss, ε = 0.1 ts, ε = 0 ts, ε = 0.1

n LeadingOnes

141 1.00 · 10
4

4.61 · 10
3

7.20 · 10
3

7.80 · 10
3

1.36 · 10
4

1.49 · 10
4

1.49 · 10
4 ∞ ∞ ∞

151 1.13 · 10
4

5.08 · 10
3

8.33 · 10
3

8.90 · 10
3

1.57 · 10
4

1.72 · 10
4

1.72 · 10
4 ∞ ∞ ∞

161 1.30 · 10
4

5.44 · 10
3

9.39 · 10
3

1.01 · 10
4

1.81 · 10
4

1.94 · 10
4

1.96 · 10
4 ∞ ∞ ∞

171 1.45 · 10
4

6.04 · 10
3

1.06 · 10
4

1.13 · 10
4

2.05 · 10
4

2.18 · 10
4

2.19 · 10
4 ∞ ∞ ∞

181 1.65 · 10
4

6.60 · 10
3

1.18 · 10
4

1.27 · 10
4

2.29 · 10
4

2.47 · 10
4

2.46 · 10
4 ∞ ∞ ∞

191 1.81 · 10
4

7.28 · 10
3

1.33 · 10
4

1.41 · 10
4

2.58 · 10
4

2.73 · 10
4

2.73 · 10
4 ∞ ∞ ∞

n, d OMd

100, 50 4.51 · 10
2

4.93 · 10
2

5.65 · 10
2

5.69 · 10
2

6.49 · 10
2

6.75 · 10
2

6.81 · 10
2 ∞ ∞ ∞

200, 100 1.04 · 10
3

1.09 · 10
3

1.26 · 10
3

1.31 · 10
3

1.47 · 10
3

1.55 · 10
3

1.57 · 10
3 ∞ ∞ ∞

300, 150 1.72 · 10
3

1.74 · 10
3

2.03 · 10
3

2.05 · 10
3

2.40 · 10
3

2.51 · 10
3

2.51 · 10
3 ∞ ∞ ∞

400, 200 2.43 · 10
3

2.43 · 10
3

2.80 · 10
3

2.90 · 10
3

3.42 · 10
3

3.56 · 10
3

3.53 · 10
3 ∞ ∞ ∞

500, 250 3.12 · 10
3

3.16 · 10
3

3.65 · 10
3

3.72 · 10
3

4.34 · 10
3

4.58 · 10
3

4.60 · 10
3 ∞ ∞ ∞

n, k XdivK, switch point in the end

60, 3 3.94 · 10
4

2.44 · 10
5

2.79 · 10
5

2.53 · 10
5

7.10 · 10
4

5.82 · 10
4

5.95 · 10
4 ∞ 2.95 · 10

5
3.16 · 10

7

72, 3 6.79 · 10
4

4.18 · 10
5

4.93 · 10
5

4.19 · 10
5

1.15 · 10
5

1.03 · 10
5

1.03 · 10
5 ∞ 4.98 · 10

5
3.30 · 10

8

84, 3 1.08 · 10
5

6.57 · 10
5

7.69 · 10
5

6.55 · 10
5

1.72 · 10
5

1.61 · 10
5

1.64 · 10
5 ∞ 7.81 · 10

5 ∞
96, 3 1.60 · 10

5
9.91 · 10

5
1.21 · 10

6
9.97 · 10

5
2.59 · 10

5
2.39 · 10

5
2.44 · 10

5 ∞ 1.05 · 10
6 ∞

108, 3 2.28 · 10
5

1.34 · 10
6

1.75 · 10
6

1.45 · 10
6

3.49 · 10
5

3.34 · 10
5

3.34 · 10
5 ∞ 1.63 · 10

6 ∞
120, 3 3.12 · 10

5
1.93 · 10

6
2.32 · 10

6
1.97 · 10

6
4.87 · 10

5
4.70 · 10

5
4.76 · 10

5 ∞ 2.37 · 10
6 ∞

n, k XdivK, switch point in the middle

60, 3 3.94 · 10
4

6.61 · 10
3

1.06 · 10
4

1.20 · 10
4

7.02 · 10
4

5.82 · 10
4

5.76 · 10
4 ∞ 1.17 · 10

4
1.52 · 10

6

72, 3 6.79 · 10
4

1.12 · 10
4

1.78 · 10
4

2.11 · 10
4

1.19 · 10
5

1.03 · 10
5

1.01 · 10
5 ∞ 2.00 · 10

4
1.43 · 10

7

84, 3 1.08 · 10
5

1.79 · 10
4

3.02 · 10
4

3.35 · 10
4

1.73 · 10
5

1.61 · 10
5

1.64 · 10
5 ∞ 3.08 · 10

4
1.57 · 10

8

96, 3 1.60 · 10
5

3.01 · 10
4

4.13 · 10
4

5.15 · 10
4

2.60 · 10
5

2.39 · 10
5

2.44 · 10
5 ∞ 4.75 · 10

4 ∞
108, 3 2.28 · 10

5
4.54 · 10

4
5.86 · 10

4
6.71 · 10

4
3.74 · 10

5
3.34 · 10

5
3.43 · 10

5 ∞ 6.88 · 10
4 ∞

120, 3 3.12 · 10
5

6.46 · 10
4

8.25 · 10
4

9.37 · 10
4

4.98 · 10
5

4.70 · 10
5

4.59 · 10
5 ∞ 9.32 · 10

4 ∞

the single state and ε = 0.1 was the most e�cient algorithm for

LeadingOnes, OMd and XdivK with switch point in the middle.

We theoretically proved that EA+RLnM on XdivK has asymptot-

ically the same runtime as RLS. Also we shown that performance

of EA+RLnM is independent of the number of switch points and

their positions, while performance of EA+RLM depends on these

factors. Particularly, EA+RLnM achieves the best results on XdivK

with switch point in the end.
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