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Abstract: Generation of tests for programming challenge tasks can be difficult when it is needed to cover wrong
solutions (i.e. greedy algorithms) that use certain tricks (i.e. random shuffling of input data) to decrease the
number of tests with wrong answers. In this paper, generation of tests for the knapsack problem is considered.
Several tests that make a certain class of incorrect solutions fail with high probability are generated using an
evolutionary algorithm.

Keywords: knapsack problem, greedy algorithm, randomized algorithm, algorithm verification, test generation,
evolutionary algorithms

1 Introduction

Programming challenges [1,2] are competitions where participants solve various tasks by writing computer
programs. The programs are judged by running on several tests and checking the answers. Each program must
adhere certain time and memory limits. If a program gives correct answers for all these tests while not exceeding
time and memory limits, it is considered to be correct.

While preparing a programming challenge task, jury members should construct a test suite that filters out
as many incorrect (i.e. giving wrong answers on some tests) or inefficient (i.e. exceeding time and/or memory
limits on some tests) solutions. This can be difficult in the case of incorrect solutions that are specially crafted
to fail at as few test cases as possible. This paper is dedicated to one combination of a problem and a solution:
the knapsack problem [16] and a greedy algorithm, which cannot solve the knapsack problem, but after many
runs with shuffled input data it is able to produce a correct answer with high probability. A problem of good
test generation, i.e. generation of a test, for which the greedy algorithm with shuffling is rarely able to produce
a correct answer, is approached with an evolutionary algorithm.

The rest of the paper is structured as follows. Section 2 discusses the related work, mainly from the area of
software engineering. Section 3 describes a programming challenge task which is essentially a knapsack problem
with certain limits, and a correct solution to it, as intended by the jury. In Section 4.2, an incorrect solution to
that problem, which is based on greedy algorithm with input data shuffling, is described. Section 5 is dedicated
to initial exploration of the search space by random test generation. Section 6 describes the evolutionary
algorithm and the experiment results. Section 7 concludes.

2 Related work

This section covers the related work in the field of test generation, as well as the work related to the knapsack
problem.

2.1 High-coverage test generation

Development of software heavily relies on test suites that cover as many lines of code, instructions or execution
paths as possible. Constructing such test suites is traditionally done by coders or by testers, which is difficult
and expensive. Tools like Pex [18], CREST [7], CUTE [17], PathCrawler [22] construct test suites that achieve
high coverage of lines, instructions or executable paths of the tested code. However, implementations of the
incorrect algorithms of knapsack problems can sometimes be completely covered by a single randomly-generated
test. In other words, high line coverage does not guarantee that the inputs are found where the answers differ
from the correct ones.
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2.2 Worst-case execution time test generation

Another area of automated construction of tests is generation of tests that show the worst-case execution time
of the tested program.

Theoretically, the test with the worst-case execution time can be found in tests that cover all feasible
execution paths (like the one created by the PathCrawler tool [22]). Such paths can be ordered to omit some
of them and to speed up the search [23]. However, it is difficult or impossible to apply the latter approach
to programs containing loops or recursion (actually, the ideas from [23] were tested only for programs without
loops).

Search-based software testing contributed a number of papers to this area. Most of the works on evolutionary
worst-case execution time test generation consider the case of real-time software testing [4, 5, 10-14, 19-21].
Another application where worst-case execution time matters is test generation for programming challenge
tasks [8]. There are some papers on related topics of testing algorithms of discrete mathematics [6] and SAT
solvers [15].

3 The “Bibliophile” programming challenge task

This paper is dedicated to test generation for a certain instance of the knapsack problem. This instance was
proposed by one of the authors of this paper, as a jury member, at Petrozavodsk training camp in winter of
2009 as a part of a training challenge.

Out of 43 total solutions, seven were accepted, 13 received the Wrong Answer outcome, 16 got Time Limit
Exceeded and five got Runtime Error. However, none of accepted solutions were actually correct — for each of
them, a test can be constructed which made it output a wrong answer or fail with a runtime error. This can
be explained by the poor quality of the test set. The aim of the current research is to fix this situation and to
prevent such situations in the future.

3.1 The knapsack problem

The 0-1 knapsack problem (will be referred to as simply knapsack problem in the rest of the paper) is a well-
known combinatorial optimization problem. Given NN items, each having the weight w; and the cost ¢;, and a
knapsack with the weight capacity of W. One needs to find a subset of items of the maximum total cost that
will fit into the knapsack, i.e. to determine x; € {0,1} such that Zil w;x; < W and Zf\il C;T; 1S maximum
possible.

The knapsack problem is NP-hard [9], however, it is often referred to as “the easiest NP-problem”, because
there exist algorithms that solve a large fraction of big instances in polynomial (even linear) time [16].

3.2 The “Bibliophile” task

The “Bibliophile” task can be reduced to the knapsack problem with the following limits:
e all item weights are integers in the range [1; W;,,4.] where Wy, 4. = 2009;
e all item costs are equal to their respective weights (the subset sum problem);
e there are N items, 1 < N < 5000;

the capacity of the knapsack W does not exceed 107;

the time limit is two seconds;
e the memory limit is 256 megabytes.

One is asked to output not only the maximum cost of the subset of items that can be fit to the knapsack,
but the numbers of items themselves.

The time limit of two seconds roughly corresponds to 300-500 millions of simple operations with integers in
a single thread on most personal computers and laptops. The exact limit on the number of operations depends
on the clock speed of the CPU and different levels of random-access memory, as well as on the access pattern
to the memory.

4 Solutions

This section describes one of the correct solutions to the “Bibliophile” challenge task, as well as the incorrect
solution which is studied in this paper.
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4.1 Correct solution

The standard pseudo-polynomial time algorithm runs using O(N - W) time and O(N - W) space (this is needed
to restore the actual list of items). In this problem, W is bounded by 10%, but when W is not less than the sum
of weights of items, the answer is trivial. So we can think that W < W,,,4, - N. This transforms the complexity
of the discussed algorithm into O(N?-W,,4.). The maximum value of N?- W4, is 50002 - 2009 = 5.0225 - 1019,
which is significantly greater than the allowed number of operations. This renders the algorithm unusable to
solve this problem.

However, in Pisinger’s PhD thesis [16] a similar but more efficient algorithm is described. It is shown that
if one constructs a greedy solution (in the case of the subset sum problem, this is an arbitrary set of items that
can be fit into the knapsack and is maximal by inclusion), then the optimal solution can always be achieved by
the following steps:

e if the total weight of the current item set is less than W, add one item that is not in the set;
e if the total weight of the current item set is greater than W, remove one item from the set.

Note that in any state of the algorithm the total weight of the item set will never be outside the range
(W —Winaz + 1; W + Wiae — 1]. This makes it possible to implement a pseudo-polynomial time algorithm with
time and memory complexity of O(N - Wiaz). As the maximum value of N - W4, is 5000 - 2009 = 1.0045 - 107
and the implementation constant is not too large for both time and memory, such an algorithm will solve all
possible instances of the problem under time and memory limits.

4.2 Solution 7511

This section describes a solution which was submitted during the Petrozavodsk training camp under the ID of
7511. It implements an algorithm which constructs the correct answer with a certain small probability. Such
algorithms can produce correct answers with a guarantee only if they are allowed to work for infinite time.
Practical implementations of such algorithms run them for a certain period of time and give out the best found
answer.

The idea of this algorithm is to perform a number of random shuffies of items and run a greedy algorithm
on the items. The algorithm tracks the best answer of all greedy answers. When the execution time of the
algorithm exceeds 1.5 seconds, it terminates and prints the best found answer. The pseudocode of the algorithm
is given in Algorithm 1.

Algorithm 1 The pseudocode of solution 7511
x + item weights (equal to costs)
N = |z|
W « knapsack capacity
A + {} — the best found answer

while execution time is less than 1.5 seconds do
a < greedy solution for z
if a is better than A then
A+a
end if
shuffle x randomly
end while

Let the probability of finding the correct answer on a certain test 7" be p(T"). Then the probability of not
finding the correct answer in k iterations is (1 — p(7))¥. The aim of test generation is to minimize the value of
p(T) such that the expected running time until the answer is found is maximized. In fact, test generation may
stop when the expected running time, or its estimation, exceeds the time limit for several times, because the
probability of finding the correct answer empirically becomes small in this case.

5 Search space exploration

All experiments in this paper were conducted on a computer with an Intel® Core™ i7-3520M CPU clocked at
3.4 GHz in the hyperthreading mode and 8 gigabytes of RAM.

We tried to do random test generation to determine the areas of search spaces to focus on. Different values of
N, the number of items, are tried. We determine the knapsack capacity as the total weight of items multiplied
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Table 1: Difficulty of random tests for large ranges of N and C. Gray cells mean that a test was generated, for
which the solution gives a wrong answer.

C\N 10 15 20 25 30 50 100 300 1000 5000

0.05 | 1.0-10F 6.7-107 3.1-102 1.2-10° 3.1-10° 2.6-10° 23-10° 25-10° 2.1-10° 5.9-102
0.10 | 3.3-10* 3.1-10> 2.1-10® 4.2-10% 26-10° 2.5-10° 24-10% 23-10° 2.2-10° 6.3-102
0.15 | 7.6-10" 9.3-10° 3.9-10® 2.5-10° 2.6-10> 2.7-10% 2.6-10° 2.7-10® 2.2-10° 8.2-102
020 | 1.6-10> 1.9-10® 3.2-10® 2.7-10% 2.8-10°% 2.8-10® 3.1-10® 2.7-10% 24-10° 1.0-10°
025 | 2.4-102 29-10°> 2.9-10® 2.8-10% 28-10° 2.9-10® 3.0-10% 3.0-10° 2.5-10® 1.0-103
0.30 | 3.5-10° 4.0-10> 2.9-10® 29.10% 29-10°> 3.1-10® 3.2-10% 3.1-10° 2.6-10® 1.3-10%
035 | 49-10> 44-10°> 3.0-10® 3.1-10% 3.0-10° 3.1-10® 3.2-10% 3.1-10° 2.8-10°% 1.2-10%
0.40 | 6.1-10> 4.6-10> 3.2-10® 3.3-10% 3.3-10% 3.7-10® 3.7-10% 4.1-10% 3.3-10® 1.6-10%
045 | 7.0-10> 4.8-10° 3.5-10® 34-10° 3.8-10° 3.7-10® 3.8-10° 3.9-10® 34-10% 1.9-10°
0.50 | 8.2-102 4.9-10° 3.7-10® 3.8-10% 3.8-10° 4.3-10° 4.4-10% 44-10°> 4.0-10® 2.2.103
0.55 | 9.7-10® 6.2-10> 4.1-10® 4.3-10% 4.0-10° 4.2-10® 4.5-10% 4.4-10%> 4.4-10® 2.7-10%
0.60 | 9.6-10%> 7.7-10% 4.3-10® 4.4-10% 4.6-10> 5.0-10® 4.9.10% 5.2-10% 4.8-10® 3.2.10°%
0.65 | 9.2-102 9.6-10° 5.1-10®> 5.0-10® 5.2-10> 55-10® 5.4-10° 6.0-10> 54-10% 3.8-10°
0.70 | 8.8-102 1.1-10* 5.7-10® 5.5-10° 5.9-10° 58-10® 6.8-10° 6.9-10®> 6.9-10° 5.0-10°
075 | 82-10> 1.4-10* 75-10® 6.4-10% 6.2-10°% 7.3-10® 7.1-10® 83-10% 8.1-10° 5.9-10°
0.80 | 7.0-10> 1.4-10* 1.4-10* 79-10® 7.6-10° 80-10® 85-10° 1.0-10* 1.0-10* 8.6-10°
085 | 49-10®> 1.0-10* 5.1-10* 1.4-10* 1.0-10* 1.1-10* 1.2-10* 1.3-10* 1.3-10* 1.1-10*
090 | 41-10> 6.4-10°> 6.6-10* 88-10* 2.1-10* 1.3-10* 1.5-10* 1.7-10* 1.9-10* 1.8-10*
095 | 2.1-10> 26-10> 2.4-10* 1.6-10° 34-10° 3.5-10* 29.10* 35-10* 3.7-10* 3.8-10%

by a constant C' and rounded down to the nearest integer, so we also tried different values of C. As a measure
of “difficulty” of a test, we consider the number of iterations of the algorithm until the correct answer is found
multiplied by N. Table 1 presents the results averaged over 1000 runs for several values of N € [10;5000] and
C €]0.05;0.95].

As one can see from Table 1, a configuration with N = 30 and C' = 0.95 produced better tests in average.
For this configuration, one test was generated that made the solution give a wrong answer. However, running a
solution for 1000 times on that test revealed that the wrong answer is given only in 504 out of 1000 runs. This
result needs to be improved.

In the next section, we attempt to generate better tests in that region using an evolution algorithm.

6 Evolutionary Algorithm

To generate tests, we use a (1 + 1) evolutionary algorithm.

For a run of the evolutionary algorithm, we fix the number of items N and a knapsack capacity ratio C'. The
individual is a list of N item weights. The knapsack capacity is determined as a maximum of the smallest weight
and the sum of item weights multiplied by C' rounded down to the nearest integer. The initialization is done
by generating each item weight uniformly at random from the range [1;2009]. The mutation operator changes
each item weight w with a probability of 2/N to min(2009, max(1, w + random(—Q, Q))), where Q = 12.

The fitness function is the number of iterations of the solution until a correct answer is found. We start the
solution using a fixed random seed to ensure that the fitness value for a certain test is the same for different
invocations. The evolution terminates when the time needed to find a correct answer exceeds 10 seconds. We
motivate this enlarged time limit (10 seconds vs 1.5 seconds) by the hope that a test that makes a solution
with a fixed random seed run for too long will also make a solution with an arbitrary random seed run for a
reasonably long period of time. The algorithm is restarted from scratch when there is no fitness increase for
1000 iterations.

6.1 Experiment Results

The evolutionary algorithm is run 10 times for N = 30 and C = 0.95. In each of the runs, the optimization
goal was reached — a test was generated, for which the solution with the fixed random seed could not find the
correct answer in 10 seconds. The tests are shown in Table 2 along with the number of fitness evaluations until
the test is found, the number of evolutionary algorithm restarts and the number of times a solution with an
arbitrary random seed fails to find the correct answer in 1.5 seconds.
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Table 2: Results of evolutionary algorithm

Items

Evaluations

Restarts

Fails

30

27997

131 1911 2004 856 308 76 376 208 302 208 1837
1455 1300 926 1220 815 836 151 1056 90 696 631
1830 1661 811 1450 1812 1470 1629 1415

178173

127

813,/1000

30

27516

57 1576 1616 1303 854 1299 593 1527 1560 1880
1023 1869 1573 1851 179 643 221 1180 1966 698
1475 230 44 593 449 517 239 97 44 1809

86098

58

788,/1000

30

30775

1681 678 8 316 643 987 214 1756 574 1608 1242
49 166 1503 2002 1474 1953 1322 1814 1592 1561
1256 1743 67 1465 1672 7 226 1836 980

67857

51

734,/1000

30

27666

1581 1084 1631 1582 30 1757 827 926 958 175 67
1566 1123 411 54 1326 1934 830 201 553 384 744
1208 202 742 1168 725 1838 1628 1868

43309

34

552/1000

30

27997

131 1911 2004 856 308 76 376 208 302 208 1837
1455 1300 926 1220 815 836 151 1056 90 696 631
1830 1661 811 1450 1812 1470 1629 1415

80671

o0

798,/1000

30

27618

1165 252 1960 100 1460 1511 455 711 79 1173 1291
349 21 96 1934 532 1653 1980 1131 1210 340 698
1681 873 617 217 1599 858 1831 1295

33187

24

797/1000

30

27464

608 67 1 1871 1906 365 1747 42 510 1560 29 988
657 290 1526 1313 1664 507 1003 1691 1678 1303
1022 1031 1124 588 999 411 555 1854

166855

120

521,/1000

30

27997

131 1911 2004 856 308 76 376 208 302 208 1837
1455 1300 926 1220 815 836 151 1056 90 696 631
1830 1661 811 1450 1812 1470 1629 1415

99434

61

811,/1000

30

24285

730 1321 1835 1 1005 687 725 316 1914 1037 579
439 726 1137 1165 1734 1896 1 1 1785 701 216
970 226 79 561 602 988 1183 1004

101993

72

810/1000

10

30

28234

1243 1834 330 926 1498 1858 1514 631 1818 1107
502 324 623 1047 1061 1891 945 1608 251 1397 23
1386 62 1683 167 986 1089 184 23 1710

18974

531/1000

One can note that in 7 out of 10 runs, the number of times the solution failed to find an answer is significantly
higher than in the found test generated at random.

7 Conclusion

We presented an approach for test generation to the knapsack problem. The generated tests make a greedy
solution to the knapsack problem, which uses random shuffling of input data, return wrong answers with a high
probability. The preliminary experiments with random test generation showed that good tests have moderately
small number of items and knapsack capacities that differ only slightly from the total sum of item weights. The
resulting tests were generated using an evolutionary algorithm.

The source code for the experiments is available at GitHub [3] for reproduction.
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