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Abstract—We propose a new algorithm for incremental non-
dominated sorting of two-dimensional points. The data structure
which stores non-dominating layers is based on a tree of Carte-
sian trees. If there are N points in M layers, the running time for
of an insertion is O(M(1 + log(N/M)) + logM log(N/ logM)),
which is O(N) in the worst case.

This algorithm can be a basic building block for efficient
implementations of steady-state multiobjective algorithms such
as NSGA-II.

I. INTRODUCTION

In the K-dimensional space, a point A = (a1, . . . , aK)
is said to dominate a point B = (b1, . . . , bK) when for all
1 ≤ i ≤ K it holds that ai ≤ bi and there exists j such
that aj < bj . Non-dominated sorting of points in the K-
dimensional space is a procedure of marking all points which
are not dominated by any other point with the rank of 0, all
points which are dominated by at least one point of the rank of
0 are marked with the rank of 1, all points which are dominated
by at least one point of the rank i − 1 are marked with the
rank of i.

Many well-known and widely used multi-objective evo-
lutionary algorithms use the procedure of non-dominated
sorting, or the procedure of determining the non-dominated
solutions, which can be reduced to non-dominated sorting.
These algorithms include NSGA-II [1], PESA [2], PESA-
II [3], SPEA2 [4], PAES [5], PDE [6], and many more. The
time complexity of a single iteration of these algorithms is
often dominated by the complexity of a non-dominated sorting
algorithm, so optimization of the latter makes such multi-
objective evolutionary algorithms faster.

In Kung et al [7], the algorithm for determining the
non-dominated solutions is proposed with the complexity of
O(N logK−1 N), where N is the number of points and K is
the dimension of the space. It is possible to use this algorithm
to perform non-dominated sorting: first, the non-dominated
solutions are found and assigned the rank of 0. Then, these
solutions are removed, the non-dominated solutions from the
remaining ones are found and assigned the rank of 1. The
process repeats until all the solutions are removed. This leads
to the complexity of O(N2 logK−1 N) in the worst case, if
the maximum rank of a point in the result is O(N).

Jensen [8] was the first to propose an algorithm for non-
dominated sorting with the complexity of O(N logK−1 N).
However, his algorithm was developed for the assumption that
no two points share a common value for any objective, and
the complexity was proven for the same assumption. The first
attempt to fix this issue belongs, to the best of the authors’
knowledge, to Fortin et al [9]. The corrected (or, as in [9],
“generalized”) algorithm works in all cases, and for the general
case the performance is still O(N logK−1 N), but the only
upper bound that was proven for the worst case is O(N2K).
Finally, Buzdalov et al in [10] proposed several modifications
to the algorithm of Fortin et al to make the O(N logK−1 N)
bound provable as well.

Evolutionary algorithms have a big advantage due to their
great degree of parallelism, however, synchronous variants
(which wait for evaluation of all individuals, then recompute
their internal state) have only a limited applicability for
distributed systems. Even on multicore computers an algo-
rithm may have a poor performance if it spends big periods
of time between fitness evaluations without using most of
computer resources. To overcome these limitations, steady-
state algorithms are developed, often with an intention to
become asynchronous. Particularly, a steady-state version of
the NSGA-II algorithm was developed [11] which showed
good convergence rate and high quality of Pareto front ap-
proximation. However, the running time of this variation is
poor.

It is possible to perform incremental non-dominated sorting
by doing a complete non-dominated sorting from scratch every
time an element is added. However, running times become
very high: O(KN3) when the fast non-dominated sorting [1]
is used, or O(N2 logK−1 N) when the sorting from [10]
is used. Thus, it is needed to develop new algorithms and
data structures to handle incremental non-dominated sorting
efficiently.

However, almost no such algorithms and data structures
have been developed so far. To our best knowledge, the only
paper which addresses this issue is a technical report by Li
et al [12]. In that report, a procedure called “Efficient Non-
domination Level Update” is introduced, which has the com-
plexity of O(NK

√
N) for a single insertion when solutions

are spread evenly over layers. This procedure was shown
experimentally to be quite efficient, however, the worst-case978-1-4799-7492-4/15/$31.00 c©2015 IEEE
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complexity for a single insertion is still O(N2K).
This paper presents our first results for incremental non-

dominated sorting. The presented algorithm is developed for
two-dimensional case (K = 2) and has O(N) worst-case
complexity for single insertion. More precisely, if there are
M layers, the worst-case complexity for single insertion
is O(M(1 + log(N/M)) + logM log(N/ logM)), which is
smaller than O(N) if M is small.

II. USED DATA STRUCTURES

To implement our algorithm, we need to have a data struc-
ture for container of elements which performs the following
operations in O(logN):
• search of an element in the container;
• split of the container by key into two parts (the elements

less than the key and the elements not less than the key);
• merge of two containers C1 and C2 (every element from

C1 is not greater than every element from C2).
We will call data structures which fulfil these require-

ments “split-merge balanced search trees”. There are several
such data structures, including Cartesian Tree [13] and Splay
Tree [14]. In the case of Cartesian Tree, the O(logN) bound
holds with high probability, while Splay Tree has amortized
O(logN) bounds. From the mentioned data structures, Carte-
sian Tree generally performs slightly better in practice, so we
use it in an implementation of our algorithm.

III. ALGORITHM DESCRIPTION

In this section, we describe the proposed algorithm and the
data structure which supports it. The data structure design is
described in Section III-A. The procedure of solution lookup
(finding which layer a solution belongs to) is described in
Section III-B. The procedure of solution insertion is described
in Section III-C. The worst solution deletion is described in
Section III-D.

When discussing the runtime analysis, we denote by N the
total number of solutions stored in the data structure and by
M the current number of non-domination layers. For the sake
of brevity, non-domination layers are called just “layers” in
the rest of the paper.

A. Data Structure

The idea of the data structure is to arrange layers in a
binary search tree (each tree node corresponds to a layer) in
the increasing order of their numbers. Each layer, in turn, is
represented by a binary search tree itself, where solutions are
sorted in the increasing order of their first objective. Since for
two different solutions a and b from the same layer it holds
that either aX > bX and aY < bY or aX < bX and aY > bY ,
solutions in each layer are effectively sorted in the decreasing
order of their second objective as well. The pseudocode for
the resulting “tree of trees” data structure is given in Fig. 1,
and the data structure itself is presented graphically in Fig. 2.

Note that the tree of layers can be an ordinary balanced tree,
while every tree of layer elements should be a split-merge
tree. However, to evaluate the number of a certain layer in

1: structure SOLUTION
2: – a solution to the optimization problem
3: X – the first objective
4: Y – the second objective
5: end structure
6: structure LLTNODE
7: – a node of a low-level tree
8: L : LLTNODE – the left child
9: R : LLTNODE – the right child

10: V : SOLUTION – the node key
11: end structure
12: structure HLTNODE
13: – a node of a high-level tree
14: L : HLTNODE – the left child
15: R : HLTNODE – the right child
16: N : HLTNODE – the next-in-order node
17: V : LLTNODE – the node key
18: S : INTEGER – the subtree size
19: end structure

Fig. 1. A pseudocode for the data structure

O(logM), one needs to store the number of tree elements
in a subtree in each node of the tree of layers. Additionally,
to move between adjacent layers in O(1), nodes of the tree
of layers should be augmented with pointers to the next-in-
order node (which can be done without affecting O(logN)
performance of basic operations).

For the sake of brevity, we denote the tree of layers as the
“high-level” tree and every tree containing layer elements as
a “low-level” tree.

B. Lookup

Given a low-level tree T and a solution s, it is possible
to find if s is dominated by at least one solution from T in
O(log |T |). To do it, one needs to find a solution u from T
such that uX ≤ sX and uX is maximum possible, which can
be done by traversing the tree T from its root. If u is found
and dominates s, then a dominating solution from T is found,
otherwise, no solution from T dominates s.

To prove the latter fact, consider two cases. If u is not
found, then for any solution t from T it holds that tX > sX ,
so t does not dominate s. If u is found, all solutions from
T which are not equal to u can be divided into two groups:
V = {v | vX < uX} and W = {w |wX > uX}. For every
solution v in V it also holds that vY > uY . If u does not
dominate s, then uY > sY , because uX ≤ sX . This means that
for every solution v from V it holds that vY > uY > sY , so no
solution from V can dominate s. At the same time, for every
solution w from W it holds that wX > sX by construction
(uX is maximum possible such that uX ≤ sX ), so no solution
from W can dominate s as well.

Using this algorithm, one can traverse the high-level tree
and find a layer with the minimum number which does not
dominate a certain solution s. The algorithm is presented in
Fig. 3.
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Fig. 2. Data structure for the algorithm – the “tree of trees”. Nodes of the “high-level” tree correspond to the layers. Each layer is, in turn, represented
by a “low-level” tree, where nodes are sorted by the first objective. In each node of the “high-level” tree, the subtree size is stored as well (the numbers in
parentheses shown near to the layer number). Note that layer numbers are not stored in nodes explicitly, they are just shown for convenience.

A rough estimation of the running time is O(logM logN),
where O(logM) is an estimation of the height of the high-
level tree, and O(logN) is an estimation of heights of all
low-level trees.

However, one can perform a better estimation using the
following idea. There are k = O(logM) layers which
were tested for domination. Let their sizes be L1 . . . Lk, and
L1 + . . . + Lk ≤ N . The running time for a layer of size Li

can be expressed as O(1+logLi) (we add extra 1 to handle a
condition of logLi = o(1)). The total running time of a single
lookup is:

O

(
k +

k∑
i=1

logLi

)
.

Due to Cauchy’s inequality,
∑k

i=1 logLi ≤ k log(N/k),
which finally gives the following complexity of a lookup
operation:

O

(
logM

(
1 + log

N

logM

))
,

which, due to the fact that M ≤ N and log(N/ logM) is
ω(1), can be simplified to:

O

(
logM log

N

logM

)
.

When N is fixed and M varies, this expression reaches its
maximum at M = Θ(N), yielding O((logN)2) worst-case
running time.

C. Insertion

Given a high-level tree H and a solution s, the insertion
procedure updates H so that s is included in one of its low-
level trees.

A key idea of fast implementation of insertion procedure is
the fact that solutions who change their layers form contiguous
pieces in their original layers and remain contiguous in their
new layers as well. Fig. 4 illustrates an example insertion
process.

The algorithm for a solution insertion is given in Fig. 5. It
maintains a low-level tree which, at each stage, contains the

solutions which needs to be inserted to the next layer. Initially
it consists of the single solution which needs to be inserted.
The layer to insert is initially found using the performing the
“lookup” operation.

The insertion algorithm works in iterations, each iteration
pushes solutions to the layer that is immediately dominated
by the layer of the previous iteration. On each iteration, the
following operations are performed:
• The low-level of the current layer is split in three parts

using the current pushed set of solutions C in the follow-
ing way:

– the “left part” TL consists of all solutions from the
current layer whose X coordinates are less than the
smallest X coordinate of a solution from C;

– the “middle part” TM consists of all solutions from
the current layer which are dominated by at least one
solution from C;

– the “right part” TR consists of all solutions from the
current layer whose Y coordinates are less than the
smallest Y coordinate of a solution from C.

The validity of such splitting will be proven below in
Lemma 1.

• The current layer is built by merging the trees TL, C and
TR.

• If both TL and TR are empty, this means that the entire
level was dominated by solutions from C. In turn, this
means that a new layer consisting entirely of TM should
be inserted just after the current level. All remaining
layers will effectively have their index increased by one.
The insertion procedure stops here.

• If TM is empty, the remaining layers should remain
unchanged. The insertion procedure stops here.

• Otherwise, C ← TM , and the insertion procedure contin-
ues with the next iteration.

If after the last iterations there are some solutions which were
not inserted, a new layer is formed from them and is added
as the last layer into the high-level tree.

To prove correctness of this algorithm, we prove the fol-
lowing lemma first.
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1: function LOWLEVELDOMINATES(T , s)
2: – returns whether any solution from T dominates s
3: T : LLTNODE – the root node of the low-level tree
4: s : SOLUTION – the solution to test for domination
5: B ← NULL – the best node so far
6: while T 6= NULL do
7: if T.V.X ≤ s.X then
8: B ← T
9: T ← T.R

10: else
11: T ← T.L
12: end if
13: end while
14: if B = NULL then
15: return FALSE
16: end if
17: return B.Y < s.Y or B.Y = s.Y and B.X < s.X
18: end function
19: function SMALLESTNONDOMINATINGLAYER(H , s)
20: – returns the layer with the smallest index from H
21: – which does not dominate s
22: H : HLTNODE – the root node of the high-level tree
23: s : SOLUTION – the solution to find a layer for
24: I ← 0 – the number of dominating layers so far
25: B ← NULL – the best node so far
26: while H 6= NULL do
27: if LOWLEVELDOMINATES(H.V, s) then
28: I ← I + H.S
29: H ← H.R
30: if H 6= NULL then
31: I ← I −H.S
32: end if
33: else
34: B ← H
35: H ← H.L
36: end if
37: end while
38: return (B, I)
39: end function

Fig. 3. A pseudocode for determining the smallest layer which doesn’t
dominate the given solution

Lemma 1. Consider a two-dimensional space of solutions.
Let there be two sets of solutions, A and B, such that no two
solutions from A dominate each other, no two solutions from B
dominate each other and every solution from B is dominated
by at least one solution from A.

Let a subset A′ ⊆ A be defined as {a : a ∈ A, a.X ≥
XA, a.Y ≥ YA} for some XA and YA. Let a subset B′ ⊆ B be
defined as {b : b ∈ B, ∃a ∈ A′ : a dominates b}. Then, there
exist some XB and YB such that B′ = {b : b ∈ B, b.X ≥
XB , b.Y ≥ YB}.

Proof: Let amin be a solution from A′ with the minimum
X possible, and let amax be a solution from A′ with the

Fig. 4. An example of insertion process. Solutions which don’t change their
layer nodes (not numbers!) during the insertion process are white. A solution
which is being inserted is black. Two clusters of solutions which together
change their layer node are dark-gray and light-gray, correspondingly.

minimum Y possible. Let X ′A = amin.X and Y ′A = amax.Y .
As no two solutions from A′ dominate each other, the value
XM = amax.X is the maximum possible X for solutions from
A′, and the value YM = amin.Y is the maximum possible Y
for solutions from A′.

Obviously, for every solution b ∈ B′ it holds that b.X ≥
X ′A and b.Y ≥ Y ′A, because if either of these conditions is
violated, b can not be dominated by any element from A′. So,
B′ ⊆ {b : b ∈ B, b.X ≥ X ′A, b.Y ≥ Y ′A}.

We need to prove that every solution b ∈ B for which
b.X ≥ X ′A and b.Y ≥ Y ′A belongs to B′ as well. This will be
done by contradiction. Assume that there exists some b ∈ B
such that b.X ≥ X ′A and b.Y ≥ Y ′A, but it does not belong
to B′. By definition, there exists a solution a ∈ A such that a
dominates b. By definition of B′, a /∈ A′, so either a.X < X ′A
or a.Y < Y ′A. Consider the cases separately:
• If a.X < X ′A, then a.Y > YM , otherwise a dominates

amin. As a consequence, b.Y > YM as well. However,
b.X ≥ X ′A, so the solution amin ∈ A′ actually dominates
b. Contradiction.

• If a.Y < Y ′A, then a.X > XM , otherwise a dominates
amax. As a consequence, b.X > XM as well. However,
b.Y ≥ Y ′A, so the solution amax ∈ A′ actually dominates
b. Contradiction.

Each case terminates with a contradiction, so the assumption
about existence of b is wrong, which proves the lemma.

In other words, we just proved that, given two successive
layers, a contiguous fragment of the first layer always domi-
nates a contiguous fragment of the second layer. This explains
why splitting the current layer in three parts always yields the
middle set which is completely dominated by the solutions
which are to be pushed into this layer.

Theorem 1 (Correctness of an iteration). At the beginning of
an iteration t (t ≥ 1), denote by Lt

i the layer with index i, by
St an index of the layer to which the solutions are pushed, by
Ct the set of solutions pushed to Lt

st . Let M be the number
of layers at the beginning of the first iteration.

If initially the layers form a correct set of non-dominating
layers (i.e. no solution from L1

1 is dominated by any other
solutions, for every k ≥ 2 and for every a ∈ L1

k there exists
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1: function SPLITX(T , s)
2: – splits a tree T into two trees L, R
3: – such that for all l ∈ L holds l.X ≤ s.X
4: – and for all r ∈ R holds r.X > s.X
5: T : LLTNODE
6: s : SOLUTION
7: end function
8: function SPLITY(T , s)
9: – splits a tree T into two trees L, R

10: – such that for all l ∈ L holds l.Y > s.Y
11: – and for all r ∈ R holds r.Y ≤ s.Y
12: T : LLTNODE
13: s : SOLUTION
14: end function
15: function MERGE(L, R)
16: – merges two trees L and R into a single one
17: – given for any l ∈ L and r ∈ R holds l.X < r.X
18: L : LLTNODE
19: R : LLTNODE
20: end function
21: function INSERT(H , s)
22: – inserts a solution s into a high-level tree H
23: H : HLTNODE
24: s : SOLUTION
25: C ← NEW LLTNODE(s)
26: (G, i)← SMALLESTNONDOMINATINGLAYER(H, s)
27: while G 6= NULL do
28: Cmin ← a solution with minimum x from C
29: Cmax ← a solution with minimum y from C
30: (TL, Ti)← SPLITX(G.V,Cmin)
31: (TM , TR)← SPLITY(Ti, Cmax)
32: G.V ← MERGE(TL, MERGE(C, TR))
33: if TM = NULL then
34: return – no more solutions to push down
35: end if
36: if TL = NULL and TR = NULL then
37: – the current layer is dominated in whole
38: – just insert pushed solutions as a new layer
39: Insert NEW HLTNODE(TM ) after G
40: return
41: end if
42: C ← TM

43: G← G.N
44: end while
45: Insert NEW HLTNODE(C) after last node of H
46: end function

Fig. 5. A pseudocode for insertion of a solution into a high-level tree

some b ∈ L1
k−1 which dominates a, but no two solutions

from L1
k dominate each other), and S1 is chosen by the

SMALLESTNONDOMINATINGLAYER function, the following
statements are true:

1) The number of layers at the beginning of an iteration t
is exactly M .

2) The layers Lt
1 . . .Lt

M form a correct set of non-
dominating layers.

3) Every solution from Ct is dominated by at least one
solution from Lt

St−1, if St > 1.
4) If t > 1, then St = St−1 + 1 and there exist Xt and Y t

such that Ct = {c : c ∈ Lt−1
St−1, c.X ≥ Xt, c.Y ≥ Y t}.

5) If t > 1, then for any 1 ≤ i ≤M , i 6= St−1, Lt−1
i = Lt

i.

Proof: The first statement is easy to prove, as every
level addition is immediately followed by termination of the
insertion algorithm. The fifth statement holds because the only
layer changed at an iteration t has the number of St.

The other statements are proved by induction. The induction
base is t = 1, where:

• the second and the third statements are true by definition.
• as t = 1, the fourth statement is not checked.

Let’s prove correctness of these statements for t+ 1 if they
hold for t. The next iteration will be performed if the layer
Lt
St is split by the minimum X and Y from Ct such that the

middle set TM is not empty and at least one of the sets TL

and TR is not empty as well.
As Ct+1 = TM , by Lemma 1 the values of Xt+1 and Y t+1

exist. The condition St+1 = St + 1 is fulfilled by line 43 on
Fig. 5, so the fourth statement for t + 1 is true.

As Ct+1 = TM , for every solution a ∈ Ct+1 there exists
a solution b ∈ Ct such that b dominates a. However, Ct ⊂
Lt+1
St = Lt+1

St+1−1, so the third statement is true as well.
Finally, the second statement has to be proven. Due to the

fifth statement, we need to prove the following statements
only:

• In Lt+1
St no two solutions dominate each other. As Lt+1

St =
TL∪Ct∪TR and TL ⊂ Lt

St , TR ⊂ Lt
St , we need to show

that:
– For every a ∈ Ct and b ∈ TL, a and b don’t

dominate each other. If t = 1, this holds by definition
of St. Otherwise, Ct ⊂ Lt−1

St−1 and TR ⊂ Lt−1
St

by induction assumption, so b cannot dominate a.
However, b.X < a.X by construction, so a cannot
dominate b.

– For every a ∈ Ct and b ∈ TR, a and b don’t dominate
each other. This proof is symmetrical to the previous
one.

• For every a ∈ Lt+1
St there exists b ∈ Lt+1

St−1 such that b
dominates a. This is true because Lt+1

St = TL ∪Ct ∪TR,
TL ⊂ Lt

St , TR ⊂ Lt
St , both Lt

St and Ct are dominated
by Lt

St−1 and Lt+1
St−1 = Lt

St−1.
• For every a ∈ Lt+1

St+1 there exists b ∈ Lt+1
St such that

b dominates a. As Lt+1
St+1 = Lt

St+1, for every a there
exists b′ ∈ Lt

St such that b′ dominates a. As Lt+1
St =

TL ∪ Ct ∪ TR, TL ⊂ Lt
St , TR ⊂ Lt

St , the statement is
true if b′ ∈ TL ∪ TR. The only alternative is b′ ∈ TM .
However, for every t ∈ TM there is t′ ∈ Ct such that t′

dominates t, so t′ dominates a as well.

This case analysis finishes proving this theorem.
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Theorem 2 (Correctness of the algorithm). If before run-
ning the algorithm the layers formed a correct set of non-
dominating layers, then when the algorithm finishes:

1) the layers will form a correct set of non-dominating
layers;

2) every solution which was in the data structure before
running the algorithm will remain in the data structure;

3) the inserted solution will be in the data structure.

Proof: At every exit point of the algorithm, there are
no solutions which should be pushed to any layers, and no
solution is ever removed by the insertion algorithm, so the
second statement is true. As initially the inserted solution is
in the set of solutions which should be pushed, it will be in
the data structure when the algorithm terminates, so the third
statement is true.

To prove the first statement, consider three exit points of
the algorithm:
• The algorithm exits on Line 34 of Fig. 5. At this point,

there are no solutions which should be pushed to any
layers. By Theorem 1, the layers will form a correct set
of non-dominating layers.

• The algorithm exits on Line 40 of Fig. 5. Here, the
layer formed by C dominates the entire layer formed
by TM = G.V , which, in turn, dominates the entire
subsequent layer (by the second statement of Theorem 1).
So the new layer formed by TM can be inserted after the
layer formed by C without violation of the first statement
of this theorem.

• The algorithm exits on Line 46 of Fig. 5. Before insertion
of the new layer, all solutions from C don’t dominate
each other, as C either consists of a single solution or
is a fragment of a layer. Additionally, every solution
from C is dominated by the last layer (third statement
of Theorem 1). So if this new layer is inserted, the layers
will form a correct set of non-dominating layers.

All the cases are proven, so the theorem is proven as well.
The running time of the insertion algorithm sums up

from the running time of the lookup algorithm (which is
O(logM log(N/ logM))) and from the total time spent in
iterations. Assume that P ≤ M iterations were performed.
Without losing generality, assume that the layers of sizes
L1 . . . LP were split in these iterations. Denote the sizes of
their pairs after splits to be LL

1 , L
M
1 , LR

1 , . . . , L
L
P , L

M
P , LR

P .
The value LM

0 = 1 corresponds to the initial set C consisting
of the solution which is to be inserted. In i-th iteration, the
following operations with ω(1) complexity were performed:
• finding minimum and maximum of C in O(1+logLM

i−1);
• SPLITX in O(1 + log(LL

i + LM
i + LR

i ));
• SPLITY in O(1 + log(LM

i + LR
i ));

• inner MERGE in O(1 + log(LM
i−1 + LR

i ));
• outer MERGE in O(1 + log(LL

i + LM
i−1 + LR

i )).
In total, the sum of all numbers under logarithms does

not exceed 4
∑P

i=1 Li, and hence is O(N). By Cauchy’s
inequality, the sum of all running times for all iterations
is O(P (1 + log(N/P ))). For a fixed N , this function has

a maximum when P = Θ(N), which both gives us that
O(P (1+log(N/P ))) = O(M(1+log(N/M))) and the worst-
case running time of O(N). The layer insertion operations
which can happen at the end of the algorithm cost only
O(logM) and thus don’t change the estimations.

The total running time complexity for the insertion algo-
rithm is:

O

(
M

(
1 + log

N

M

)
+ logM log

N

logM

)
.

D. Deletion of the Worst Solution

In most multiobjective algorithms, deletion of an arbitrary
solution is not needed and hence is not necessary to support.
The only solutions which are deleted are the “worst” solutions,
which are stored at the last layer and can be deleted without
rebuilding the whole data structure. The running time of the
algorithm for deletion of the worst solution (an arbitrary one
from the last layer) is O(logN + logM).

IV. EXPERIMENTS

To perform comparison of the proposed algorithm with the
existing methods, we generated a number of benchmark prob-
lems. Each benchmark problem is a list of two-dimensional
integer points (solutions to a hypothetical optimization prob-
lem) which needs to be added to non-dominating layers one
by one in the specified order.

We used the following problem generators, where N is the
problem size:
• “square”: generates N random points from an N × N

square;
• “parallel”: generates N random points, N/2 of which lie

on a line y = N − x, while the remaining points lie on
a line y = N − x + 1;

• “diag1”: generates a sequence of N points (x, x), starting
from the biggest x;

• “diag2”: generates a sequence of N points (x, x+5) and
(x + 5, x) one after another, starting from the biggest x;

• “parper”: generates a “parallel-perpendicular” test which
consists of N/6 points on a line y = x+5, N/6 points on
a line y = x− 5, N/3 points on a line y = N/3−x− 4,
and N/3 points on a line y = N/3 − x − 6, laid out as
shown on Fig. 6.

We evaluate the following algorithms:
• the fast non-dominated sorting from [1], which is run

once on all points;
• the ENLU approach from [12], which is used to add one

point at a time;
• the proposed method, which is also used to add one point

at a time.
Two measures are used: the total wall-clock running time

and the total number of comparisons made. Problem sizes
are taken from the set {250, 500, 1000, 2000, 4000}. For each
problem size, each problem generator and each algorithm, 100
runs are performed and the measures are averaged.

For the “square” test, the results are presented on Fig. 7
for comparisons and on Fig. 12 for wall-clock time. We
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Fig. 6. An example of the “parper” test for N = 24

can see that the ENLU approach outperforms the plain fast
non-dominated sorting, and the proposed method, in turn,
outperforms ENLU.

For the “parallel” test, the results are presented on Fig. 8
for comparisons and on Fig. 13 for wall-clock time. This is an
example when the proposed method is a clear winner both in
absolute and in asymptotical sense. Indeed, the small constant
number of layers renders the insertion time to be O(logN)
which is virtually unreachable for ENLU when the size of the
first layer is O(N).

For the “diag1” test, the results are presented on Fig. 9
for comparisons and on Fig. 14 for wall-clock time. This is
the “best-case” test for ENLU: every insertion is processed
in O(1) time. The proposed method performs in O(logN).
However, the wall-clock times of these two methods are almost
identical. This probably can be explained by some auxiliary
operations whose complexity overtakes the complexity of
comparisons.

For the “diag2” test, the results are presented on Fig. 10
for comparisons and on Fig. 15 for wall-clock time. This test
seems to be the worst-case for the proposed method, where it
demonstrates O(N) insertion times. Even in these conditions,
it makes fewer comparisons than its competitors and it is on
par with the fast non-dominated sorting by wall-clock time.

Finally, for the “parper” test, the results are presented on
Fig. 11 for comparisons and on Fig. 16 for wall-clock time.
This test was constructed specially to challenge the ENLU
approach. Here it demonstrates O(N2) insertion complexity,
and its overall performance is O(N3). In fact, for N = 4000
the number of comparisons exceeded 3 ·109. For the proposed
method, this test is not difficult.

V. CONCLUSION

A new algorithm for incremental non-dominated sorting
is proposed, which has a worst case insertion complexity of

O(M(1 + log(N/M)) + logM log(N/ logM)), where N is
the number of solutions and M is the number of layers. In
the worst possible case, this evaluates to O(N). Experiments
show that the proposed algorithm is efficient not only from
theoretical point of view, but in practice too.

A side effect of this research is that a test is generated for
the competing ENLU approach [12] where it demonstrates an
O(N2) insertion complexity for O(N) insertions.

As a future work, we consider relaxing the two-dimensional
condition and evaluating more information, such as crowding
distance, which will allow to construct efficien steady-state
versions of multiobjective evolutionary algorithms.

The code which can be used to reproduce the experiments
is published at GitHub1.

This work was financially supported by the Government of
Russian Federation, Grant 074-U01.
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Fig. 8. Number of comparisons for “parallel”
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Fig. 9. Number of comparisons for “diag1”
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Fig. 10. Number of comparisons for “diag2”
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Fig. 11. Number of comparisons for “parper”
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Fig. 12. Wall-clock time for “square”
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Fig. 13. Wall-clock time for “parallel”
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Fig. 14. Wall-clock time for “diag1”
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Fig. 15. Wall-clock time for “diag2”
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Fig. 16. Wall-clock time for “parper”
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