
Worst-Case Execution Time Test Generation

for Augmenting Path Maximum Flow Algorithms

using Genetic Algorithms

Viktor Arkhipov, Maxim Buzdalov, Anatoly Shalyto

St. Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: {arkhipov,buzdalov}@rain.ifmo.ru, shalyto@mail.ifmo.ru

Abstract—Worst-case execution time tests can be tricky to
create for various computer science algorithms. To reduce the
amount of human effort, authors suggest using search-based
optimization techniques, such as genetic algorithms. This paper
addresses difficult test generation for several maximum flow
algorithms from the augmenting path family. The presented
results show that the genetic approach is reasonably good for
the well-studied algorithms and superior for the capacity scaling
algorithms. Moreover, tests which are generated against one
algorithm seem to be hard for other algorithms of this family.

I. INTRODUCTION

Worst-case execution time testing has always been the most

relevant measure of algorithm performance. One of the main

problems is that worst-case test generators have to heavily

depend not only on the problem that the algorithm solves,

but on the algorithm itself as well. In addition, to design and

implement such generators, a scientist must have a deep insight

of how exactly the algorithm works. This leads to the situations

when for certain algorithms the worst-case tests are, in fact,

unknown.

One of the possible solutions to the problem of worst-

case test data generation is to apply search-based software

engineering techniques [1]. In this paper, tests are generated

using genetic algorithms.

The problem which is considered in this work is the

well-known maximum flow problem. This problem is chosen

because a number of different algorithms for solving it are

known, as well as some good test generation algorithms exist.

We further refine our domain to augmenting path algorithms

[2], [3], including their capacity scaled versions [4]. Our

results are compared to the performance of DIMACS data

generators [5].

The rest of the paper is structured as follows. First, different

means of fitness evaluation are discussed. Second, the common

properties of genetic algorithms which are used in this work

are described. Third, several crossovers are considered and

the best one is empirically chosen. Fourth, the results for

the chosen maximum flow algorithms are shown. Fifth, we

compare the generated tests with the DIMACS test data.

0 500 1000 1500 2000
0

5

10

15

20

25
Vertex count

Time

Generations

V
er
te
x
co
u
n
t
/
1
06

Fig. 1. Fitness functions: Time vs. Vertex count

Discussion, conclusion and future work sections will be the

last.

II. FITNESS MEASUREMENT

In previous works [6]–[9] it is stated that, in various

instances of worst-case execution time test data generation,

optimization of execution time directly may not lead to good

results due to its noisy, quantized and platform-dependent

nature. Instead, it is recommended to use internal data from

the algorithms, such as the number of function calls or the

number of iterations of certain loops. This statement also holds

for the considered problem, although to the lesser extent. In

Fig. 1 we can see that even in the case of linearly dependent

fitness functions — the execution time and the number of

graph vertices (repeatedly) visited during the algorithm —

optimization by the number of vertices gives better results.

In the general case, the choice of a good fitness function

from the given program is a non-trivial task, so a problem of

dynamic selection of a good fitness function arises [7]–[9].

In the case of maximum flow algorithms, however, we can

restrict the possible fitness functions to several well-known

performance measures, such as: number of visited vertices,

number of visited edges, number of DFS/BFS calls, etc. In

addition, many algorithms belonging to the same algorithm

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.180

108

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.180

108

family (e.g. augmenting path algorithms) share the set of

possible fitness functions. The main hypothesis in this case

is that the fitness function which was proven good for one of

such algorithms should be good for the other algorithms of

this family as well.

Due to the preliminary experiment results, the fitness func-

tion to be used in the paper is the number of DFS/BFS calls.

III. GENETIC ALGORITHM DETAILS

In this section, the implementation details of the genetic

algorithms used in this paper are described.

The generation size is set to G = 100. The first generation

is filled with randomly generated individuals. To create the

next generation, first a selection operator is used to select

0.9G individuals for reproduction, grouped in pairs. Then

the crossover operator is applied to each of the pairs of

individuals. The mutation operator is then applied to each

of the offsprings. After that, a new generation is formed by

joining the mutated offsprings and the 10% best individuals

from the old generation (a 10% elitist selection).

In the subsections, the individual encoding, the selection,

crossover and mutation operators are described in more detail.

A. Individual Encoding

For the maximum flow algorithms, the test data are the

networks — the graphs with capacities on each edge and

with source and target vertices selected. To estimate the

performance of different algorithms on the limited subset of

all possible networks, we consider the networks with the

maximum of V vertices, E edges, and maximum edge capacity

of C.

To encode the networks, we define the vertex 0 to be the

source, the vertex (V − 1) to be the target, and we use the

edge list encoding to encode the graph: the individual is a list

of E triples (s, t, c) where each triple defines an edge from

vertex s to vertex t with the capacity of c.
To generate a new random edge (s, t, c), we generate s and

t at random from an interval of [0;V) such as s �= t, and

c at random from an interval of [1;C]. To generate a new

individual, we generate E random edges and concatenate then

in a list.

B. Mutation and Crossover Operators

To mutate an individual, we replace each edge with a

randomly generated one with a probability of 1%.

We used three crossover operators:

1) the single-point crossover (SPC);

2) the two-point crossover (TPC);

3) the two-point crossover with shift (TPCS).

The single-point crossover works on two parent individuals

as follows. First, a crossover index I is chosen from an interval

of [1;E). Second, the first individual A is split into two

subsequences A1 = A[0 . . . I) and A2 = A[I . . . E), and the

second individual B is split in exactly the same way into B1

and B2. Last, new offsprings are formed by concatenating

A1 +B2 and B1 +A2, respectively.

The two-point crossover works on two parent individuals

as follows. First, crossover indices I1, I2 are chosen from an

interval of [1;E) such that I1 < I2. Second, the first individual

A is split into three subsequences A1 = A[0 . . . I1), A2 =
A[I1 . . . I2), A3 = A[I2 . . . E), and the second individual B
is split in exactly the same way into B1, B2, and B3. Last,

new offsprings are formed by concatenating A1 + B2 + A3

and B1 +A2 +B3, respectively.

The two-point crossover with shift is similar to the usual

two-point crossover. But instead, the crossover indices are

chosen for each parent separately (IA
1

< IA
2

, IB
1

< IB
2

) with

a constraint that IA
2
− IA

1
= IB

2
− IB

1
. So, A1 = A[0 . . . IA

1
],

A2 = A[IA
1
. . . IA

2
), A3 = A[IA

2
. . . E) and the same for B.

C. Selection Operators

We used three selection operators:

1) the roulette wheel selector (RWS);

2) the scaled roulette wheel selector (SRWS);

3) the tournament selector with the tournament size of 2

(TS).

The roulette wheel selector selects an individual from the

generation with a probability proportional to its fitness value.

The scaled roulette wheel selector computes the minimum

fitness in the generation Fmin, the maximum fitness Fmax,

and computes the scaled fitness value for each individual:

FS(i) =
F (i)− Fmin

Fmax − Fmin

.

After that, the individual i is selected with a probability

proportional to the FS(i). This variation makes the selection

operator depend less on the magnitude of the fitness value and

on the difference between fitness values in a generation.

The tournament selector, with the tournament size of 2,

works the following way. To select an individual, it first picks

two random individuals and then selects the individual with

the better fitness value.

IV. EXPERIMENTS

In the experiments, the following algorithms are considered:

• Edmonds-Karp algorithm [2];

• Dinic algorithm [3];

• Capacity scaling algorithm [4] with two different maxi-

mum scales (2000 and 20000).

We choose the maximum vertex number V to be 100, the

maximum edge number E to be 2401, the maximum capacity

C to be 10000. The value of E is chosen such as the maximum

number of DIMACS generators can be used in the comparison.

For every configuration, the experiment was run for 10 times

and then the results were averaged.

A. Best Crossover Determination

In Fig. 2, the results of running the genetic algorithm with

roulette wheel selector and different crossovers are given. The

number of BFS runs was selected as the fitness function.

One may clearly see that the two-point crossover with shift

performs much better. The possible explanation to this fact

109109

0 500 1000 1500 2000

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

SPC

TPC

TPCS

Generations

F
it
n
es
s
/
1
03

Fig. 2. Performance of different crossovers. Abbreviations are from Sec-
tion III-B

0 500 1000 1500 2000

0.5

1

1.5

2

RWS

SRWS

TS

Generations

F
it
n
es
s
/
1
03

Fig. 3. Performance of selectors vs the Edmonds-Karp algorithm. Abbrevi-
ations are from Section III-C

is that there is no preliminary degeneracy in each of gene

positions when shifts are allowed. In all further experiments,

the crossover with shift is used.

B. Selection Operators vs Edmonds-Karp

In this experiment, tests against the Edmonds-Karp algo-

rithm were generation with different selection operators. The

number of BFS runs was selected as the fitness function. In

Fig. 3, the performance for each selection operators is shown.

It can be seen that the roulette wheel selector performs the

worst, while tournament selector is only slightly better at the

end (2040) than the scaled roulette wheel selector (2010).

C. Edmonds-Karp Runs vs Other Algorithms

In this experiment, for each of the selector operators, the

tests generated during the 10 optimization runs against the

Edmonds-Karp algorithm were evaluated against the other

maximum flow algorithms. In Fig. 4, the results for the roulette

wheel selector are given. In Fig. 5, the same is given for the

scaled roulette wheel selector, and for tournament selector in

Fig. 6.

It can be seen that, while the fitness for the Edmonds-Karp

algorithm is growing, the fitnesses for the other algorithms are

also growing. In other words, the difficult test data evolved

against the Edmonds-Karp algorithm is difficult for all the

considered algorithms simultaneously.

0 500 1000 1500 2000

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Edmonds-Karp

Dinic

Scaling, 2000

Scaling, 20000

Generations

F
it
n
es
s
/
1
03

Fig. 4. Roulette Wheel Selector vs the Algorithms

0 500 1000 1500 2000
0

0.5

1

1.5

2 Edmonds-Karp

Dinic

Scaling, 2000

Scaling, 20000

Generations

F
it
n
es
s
/
1
03

Fig. 5. Scaled Roulette Wheel Selector vs the Algorithms

We can also see that for all the algorithms the roulette wheel

selector performs worse than all others, and the performance of

the tournament selector and the scaled roulette wheel selector

is very similar. So the effect first seen on the Edmonds-Karp

algorithm is in fact very robust.

V. COMPARISON WITH DIMACS

For further research of effectiveness, the achieved values

were compared with the performance on tests that were gen-

erated using different generators from DIMACS open source

library [5]:

• ak, the Cherkassky and Goldberg generator.

• tg, the transit grid generator by Waissi.

0 500 1000 1500 2000
0

0.5

1

1.5

2 Edmonds-Karp

Dinic

Scaling, 2000

Scaling, 20000

Generations

F
it
n
es
s
/
1
03

Fig. 6. Tournament Selector vs the Algorithms

110110

TABLE I
COMPARISON OF EVOLVED TESTS WITH THE DIMACS TESTS

Method Edmonds Dinic Scaling,
2000

Scaling,
20000

random 15 10 20 15

tg 15 54 13 14

genrmf 250 950 13 12

wash1 15 2650 20 15

ak 14 2979 10 9

Zadeh 4419 2210 108 107

Genetic 2040 1965 1244 1243

• wash1, the difficult case generator for the Dinic algo-

rithm.

• random, the generator of random grids.

• zadeh, the test generator from the article [10] against the

Edmonds-Karp algorithm.

The results are presented in Table I. In this table, the average

for the 10 genetically evolved tests with the use of tournament

selection is presented along with the DIMACS tests.

One can see that, for the Edmonds-Karp algorithm, the

evolved tests are, in average, two times worse than the state-

of-art test of Zadeh. However, the same tests are much more

efficient relatively for the Dinic algorithm, and are way far

superior for the capacity scaling algorithms.

VI. DISCUSSION

From the results presented in the figures and the table

above we can conclude that for each standard maximum

flow algorithm (such as Edmonds-Karp or Dinic), where

the specialized test data generators exist, these generators

work better than the genetic algorithm. However, the genetic

performance is of the same order of magnitude. What is more,

for the scaling algorithms, which seem to be more efficient,

the genetic algorithm generated much harder tests. As a result,

we can say that, for at least the maximum flow problem, the

genetic approach seem to be the competitive approach that can

produce good results with much less human interference.

VII. CONCLUSION AND FUTURE WORK

The genetic algorithm based approach to hard test gener-

ation for the maximum flow algorithms is presented in the

paper. This approach is shown to be quite robust, i.e. the

tests it generates are quite hard for the whole family of

the algorithms. Compared to the DIMACS test data set, the

generated tests appeared to be of the same order of difficulty

for the algorithms where specialized test cases exist, and one

to two orders of magnitude more difficult for other algorithms.

The authors see a large future work to be done. First,

the analysis of the structure of the tests evolved during the

evolutionary search is still missing. Second, generation of

tests against other maximum flow algorithms is definitely

needed, including other maximum flow algorithm families,

push-relabel being the first. Third, some research is needed for

the best fitness function, in terms of number of generations

to achieve the same results, as well as some explanation of

the observed behavior. Fourth, some theoretical work on the

complexity of the test generation problem against maximum

flow algorithms is very welcome.

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[2] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM, vol. 19,
no. 2, pp. 248–262, 1972.

[3] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in
networks with power estimation,” Soviet Math. Dokl., vol. 11, no. 5, pp.
1277–1280, 1970.

[4] R. K. Ahuja and J. B. Orlin, “A capacity scaling algorithm for the
constrained maximum flow problem,” Networks, vol. 25, no. 2, pp. 89–
98, 1995.

[5] Dimacs. test generators for the maximum flow
problem. [Online]. Available: http://www.informatik.uni-
trier.de/˜naeher/Professur/research/generators/maxflow/

[6] M. Buzdalov, “Generation of tests for programming challenge tasks
using evolution algorithms,” in Proceedings of the 2011 GECCO Con-

ference Companion on Genetic and Evolutionary Computation, 2011,
pp. 763–766.

[7] A. Buzdalova, M. Buzdalov, and I. Petrova, “Generation of tests for
programming challenge tasks using multi-objective optimization,” in
Proceedings of Genetic and Evolutionary Computation Conference,
vol. 2, 2013, pp. 1655–1658.

[8] A. Buzdalova and M. Buzdalov, “Adaptive selection of helper-objectives
for test case generation,” in Proceedings of Congress on Evolutionary

Computation, 2013, pp. 2245–2250.
[9] A. Buzdalova, M. Buzdalov, and V. Parfenov, “Generation of tests for

programming challenge tasks using helper-objectives,” Lecture Notes in

Computer Science, vol. 8084, pp. 300–305, 2013.
[10] N. Zadeh, “Theoretical efficiency of the edmonds-karp algorithm for

computing maximal flows,” Journal of the ACM, vol. 19, no. 1, pp.
184–192, 1972.

111111

