
A Switch-and-Restart Algorithm
with Exponential Restart Strategy

for Objective Selection
and its Runtime Analysis

Maxim Buzdalov
ITMO University

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: mbuzdalov@gmail.com

Abstract—There exist optimization problems with the target
objective, which is to be optimized, and several extra objectives,
which may or may not be helpful in the optimization process. This
paper considers the case when it is possible to find an optimum
of the target objective by optimizing either the target objective
or a single extra objective.

An algorithm is presented that uses a single instance of an
underlying single-objective optimization algorithm to optimize
different objectives at different iterations and restarts the opti-
mization algorithm between optimizing different objectives. This
algorithm has the expected running time of at most 4KminO TO

until an optimum of the target objective is found, where TO is the
expected running time of the underlying optimization algorithm
to find an optimum of the target objective by optimizing the
objective O. An impact of not using restarts between iterations
is also discussed.

I. INTRODUCTION

Single-objective optimization can often benefit from multi-

ple objectives [1]–[4]. Different approaches are known from

the literature. Some researchers introduce additional objec-

tives to escape from the plateaus [5]. Decomposition of the

primary objective into several objectives also helps in many

problems [2], [3], [6]. Additional objectives may also arise

from the problem structure [7].

There is an open question: can the expected number of

iterations when using extra objectives be smaller than the

expected number of iterations without using extra objectives?

The algorithm presented in this paper has the following

property: if for at least one extra objective the target optimum

can be found in an expected number of iterations that is

asymptotically smaller than for the target objective itself, the

same will hold for the presented algorithm.

The rest of the paper is structured as follows. Section II

discusses the related work. In Section III, the switch-and-

restart algorithm for objective selection is described with

some basic runtime analysis. Section IV concentrates on the

exponential restart strategy and gives stronger upper and lower

bounds. In Section V, it is discussed what happens when one

does not restart the underlying optimization algorithm when

swtching between optimizing different objectives. Section VI

concludes.

II. RELATED WORK

In this section, some previous work is presented that con-

centrates on constructing and applying objectives other than

the target objective to speed up optimization. The idea of

exponential restarts, which is used in this paper, also appeared

in some preceding works, although it addresses something

different. Finally, a folklore idea of running many algorithms

in parallel and choosing the best result is also discussed.

A. Multi-Objectivization and Helper-Objectives

Different approaches may be applied to a problem with the

“original” objective, which can be called the target objective,

and some extra objectives. The multi-objectivization approach

is to optimize all extra objectives at once using a multi-

objective optimization algorithm [3], [6]. One of the examples

where this approach provably works is the H-IFF optimiza-

tion problem [3]: one can naturally decompose it into two

components and optimize them simultaneously, which leads

to discovery of all optima of the original problem.

The helper-objective approach is to optimize simultaneously

the target objective and some (not necessarily all, in some

cases, only one is preferable) extra objectives, switching be-

tween them from time to time. The famous job-shop schedul-

ing problem is a good example of a problem where it is

possible to introduce helper-objectives based on the structure

of the problem [4], [7].

B. The EA+RL Method

Multi-objectivization and helper-objective approaches are

designed in the assumption that the extra objectives are crafted

to help optimizing the target objective. However, this is not

always true, especially when the extra objectives are generated

automatically [8], or their properties are unknown. In fact,

the extra objectives may support or obstruct the process of

optimizing the target objective.

2014 13th International Conference on Machine Learning and Applications

978-1-4799-7415-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ICMLA.2014.27

141

2014 13th International Conference on Machine Learning and Applications

978-1-4799-7415-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ICMLA.2014.27

141

The EA+RL method was developed to cope with such situ-

ations [9]. The idea of this method is to use a single-objective

evolutionary optimization algorithm and switch between the

objectives (which include the target one and the extra ones).

To find the most suitable objective for the optimization,

reinforcement learning algorithms are used [10]–[12]. In pa-

per [9], the EA+RL method was introduced and experimentally

evaluated on some simple benchmark problems. In [8], it

was applied to the problem of worst-case execution time test

generation. In papers [13], [14], first theoretical results about

this method were presented. The EA+RL method can also be

adapted to select the second objective for the helper-objective

approach [8].

C. Exponential Restarts

It is not a very new idea to restart an iterative optimization

algorithm after exponentially increasing number of iterations.

For example, in [15] Jansen studied the effect of applying

additive and multiplicative restarts (the latter is similar to

the considered case) to simple evolutionary algorithms which

optimize specific classes of functions. Another similar idea

known in the literature is the iterative-deepening depth-first

search [16] which, when run on a tree with fixed or bounded

number of children per node, essentially visits an exponentially

increasing number of nodes per iteration.

D. Algorithm Portfolios

The problem of objective selection, in some cases, can

be treated as the problem of algorithm selection. This prob-

lem is not new [17], however, it was mainly applied to

combinatorial problem solvers [18]. An algorithm portfolio

approach [19] was applied recently to the field of evolutionary

computation [20] and to continuous optimization [21]. These

approaches, however, are rarely treated from the theoretical

or worst-case point of view. What is more, the algorithms

belonging to portfolios are optimizing the same function,

which makes the progress of different algorithms observable

and comparable, unlike the current research.

E. Common Sense: Running Algorithms in Parallel

It is a common idea to run several optimization algorithms

in parallel. When one of them finds an optimum, all the

algorithms are terminated. Let there be K algorithms, and let

Ti be the running time of the i-th algorithm until an optimum

is found, then the total running time of the algorithm family

is Kmini Ti. The same result actually holds for the expected

total running time if the algorithms are randomized and Ti is

the expected running time until an optimum is found.

This way of running several algorithms requires all of them

to be loaded in the memory simultaneously. Sometimes, when

K is large, or when an algorithm needs big amounts of

memory, this behavior is undesirable. This paper addresses

this issue — the switch-and-restart algorithm requires only

one instance of the optimization algorithm to be loaded in

the memory, while the total running time is only O(1) times

worse.

1: function SARA(X, K)

2: X — the optimization algorithm

3: K — the number of objectives, target or extra

4: A — the list of meta-iteration sizes

5: O ← an instance of X
6: j ← 1 — the meta-iteration number

7: loop
8: for i← 1 . . .K do
9: INITIALIZE(O)

10: SETOBJECTIVE(O, i)
11: for t← 1 . . . Aj do
12: MAKEITERATION(O)
13: best← BEST(O)
14: if ISTARGETOPTIMUM(best) then
15: return best
16: end if
17: end for
18: end for
19: j ← j + 1
20: end loop
21: end function

Fig. 1. The general scheme of the switch-and-restart algorithm

III. GENERAL SWITCH-AND-RESTART ALGORITHM

Running algorithms in parallel has a single drawback — it

needs K instances of the optimization algorithm to be loaded

into memory. This can be a major issue when K is large, or

when the algorithm needs significant amount of memory to

work.

One of the possible solutions is to have a single instance of

the optimization algorithm and to optimize different objectives

for different time slots. For the sake of symmetry, it makes

sense to run optimization in rounds, or meta-iterations. During

a single meta-iteration with the number i, the algorithm will try

to optimize each objective for a certain number of iterations,

say, Ai.

Between rounds of optimization of different objectives, the

optimization algorithm may or may not be reset to some initial,

probably randomized, state. This is a non-trivial question

whether restart should be done. The consequences of this

choice will be discussed late. The algorithm being described

in this section does restart the optimization algorithm.

The described algorithm, which is called SaRA for “switch-

and-restart algorithm” is presented at Fig. 1.

A. Runtime Analysis of SaRA

It is assumed the running time of the SaRA algorithm

to be equal to the number of iterations of the underlying

optimization algorithm. This can be quite a natural measure if

each iteration of the underlying optimization algorithm takes

roughtly the same time.

Theorem 1. Let K be the number of objectives, O be an
arbitrary objective, and PO(x) be the probability for the
underlying optimization algorithm to find an optimum of the

142142

target objective by optimizing the objective O in x iterations.
Let Ai be the size of the i-th meta-iteration of the SaRA
algorithm, and T be the expected running time (number of
iterations) of this algorithm. Then the following holds:

T ≤ K
∞∑
y=1

⎛
⎝Ay

y−1∏
i=1

⎛
⎝1−

Ai∑
j=1

PO(j)

⎞
⎠
⎞
⎠.

Proof: For convenience, let’s define prefix sums:

Si =
∑
j=1

iAi.

Assume the optimum of the target objective is found at the

x-th iteration of optimizing the objective O during the y-th

meta-iteration. The number of iterations of the SaRA algorithm

before and including this iteration is:

D(x, y) ≤ Sy−1K +Ay(K − 1) + x ≤ SyK.

The probability of this to happen is:

EO(x, y) = PO(x)

y−1∏
i=1

⎛
⎝1−

Ai∑
j=1

PO(j)

⎞
⎠ .

Then the upper bound on T is:

T =

∞∑
y=1

Ay∑
x=1

(D(x, y)EO(x, y))

≤ K

∞∑
y=1

⎛
⎝Sy

Ay∑
x=1

EO(x, y)

⎞
⎠

= K

∞∑
y=1

⎛
⎝Sy

Ay∑
x=1

PO(x, y)

y−1∏
i=1

⎛
⎝1−

Ai∑
j=1

PO(j)

⎞
⎠
⎞
⎠

= K

∞∑
y=1

⎛
⎝Sy

⎛
⎝y−1∏

i=1

⎛
⎝1−

Ai∑
j=1

PO(j)

⎞
⎠
⎞
⎠ Ay∑

x=1

PO(x, y)

⎞
⎠.

Let’s define ZO(x) = 1−
Ax∑
i=1

PO(i). The upper bound above

can be rewritten as:

T ≤ K
∞∑
y=1

(
Sy

(
y−1∏
i=1

ZO(i)

)
(1− ZO(y))

)

= K
∞∑
y=1

(
Sy

(
y−1∏
i=1

ZO(i)−
y∏

i=1

ZO(i)

))

= K
∞∑
y=1

(
Ay

y−1∏
i=1

ZO(i)

)

= K

∞∑
y=1

⎛
⎝Ay

y−1∏
i=1

⎛
⎝1−

Ai∑
j=1

PO(j)

⎞
⎠
⎞
⎠,

which completes the proof.

IV. EXPONENTIAL RESTART STRATEGY

The formulation of Theorem 1 considers the most general

version of the SaRA algorithm. Due to this fact, it is difficult

to use its results in the above specified form. To construct a

statement that is more usable, one needs to restrict the values

of Ai. In this section, the exponential restart strategy for Ai

is analyzed. In other words, it is required that Ai+1/Ai → α
for some constant α > 1 when i grows. For simplicity, it is

assumed that Ai = �αi−1�, such that A1 = 1 and the ratio of

consecutive Ai really approaches α.

A. Upper Bound

Theorem 2. Let K be the number of objectives, O be
an arbitrary objective, and TO be the expected number of
iterations for the underlying optimization algorithm to find an
optimum of the target objective by optimizing the objective O.
Let Ai = �αi−1� be the size of the i-th meta-iteration of the
SaRA algorithm, and T be the expected running time (number
of iterations) of this algorithm. Then the following holds:

T ≤ K
α2

α− 1
TO.

Proof: Using the bound from Theorem 1 and the values

of Ai, one can write the following bound:

T ≤ K
∞∑
y=1

⎛
⎝�αy−1�

y−1∏
i=1

⎛
⎝1−

�αi−1�∑
j=1

PO(j)

⎞
⎠
⎞
⎠.

By ignoring all multipliers in the product except for the last

one, the right part is not decreased:

T ≤ K
∞∑
y=1

⎛
⎝�αy−1�

⎛
⎝1−

�αy−2�∑
j=1

PO(j)

⎞
⎠
⎞
⎠.

Note that even for y = 1 the expression involving �αy−2�
remains correct. The bound is further rewritten to complete

the proof:

T ≤ K
∞∑
y=1

⎛
⎝�αy−1�

⎛
⎝1−

�αy−2�∑
j=1

PO(j)

⎞
⎠
⎞
⎠

= K

∞∑
y=1

⎛
⎝�αy−1�

∞∑
j=�αy−2�+1

PO(j)

⎞
⎠

= K
∞∑
y=1

⎛
⎝�αy−1�

∞∑
t=y−1

�αt�∑
j=�αt−1�+1

PO(j)

⎞
⎠

= K

∞∑
y=0

⎛
⎝�αy�

∞∑
t=y

�αt�∑
j=�αt−1�+1

PO(j)

⎞
⎠

= K

∞∑
t=0

t∑
y=0

⎛
⎝�αy�

�αt�∑
j=�αt−1�+1

PO(j)

⎞
⎠

143143

= K

∞∑
t=0

⎛
⎝
⎛
⎝ �αt�∑

j=�αt−1�+1

PO(j)

⎞
⎠(t∑

y=0

�αy�
)⎞⎠

≤ K

∞∑
t=0

⎛
⎝
⎛
⎝ �αt�∑

j=�αt−1�+1

PO(j)

⎞
⎠ αt+1 − 1

α− 1

⎞
⎠

< K
α2

α− 1

∞∑
t=0

⎛
⎝
⎛
⎝ �αt�∑

j=�αt−1�+1

PO(j)

⎞
⎠αt−1

⎞
⎠

< K
α2

α− 1

∞∑
t=0

⎛
⎝ �αt�∑

j=�αt−1�+1

PO(j)j

⎞
⎠

= K
α2

α− 1

∞∑
j=1

PO(j)j = K
α2

α− 1
TO.

B. Lower Bound

Theorem 2 states the upper bound on the expected running

time of the SaRA algorithm. Now it is shown that this upper

bound is, in a sense, reachable.

Theorem 3. For a fixed α > 1 and an arbitrary ε > 0 there
exist a set of K objectives such that:

T

T0
> K

α2

α− 1
(1− ε),

where T is the expected running time of the SaRA algorithm
and T0 is the smallest expected running time to optimize the
target objective using one of K objectives.

Proof: Consider a problem with K objectives where for

all objectives O except for the last one TO = ∞, while for

the K-th objective the target optimum is reached exactly at

the iteration T0 = �αN� + 1 for some integer N . Then the

running time for the SaRA algorithm (which is not a random

value anymore) is exactly:

T =
N+1∑
i=1

(
K�αi−1�)+ (K − 1)�αN+1�+ �αN�+ 1

=
N+2∑
i=1

(
K�αi−1�)− �αN+1�+ �αN�+ 1.

A lower bound for T/T0 can be achieved from a lower

bound on T and an upper bound on T0. The latter one can be

immediate: T0 = �αN� + 1 ≤ αN + 1. The former one can

be constructed as follows:

T = K

N+2∑
i=1

�αi−1� − �αN+1�+ �αN�+ 1

> K
N+2∑
i=1

(
αi−1 − 1

)− �αN+1�+ �αN�+ 1

= K
αN+2 − 1

α− 1
−K(N + 2)− �αN+1�+ �αN�+ 1

> K
αN+2 − 1

α− 1
−K(N + 2)− αN+1 + αN

=
KαN+2 −K −K(N + 2)(α− 1)− αN (α− 1)2

α− 1

> K
αN+2

α− 1

(
1− 1

K

(
1− 1

α

)2

− K(N + 3)

αN+1

)
.

Using the lower and upper bounds, one can get that:

T

T0
> K

α2

α− 1

(
1− 1

K

(
1− 1

α

)2 − K(N+3)
αN+1

1 + 1
αN

)
,

where the fraction in big parenthesis can be arbitrarily close

to 1 from below by appropriate choices of N and K.

C. Optimal Exponent Base

Theorems 2 and 3 show that the performance of the SaRA

algorithm with exponential restart strategy is proportional to

α2/(α−1) where α is the exponent base for the meta-iteration

size. If α > 1, the single minimizer for this expression is α =
2, which suggests that the optimal choice for the exponential

restart strategy is to have the size of the i-th meta-iteration

equal to Ai = 2i−1. For this size, the upper bound on the

expected running time of the SaRA algorithm is

4Kmin
O

TO

where TO is the expected running time of the underlying

optimization algorithm to find an optimum of the target

objective by optimizing the objective O.

V. THE IMPACT OF RESTARTS

In the beginning of Section III it was mentioned that it

is not a simple problem to decide whether it is needed to

perform algorithm restarts when the objectives are switched.

The general idea is that restarts allow estimating the running

time judging only about the considered algorithms and not

their initializations. In other words, the algorithm that performs

restarts does not care about what was remained from the

previous iteration round.

When the algorithm does not perform restarts, things may

get either worse or better depending on the properties of

underlying optimization algorithms and of the objectives. First,

an artificial problem is described for which it is provably better

to not use restarts.

Theorem 4. Consider the situation when the optimization
algorithm always find an optimum of the target objective O
at the 2N -th iteration. Consider the problem with K identical
objectives equal to the objective O. Then, the running time of
the SaRA algorithm with α = 2 is K(2N −1)+2N , while the
same algorithm without restarts has the running time of 2N .

Proof: The version with restarts has to complete N meta-

iterations without any success, and the optimum is found only

at the end of the (N+1)-th meta-iteration. The version without

restarts continues optimizing effectively the same objective

uninterrupted.

A case has just been considered where using restarts make

things worse up to a degree of K. However, there exist

144144

situations where not using restarts leads to the results that

are significantly worse.

Theorem 5. Consider a problem with two objectives. The
domain is a set of bit strings of length N . Let us define
LEADINGONES(x) to be the length of the maximum prefix
of the bit-string x consisting of 1-bits, and ZEROMAX(x) to
be the number of 0-bits in the bit-string x.

The objectives for the considered problem are defined as
follows:
• The target objective:

O1(x) =

⎧⎪⎨
⎪⎩
N if x = 0N ;

N + 1 if x = 1N ;

LEADINGONES(x) otherwise.

• The secondary objective: O2(x) = ZEROMAX(x).
The optimization algorithm is the randomized local search
algorithm, which does the following:

1) X ← a randomly generated bit string of length N ;
2) Y ← X with exactly one randomly selected bit flipped;
3) if f(Y) ≥ f(X), then X ← Y ;
4) go to step 2.

Then, the expected running time of the SaRA algorithm is
O(N2), while the expected running time of the same algorithm
without restarts is infinite.

Proof: If the optimizer comes to the situation where X =
0N , it stucks there until the next restart happens whatever the

objective selection algorithm does, because if O1 is selected,

any single mutation decreases this objective, and 0N is already

an optimum for the O2 objective.

This means that, in the case of no restarts, the algorithm

stucks at the local optimum with high probability, because

ZEROMAX is faster to optimize using the randomized lo-

cal search algorithm than LEADINGONES (Θ(N logN) [22]

versus Θ(N2) [23]). So the expected running time of the

algorithm without restarts is infinite.

The probability for O1 to stuck at the local optimum after

random initialization is very small: the initial value can be

ON with the probability of 0.5N , or it can be initialized to

X = 10 . . . and then mutated to 00 . . ., which can be 0N — the

very imprecise upper bound to the probability of this to happen

is 0.25/N . This means that, when the size of the meta-iteration

is large enough, the O1 objective will not be optimized with

the probability of at most 0.25/N + 0.5N . Due to the results

from [23], for every δ > 0 there exists a constant c such that

the probability for LEADINGONES not to be optimized in cN2

iterations is at most δ. Let us fix δ = 0.1 and find m such that

2m−1 < cN2 ≤ 2m. Then, at each meta-iteration of the SaRA

algorithm starting with the (m+1)-th one, the probability for

O1 not to be optimized is at most 0.1+ 0.9(0.25/N +0.5N),
which is at most 0.2875 if N ≥ 3. The expected running time

of the SaRA algorithm is thus at most:

T ≤
∞∑

i=m+1

(
2(2i − 1)(1− 0.2875)0.2875i−m−1

)

< 0.7125

∞∑
i=m+1

(
2i+10.2875i−m−1

)

= 0.7125
∞∑
i=0

(
2m+2+i0.2875i

)

= 0.7125 · 2m+2
∞∑
i=0

0.575i

=
0.7125

1− 0.575
· 2m+2 < 14 · 2m−1 < 14cN2,

that is, O(N2), which completes the proof.

To sum up this section, using an algorithm with restarts

ensures that the overall performance will be at most 4K
multiplied by the performance of the optimization algorithm

on the target objective. An algorithm without restarts may

save up some iterations, but in some cases the performance

degrades drastically.

VI. CONCLUSION

An objective selection algorithm SaRA, for “switch-and-

restart algorithm”, is presented to control a single-objective

optimization algorithm for solving problems with a target

objective, which one needs to optimize, and several extra

objectives, which can or cannot help optimizing the target one.

This algorithm consists of meta-iterations, in the i-th meta-

iteration the objectives are optimized one at turn for 2i−1

iterations. When switching between different objectives, the

underlying optimization algorithm is restarted from scratch.

If one considers, for each objective O, the expected running

time, measured in iterations of the underlying optimization

algorithm, needed to find an optimum of the target objective

by optimizing the objective O, then the expected running time

of the presented algorithm is at most 4KminO TO, where K
is the number of objectives.

It is also shown that the given upper bound is asymptotically

tight by presenting, for each ε > 0, a problem which requires

at least 4KminO TO(1− ε) iterations to find the optimum.

The impact of restarts needed by this algorithm is discussed.

Two problems are presented: for the first one, the version of

the algorithm without restarts is K times faster, while for the

second one, the version without restarts, in expectation, cannot

find the optimum of the target objective.

The author believes that a stronger proof can be constructed:

one may take not the expected minima over performances of

single objectives, but the minima over performances with high

probability. In a sense, a possibility of this is demonstrated

in Theorem 5, but a more rigorous proof is required for the

general case.

The presented algorithm can be applied not only for ob-

jective selection, but for choosing the best of virtually any

discrete algorithm variations, or even of any finite number of

algorithms. The properties of the algorithm, like the expres-

sion for the upper bound on the expected running time, are

preserved in any case. However, if the number of options to

select grows with the problem size, the asymptotic behavior

145145

of the presented algorithm may no longer coincide with the

asymptotic behavior of the best option.

VII. ACKNOWLEDGMENTS

This work was partially financially supported by the Gov-

ernment of Russian Federation, Grant 074-U01. The author

thanks Arina Buzdalova for fruitful discussions about objective

selection algorithms.

REFERENCES

[1] F. Neumann and I. Wegener, “Can Single-Objective Optimization Profit
from Multiobjective Optimization?” in Multiobjective Problem Solving
from Nature, ser. Natural Computing Series. Springer Berlin Heidel-
berg, 2008, pp. 115–130.

[2] ——, “Minimum Spanning Trees Made Easier via Multi-objective
Optimization,” Natural Computing, vol. 5, no. 3, pp. 305–319, 2006.

[3] J. D. Knowles, R. A. Watson, and D. Corne, “Reducing Local Optima
in Single-Objective Problems by Multi-objectivization,” in Proceedings
of the First International Conference on Evolutionary Multi-Criterion
Optimization. Springer-Verlag, 2001, pp. 269–283.

[4] M. T. Jensen, “Helper-Objectives: Using Multi-Objective Evolutionary
Algorithms for Single-Objective Optimisation: Evolutionary Computa-
tion Combinatorial Optimization,” Journal of Mathematical Modelling
and Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[5] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and
E. Zitzler, “On the Effects of Adding Objectives to Plateau Functions,”
Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 591–603,
2009.

[6] J. Handl, S. C. Lovell, and J. D. Knowles, “Multiobjectivization by
Decomposition of Scalar Cost Functions,” in Parallel Problem Solving
from Nature PPSN X, ser. Lecture Notes in Computer Science. Springer,
2008, vol. 5199, pp. 31–40.

[7] D. F. Lochtefeld and F. W. Ciarallo, “Deterministic Helper-Objective
Sequences Applied to Job-Shop Scheduling,” in Proceedings of Genetic
and Evolutionary Computation Conference. ACM, 2010, pp. 431–438.

[8] A. Buzdalova, M. Buzdalov, and V. Parfenov, “Generation of Tests
for Programming Challenge Tasks Using Helper-Objectives,” in 5th
International Symposium on Search-Based Software Engineering, ser.
Lecture Notes in Computer Science. Springer, 2013, vol. 8084, pp.
300–305.

[9] A. Buzdalova and M. Buzdalov, “Increasing Efficiency of Evolutionary
Algorithms by Choosing between Auxiliary Fitness Functions with Re-
inforcement Learning,” in Proceedings of the International Conference
on Machine Learning and Applications, vol. 1, 2012, pp. 150–155.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[12] A. Gosavi, “Reinforcement Learning: A Tutorial Survey and Recent
Advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[13] M. Buzdalov, A. Buzdalova, and A. Shalyto, “A First Step towards
the Runtime Analysis of Evolutionary Algorithm Adjusted with Rein-
forcement Learning,” in Proceedings of the International Conference on
Machine Learning and Applications, vol. 1. IEEE Computer Society,
2013, pp. 203–208.

[14] M. Buzdalov and A. Buzdalova, “Onemax Helps Optimizing XdivK:
Theoretical Runtime Analysis for RLS and EA+RL,” in Proceedings of
Genetic and Evolutionary Computation Conference Companion. ACM,
2014, pp. 201–202.

[15] T. Jansen, “On the analysis of dynamic restart strategies for evolutionary
algorithms,” in Parallel Problem Solving from Nature PPSN VII, ser.
Lecture Notes on Computer Science. Springer, 2002, vol. 2439, pp.
33–43.

[16] R. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial Intelligence, vol. 27, pp. 97–109, 1985.

[17] J. R. Rice, “The algorithm selection problem,” Advances in Computers,
vol. 15, pp. 65–118, 1976.

[18] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” AI Magazine, 2014.

[19] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelli-
gence, vol. 126, no. 1, pp. 43–62, 2001.

[20] S. Y. Yuen, C. K. Chow, and X. Zhang, “Which Algorithm Should
I Choose at Any Point of the Search: An Evolutionary Portfolio
Approach,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2013, pp. 567–574.

[21] P. Baudiš and P. Pošı́k, “Online Black-Box Algorithm Portfolios for Con-
tinuous Optimization,” in PPSN XIII, ser. Lecture Notes on Computer
Science, 2014, vol. 8672, pp. 40–49.

[22] C. Witt, “Optimizing Linear Functions with Randomized Search Heuris-
tics – the Robustness of Mutation,” in Proceedings of the 29th Annual
Symposium on Theoretical Aspects of Computer Science, 2012, pp. 420–
431.

[23] S. Böttcher, B. Doerr, and F. Neumann, “Optimal Fixed and Adaptive
Mutation Rates for the LeadingOnes Problem,” in Parallel Problem
Solving from Nature PPSN XI, ser. Lecture Notes in Computer Science.
Springer, 2010, vol. 6238, pp. 1–10.

146146

