Improving metagenomic assembly using Nanopore Read-Until technology

Sergey Kazakov¹, Vladimir Ulyantsev¹, Sergey Nurk²

¹ ITMO University, Saint Petersburg, Russia ² SPbSU, Saint Petersburg, Russia

Aim

- Assembling metagenome data together is one way to analize metagenomes
- Long Nanopore reads with short accurate Illumina reads can produce better assembly than separate ones
- Aim to improve hybrid metagenomic assembly (Illumina + Nanopore) using Nanopore Read-Until technology

Read Until technology

- Online feedback interface, allowing 'release' of current molecule
- It enables the selective rejection of an individual reads during sequencing
- Among many incredible things, it can significantly reduce effective cost of assembly projects!

Loose et al "Real-time selective sequencing using nanopore technology", Nature methods, 2016

Problem

• What strategy of rejecting reads will give the best set of Nanopore reads to improve hybrid assembly?

Possible strategies:

- Filtering contaminant DNA (e.g. host DNA in microbiome projects)
- Limiting coverage of highly-abundant species
- Ignoring reads **probably useless** for repeat resolution
- ...

Pipeline "Usefulness" tracker On-line basecalling

Experiments

1. Bacterial repeat resolution:

- Enriching for reads useful for repeat resolution in *E.coli K12*
- Useful reads spanning unresolved repeat

Rejection strategy:

- Index flanks of length L on both sides of the contig
 - a. L = 10 Kbp, depends on read length distribution
 b. Consider only "unique regions" (long edges in graph)
- Reject if prefix doesn't fall in the flank or oriented within the
- contig
- Otherwise accept.

NB. accepted != useful

2. Filtering contaminant human DNA:

• *Useful* – reads longer 1kbp NOT aligning to host reference

Rejection strategy:

- Index reference
- Reject if prefix maps to it

Results

1. E.coli K12 (R9, Loman) dataset*

*with skipping reads ≤ 5 kbp

	No Filtering (Baseline)	Strategy Enabled	Enrichment
Useful reads count	33	83	2.52x
Useful length	11.4%	22.7%	1.99x
Accepted reads # - length	383 / 383 = 100% - 100% of signal	137 / 5051 = 2.7% - 31% of signal	

1. E.coli K12 (R9.4, UCSD) dataset*

	No Filtering (Baseline)	Strategy Enabled	Enrichment
Useful reads count	79	195	2.47x
Useful length	32.8%	44.4%	1.35x
Accepted reads # - length	498 / 498 = 100% - 100% of signal	331 / 3264 = 10.1% - 59% of signal	

2. Saliva metagenome (R9.4, UCSD) dataset*

	No Filtering (Baseline)	Strategy Enabled	Enrichment
Useful reads count	124	271	2.19x
Useful length	33.6%	71.5%	2.13x
Accepted reads # - length	454 / 454 = 100% - 100% of signal	337 / 1001 = 34% - 91% of signal	