
Ministry of Science and Higher Education of the Russian Federation

ITMO UNIVERSITY

GRADUATION THESIS

SELF­ADJUSTING CONCURRENT DATA STRUCTURES

Author: Drozdova Aleksandra Alekseevna

Subject area: 01.03.02 Applied mathematics
and informatics

Degree level: Bachelor

Thesis supervisor: Aksenov V.E., PhD

Saint Petersburg, 2021



Student Drozdova Aleksandra Alekseevna
Group M3439 Faculty of IT&P

Subject area, program/major
Mathematical models and algorithms in software engineering

Consultant(s):
a) Alistarh D., PhD, assistant professor, IST Austria

Thesis received “ ” 20

Originality of thesis %

Thesis completed with grade

Date of defense “ ” 20

Secretary of State Exam Commission Pavlova O.N.

Number of pages

Number of supplementary materials/Blueprints



4

CONTENTS
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1. The introduction into the Self­Adjusting Ordered Sets field . . . . . . . . . . . . . . . 8

1.1. The Ordered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. The Static Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3. The CBTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4. The Skip­List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5. The Interpolation Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Conclusions on Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. The Sequential Distribution­Adaptive Data Structures . . . . . . . . . . . . . . . . . . . . 12
2.1. The Sequential Splay­List Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. The Contains Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2. Insert and Delete Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3. The Sequential Splay­List Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. The Sequential Distribution­Adaptive Interpolation Search Tree . . . . . 24
2.2.1. Ideal IST and its properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2. Insert, Delete and Rebuild operations . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3. Searching in the distribution­adaptive IST. . . . . . . . . . . . . . . . . . . . 28

Conclusions on Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3. The Concurrent Distribution­Adaptive Data Structures. . . . . . . . . . . . . . . . . . . . 33

3.1. The Concurrent Splay­List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2. The Relaxed Rebalancing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3. Relaxed and Forward Rebalancing. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4. Lazy Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. The Concurrent Distribution­Adaptive Interpolation Search Tree . . . . . 38
Conclusions on Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1. The Splay­List Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. The Splay­List Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1. Read­Only Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2. General workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3. The Correlation between Key Popularity and Height. . . . . . . . . . 52

Conclusions on Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



5

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
APPENDIX A. Pseudo code of Rebalancing operation . . . . . . . . . . . . . . . . . . . . . . 57



6

INTRODUCTION
The past decades have seen significant effort on designing efficient concur­

rent data structures, leading to fast variants being known for many classic data struc­
tures, such as hash tables [5, 9, 16], skip lists [1, 7], or search trees [10, 11]. Most
of this work has focused on efficient concurrent variants of data structures with op­
timal worst­case guarantees. However, in many real workloads, the access rates
for individual objects are not uniform. This fact is well­known, and is modelled in
several industrial benchmarks, such as YCSB [2], or TPC­C [12], where the gen­
erated access distributions are heavy­tailed, e.g., following a Zipf distribution [2].
While in the sequential case the question of designing data structures which adapt to
the access distribution is well­studied, see [6] and references therein, in the concur­
rent case significantly less is known. The intuitive reason for this difficulty is that
self­adjusting data structures require non­trivial and frequent pointer manipulations,
such as node rotations in a balanced search tree, which can be complex to implement
concurrently.

Our goal is to create distribution­adaptive concurrent data structures, which
would provide significant performance benefits over a classic non­adaptive concur­
rent designs and existing concurrent self­adjusting designs. In this work, we propose
distribution­adaptive versions of the well­known data structures: skip­list and inter­
polation search tree (later referred to as IST) [8].

In order to achieve our goal we defined several tasks. The tasks are:
— To create self­adjusting modifications of sequential skip­list and IST. This

task includes theoretical analysis of memory and time complexities.
— To create the concurrent versions of the designed self­adjusting data struc­

tures. This task includes an theoretical and experimental analysis.
— To compare the existing solutions and non­adaptive solutions with the created

ones. This task includes implementation of tool, which would execute the
experiments, visualize the results. Also, this task includes analysis of the
results.
To date, the CBTree [3] is the only concurrent data structure which leverages

the skew in the access distribution for faster access. We propose modifications of
the existing data structures, which shows better scalability and which are easier to
implement.



7

The thesis is structured as follows:
— In Chapter 1, we give an introduction to the field of self­adjusting data struc­

tures. We define an ordered set, briefly describe data structures on top of
which, we build our solutions and describe static optimality theorem, which
we later proof for the splay­list. We finish the chapter with the description of
related work and analysis of existing solutions.

— In Chapter 2, we develop the sequential self­adjusting modifications of skip­
list and IST. Then, we analyse time and memory complexities. We finish the
second chapter with the comparison of theoretical results with the existing
solutions.

— In Chapter 3, we present concurrent modifications of the algorithms in Chap­
ter 2.

— In the last Chapter, we present the results of experiments. In these experiments
we compare the existing solution with our for different concurrent settings on
different workloads and briefly describe them.



8

CHAPTER 1. THE INTRODUCTION INTO THE SELF­ADJUSTING
ORDERED SETS FIELD

In this chapter, we provide the generalized information about the original ver­
sions of data structures, their common interfaces and properties that we desire to
obtain.

1.1. The Ordered Set
The ordered set is a data structure that provides the following operations:

a) contains for the key, returns information if the key exists in the data struc­
ture or not.

b) find for the key, returns the value of an element with such a key, if it exists
in the data structure, null – otherwise.

c) insert for the pair of a key and a value, adds pair to the data structure if the
key is not presented.

d) delete for the key, removes a pair with that key from the data structure if it
exists.

e) nextKey for the key, returns a minimal key in the data structure, which is
strictly greater than the given one.
For all data structures presented in this work, we only describe how to do

insert, delete and contains operations, because for them nextKey and
find operations are obvious modifications of contains operation.

We say that a contains operation is successful (returns true) if the re­
quested key is found in the data structure and was not marked as deleted; otherwise,
the operation is unsuccessful. An insert operation is successful (returns true) if
the requested key was not present upon insertion; otherwise, it is unsuccessful. A
delete operation is successful (returns true) if the requested key is found and was
not marked as deleted, otherwise, the operation is unsuccessful. As suggested, in our
implementations the delete implementation does not always physically delete the
object from the lists–instead, it may just mark it as deleted.

1.2. The Static Optimality
One of the important properties of self­adjusting data structures is static op­

timality. The splay­tree [17] is one of the first data structures that satisfies this
property.

For the splay­tree the following theorem was proven in [17]:



9

Theorem 1. If every element is accessed at least once, than the total access
time is O

(
m+

n∑
i=1

q(i)× log
(

m
q(i)

))
, where n is the number of elements in the data

structure, q(i) is the number of accesses made to the i­th element andm is
n∑

m=1
q(i).

Note, that if we are given the requests in advance, the best static data structure
has exactly this complexity due to the information theory results. That is why this
property is named static optimality.

We use this definition of static optimality for the created data structures. For­
mally, our task is to create data structures that:

a) can execute ordered set operations;
b) hold static optimality property for a wide class of access distributions;
c) show good worst­case time and memory performance.

1.3. The CBTree
As mentioned above, the CBTree [3] is the only existing concurrent self­

adjusting ordered set. It uses technique of semi­splaying to balance itself. Unlike
the splay­tree it performs rotations during lookup, on the path from top to bottom,
and only if the special function, i.e., a potential, on the tree is decreased by at least
some preselected constant. There are two types of rotations, that can be performed
depending on the situation (see Figure 1).



10

Figure 1 – Rotations of CBTree from [3]

Now let’s discuss the main issue of the CBTree. Every contains operation
in CBTree makes the second update traversal. During this traversal, threads are
conflicting on top of it, which makes the data structure less scalable. So the au­
thors propose a lazy variant in which update traversals are made only by one thread.
Though, the authors do not provide the theoretical analysis of the modified version.
In this work, we also propose the relaxed version of our data structure, but unlike
CBTree authors we prove its theoretical bounds (See Theorem 19).

1.4. The Skip­List
The skip­list was proposed by Pugh in [15]. Generally, the skip­list is linked­

list like structure, which allows fast search. It is useful to view these lists as stacked



11

on top of each other; a list’s index (starting from the bottom one, indexed at 0) is also
called its height. The lists are also ordered by containment, as a higher­index list
contains a subset of the objects present in a lower­index list. The higher­index lists
are also called sub­lists. The bottom list, indexed at 0, contains all the objects present
in the data structure at a given point in time. The contains operation searches for
the key by walking from left to right, from the topmost list to the lowest, skipping
elements in a list, which are lower or equal to the key. The insert operation first
searches for the place to add new element. Then, it adds it to the base list. With
probability 1

2 the node is added to the second list, with probability
1
4 to the third list,

and so on. The delete operation finds a node with the provided key and unlinks
it from all the levels by changing the links from predecessors to the successors.

The described data structure has lock­free version and is easy to made con­
current in comparison with the binary search trees, for example. That is the reason
why we chose this data structure to make it distribution­adaptive (see Section 2.1).

1.5. The Interpolation Search Tree
The interpolation search tree was proposed in [8]. Its worst­case amortized

bounds for all operations are O(log2 n), but for a wide class of distributions called
smooth, its expected time of all operations is O(log logn). The definition of
smoothness is given in [8]. Here, in our work, we slightly change the definition
of smoothness. The newly presented class still remains wide that we prove in
Lemma 15. The non­blocking algorithm for the IST was described in [14]. That
algorithm shows great performance. So, we suggest the self­adjusting modification
of it in Section 2.2, and slightly modify collaborative algorithm proposed in [14] to
fit our data structure in Section 3.2.

Conclusions on Chapter 1
There are lots of data structures, which can be used as an ordered set. But all

of them have some issues. Some are not static optimal, others do not scale well.
In this Chapter, we gave an overview of several data structures that we are

going to modify to make them self­adjusting. Moreover, we briefly described the
only existing solution concurrent self­adjusting data structure and its flaw.



12

CHAPTER 2. THE SEQUENTIAL DISTRIBUTION­ADAPTIVE DATA
STRUCTURES

In this chapter we introduce two distribution­adaptive data structures: the
splay­list (the self­adjusting skip­list) and the self­adjusting interpolation search
tree, that build on the well­known designs [8, 16]. Also, we prove their theoreti­
cal bounds.

2.1. The Sequential Splay­List Design
The splay­list design builds on the classic skip­list by Pugh [16]. In the fol­

lowing, we will only briefly overview the skip­list structure, and focus on the main
technical differences. We refer the reader to [5] for a more in­depth treatment of
concurrent skip­lists.

Similar to skip­lists, the splay­list maintains a set of sorted lists, starting from
the bottom list, which contains all the objects present in the data structure. Without
loss of generality, we assume that each object consists of a key­value pair. We thus
use the terms object and key interchangeably.

Unlike skip­lists, where the choice of which objects should be present in each
sub­list is random, a splay­list’s structure is adjusted according to the access distri­
bution across keys/objects.

The following definitions make it easier to understand how the operations are
handled in splay­lists. The height of the splay­list is the number of its sub­lists. The
height of an object is the height of the highest sub­list containing it. Typically, we
do not distinguish between the object and its key.

The height of a key u is the height of a corresponding object hu. Key u is
the parent of key v at height h if u is the largest key whose value is smaller than or
equal to v, and whose height is at least h. That is, u is the last key at height h in the
traversal path to reach v. Critically, note that, if the height of a key v is at least h,
then v is its own parent at height h; otherwise, its parent is some node v ̸= u. In
addition, we call the set of objects for which u is the parent at height h, its h­children
or the subtree of u at height h, denoted by Ch

u .
For every key u, we maintain a counter hitsu, which counts the number of

contains(u), insert(u), and delete(u) operations which visit the object.
In particular, successful contains(u), insert(u), and delete(u) opera­
tions increment hitsuMoreover, unsuccessful operations can also increment hitsu if
the element is physically present in the data structure, even though logically deleted,



13

upon the operation. In this case, the marked element is still visited by the corre­
sponding operation. (We will re­discuss this notion in the later sections, but the
simple intuition here is that we cannot store access counts for elements which are
not physically present in the data structure, and therefore ignore their access counts.)
We will refer to operations that visits an object with the corresponding key simply
as hit­operations.

For any set of keysS, we define a function hits(S) to be the sum of the number
of hits­operations performed to the keys in S. As usual, sentinel head and tail nodes
are added to all sub­lists. The height of a sentinel node height is equal to the height
of the splay­list itself, and exceeds the height of all other nodes by at least 1. By
convention, hitshead = hitstail = 1.

2.1.1. The Contains Operation
The contains operation consists of two phases: the search phase and the bal­

ancing phase. The search phase is exactly as in skip­list: starting from the head of
the top­most list, we traverse the current list until we find the last object with key
lower than or equal to the search key. If this object’s key is not equal to the search
key, the search continues from the same object in the lower list. Otherwise, the
search operation completes. The process is repeated until either the key is found or
the algorithm attempts to descend from the bottom list, in which case the key is not
present.

If the operation finds its target object, its hits counter is incremented and the
balancing phase starts: its goal is to update the splay­list’s structure to better fit
the access distribution, by traversing the search path backwards and checking two
conditions, which we call the ascent and descent conditions.

We now overview these conditions. For the descent condition, consider two
neighbouring nodes at height h, corresponding to two keys v < u. Assume that both
v and u are on level h, and consider their respective subtrees Ch

v and Ch
u . Assume

further that the number of hits to objects in their subtrees (hits(Ch
v ∪ Ch

u)) became
smaller than a given threshold, which we deem appropriate for the nodes to be at
height h. (This threshold is updated as more and more operations are performed.)
To fix this imbalance, we can “merge” these two subtrees, by descending the right
neighbour, u, below v, thus creating a new subtree of higher overall hit count. Sim­
ilarly, for the ascent condition, we check whether an object’s subtree has higher hit
count than a threshold, in which case we increase its height by one.



14

Now, we describe the conditions more formally. Assume that the total number
of hit­operations to all objects, including those marked for deletion, appearing in
splay­list is m, and that the current height of the splay­list is equal to k + 1. Thus,
there are k sub­lists, and the sentinel sub­list containing exclusively head and tail.
Excluding the head, for each object u on a backward path, the following conditions
are checked in order.

More formally, the contains operation consists of two phases: the search phase
and the balancing phase. The search phase is exactly as in skip­list: starting from
the head of the top­most list, we traverse the current list until we find the last object
with key lower than or equal to the search key. If this object’s key is not equal to the
search key, the search continues from the same object in the lower list. Otherwise,
the search operation completes. The process is repeated until either the key is found
or the algorithm attempts to descend from the bottom list, in which case the key is
not present.

Now we describe the descent condition formally. Since u is not the head,
there must exist an object v which precedes it in the forward traversal order, such
that v has height ⩾ hu. If

hits(Chu
u ) + hits(Chu

v ) ⩽ m

2k−hu
,

then the object u is demoted from height hu, by simply being removed from the
sub­list at height hu. The object stays a member of the sub­list at height hu − 1 and
hu is decremented. The backward traversal is then continued at v.

Let’s describe the ascent condition formally. Let w be the first successor of
u in the list at height hu, such that w has height strictly greater than hu. Denote the
set of objects with keys in the interval [u,w) with height equal to hu by Su. If the
number of hitsm is greater than zero and the following inequality holds:∑

x∈Su

hits(Chu
x ) >

m

2k−hu−1
,

then u is promoted and inserted into the sub­list at height hu + 1. The backward
traversal is then continued from u, which is now in the higher­index sub­list. The
rest of the path at height hu is skipped. Note that the object u is again checked against
the ascent condition at height hu + 1, so it may be promoted again. Also note that



15

the calculated sum is just an interval sum, which can be maintained efficiently, as
we show later.

For the better understanding of these conditions it is important to talk about
splay­list initialization and expansion. Initially, the splay­list is empty and has
only one level with two nodes, head and tail. Suppose that the total number of hits
to objects in splay­list is m. The lowest level on which the object can be depends
on how low the element can be demoted. Suppose that the current height of the
list is k + 1. Consider any object at the lowest level 0: in the descent condition
we compare hits(C0

u) + hits(C0
v ) against m

2k
. While m is less than 2k+1, the object

cannot satisfy this condition since Chu
v ⩾ hitsv ⩾ 1, but when m becomes larger

than this threshold, it could. Thus, we have to increase the height of splay­list and
add a new list to allow such an object to be demoted. By that, the height of the splay­
list is always logm. This process is referred to as splay­list expansion. Notice that
this procedure could eventually lead to a skip­list of unbounded height. However,
this height does not exceed 64, since this would mean that we performed at least 264

successful operations which is unrealistic. We discuss ways to make this procedure
more practical, i.e., lazily increase the height of an object only on its traversal, in
Section 3.1.1.

Now, we return to the description of the contains function. The first phase
is the forward pass, which is simply the standard contains algorithmwhich stores
the traversal path. If the key is not found, then we stop. Otherwise, suppose that
we found an object t. We have to restructure the splay­list by applying ascent and
descent conditions. Note, that the only objects that are affected and can change their
height lie on the stored path. For that, in each object u we store the total hits to
the object itself, hitsu, as well as the total number of hits into the “subtree” of each
height excluding u, i.e., for all h we maintain hitshu = hits(Ch

u \ {u}). We denote
the hits to the object u as shu.
Thus, when traversing the path backwards we check the following:

a) If the object u ̸= t is a parent of t on some level h, we then increase its hitshu
counter. Note that h ⩽ hu.

b) Check the descent condition for v and u as

shv + hitshu
v + shu + hitshu

u ⩽ m

2k−hu
.



16

If this is satisfied, demote u and increment hitshu
v by shu + hitshu

u . Continue
on the path.

c) Check the ascent condition for u by comparing
∑

w∈Su
shw + hitshu

w with
m

2k−hu−1 . If this is satisfied, add u to the sub­list hu + 1, set hitshu+1
u to the

calculated summinus shu and decrease hitshu+1
v by the calculated sum, where

h is a parent of u at height hu+1. We then continue with the sub­list on level
hu + 1. Below, we describe how to maintain this sum in constant time.
For this we will use the partial sums trick [13]. Suppose that p(u) is the

parent of u on level hu + 1. During the forward pass, we compute the sum of

hits(Chu
x ) = shx + hitshu

x

over all objects x which lie on the traversal path between p(u) (including it) and u

(not including it). Denote this sum by Pu. Thus, to check the ascent condition on
the backward pass, we simply have to compare∑

x∈Su

shu + hits(Chu
x ) = shp(u) + hitshu+1

p(u) − Pu

against m
2k−hu−1 . Observe that the partial sums hits(Su) can be increased only by

one after each operation. Thus, the only object on level h that can be promoted
is the leftmost object on this level. For the first object u, Su can be calculated as
hitshu+1

p(u) −hitshu

p(u). In addition, after the promotion of u, only u and p(u) have their
hitshu+1 counters changed. Moreover, there is no need to skip the objects to the left
of the promoted object, as suggested by the ascent condition, since there cannot be
any such objects.



17

Figure 2 – The state of the splay­list before contains(5)

Let’s look at an example. To illustrate, consider the splay­list provided on
Figure 2. It contains keys 1, . . . , 6 with values m = 10 and k = ⌊logm⌋ = 3.
We can instantiate the sets described above as follows: C1

3 = {3, 4, 5}, C1
2 = {2},

C1
head = {head, 1} and C2

head = {head, 1, 2, . . . , 5}. At the same time, S4 = {4, 5},
S3 = {3} and S2 = {2, 3}. In the Figure 2, the cell of u at height h > 0 con­
tains hitshu, while the cell at height 0 contains shu. For example, sh3 = 1 and
hits13 = sh4 + sh5 = 2, sh2 = 1 and hits12 = 0, sh1 = 1 and hits2head = 5.

Figure 3 – The state of the splay­list after contains(5)

Assume we execute contains(5). On the forward path, we find 5 and
the path to it is 2 → 3 → 4 → 5. We increment m, sh5, hits13 and hits2head by
one. Now, we have to adjust our splay­list on the backward path. We start with
5: we check the descent condition by comparing hits(C0

4) + hits(C0
5) = 3 with



18

m
2k−0 = 11

8 and the ascent condition by comparing hits(S5) = 2 with m
2k−0−1 = 11

4 .
Obviously, neither condition is satisfied. We continue with 4: the descent condi­
tion by comparing hits(C0

3) + hits(C0
4) = 2 with 11

8 and the ascent condition by
comparing hits(S4) = 3 with 11

4 — the ascent condition is satisfied and we pro­
mote object 4 to height 1 and change the counter hits13 to 2. For 3, we compared
hits(C1

2)+hits(C1
3) = 2with 11

4 and hits(S3) = 4with 11
2 — the descent condition

is satisfied and we demote object 3 to height 0 and change the counter hits12 to 1.
Finally, for 2 we compared hits(C1

1)+hits(C1
2) = 4 with 11

4 and hits(S2) = 5 with
11
2 —none of the conditions are satisfied. As a result we get the splay­list shown on
Figure 3.

2.1.2. Insert and Delete Operations
Inserting a key u is done by first finding the object with the largest key lower

than or equal to u. In case an object with the key is found, but is marked as logically
deleted, the insertion unmarks the object, increases its hits counter and completes
successfully. Otherwise, u is inserted on the lowest level after the found object. This
item has hits count set to 1. In both cases, the structure has to be re­balanced on the
backward pass as in contains operation. Unlike the skip­list, splay­lists always
physically insert into the lowest­level list.

The delete operation needs additional care. The operation first searches for
an object with the specified key. If the object is found, then the operation logically
deletes it by marking it as deleted, increases the hits counter and performs the
backward pass. Otherwise, the operation completes.

Notice that we maintain the total number of hits on currently logically deleted
objects. When it becomes at least half of m, the total number of hits to all objects,
we initialize a new structure, and move all non­deleted objects with corresponding
hits to it.

The only question left is how to build a new structure efficiently enough to
amortize the performed delete operations. Suppose that we are given a sorted list of
n keys k1, . . . , kn with the number of hit­operations on them h1, . . . , hn, where their
sum is equal to M . We propose an algorithm that builds a splay­list such that no
node satisfies the ascent and descent conditions, using O(M) time and O(n logM)

memory.
The idea behind the algorithm is the following. We provide a recursive pro­

cedure that takes the contiguous segment of keys kl, . . . , kr with the total number of



19

accessesH = hl+ . . .+hr. The procedure finds p such that 2p−1 ⩽ H < 2p. Then,
it finds a key ks such that hl+ . . .+hs−1 is less than or equal to H

2 and hs+1+ . . .+hr

is less than H
2 . We create a node for the key ks with the height p, and recursively call

the procedure on segments kl, . . . , ks−1 and ks+1, . . . , kr. There exists a straightfor­
ward implementation which finds the split point s in O(r− l), i.e., linear time. The
resulting algorithm works in O(n logM) time and takes O(n logM) memory: the
depth of the recursion is logM and on each level we spend O(n) steps.

However, the described algorithm is not efficient if M is less than n logM .
To achieve O(M) complexity, we would like to answer the query to find the split
point s inO(1) time. For that, we prepare a special array T which contains in sorted
order h1 times key k1, h2 times key k2, . . ., hn times key kn. To get the required
s, at first, we take a subarray of T that corresponds to the segment [l, r] under the
process, i.e., hl times key kl, . . ., hr times key kr. Then, we take the key ki that is
located in the middle cell ⌈hl+...+hr

2 ⌉ of the chosen subarray. This i is our required
s. Let us calculate the total time spent: the depth of the recursion is logM ; there is
one element on the topmost level which we insert in logM lists, there are at most
two elements on the next to topmost level which we insert in logM − 1 lists, and
etc., there are at most 2i elements on the i­th level from the top which we insert in
logM − i lists. The total sum is clearly O(M).

Thus, the final algorithm is: ifM is larger than n logM , then we execute the
first algorithm, otherwise, we execute the second algorithm. The overall construc­
tion works in O(M) time and uses O(n logM) memory.

2.1.3. The Sequential Splay­List Analysis
We begin by stating some invariants and general properties of the splay­list.
Lemma 2. After each operation, no object can satisfy the ascent condition.
Proof. Note that we only consider the hit­operations, i.e., the operations that

change hits counters, because other operations do not affect any conditions. We
will proceed by induction on the total numberm of hit­operations on the objects of
splay­list.

For the base case m = 0, the splay­list is empty and the hypothesis trivially
holds. For the induction step, we assume that the hypothesis holds before the start
of them­th operation, and we verify that it holds after the operation completes.

First, recall that, for a fixed object u, the set Su is defined to include all objects
of the same height between u and the successor of u with height greater than hu.



20

Specifically, we name the sum
∑
x∈Su

hits(Ch
x) in the ascent condition as the object

u’s ascent potential. Note that after the forward pass and the increment of shu

and hitshv counters where v is a parent of u on height h, only the objects on the
path have their ascent potential increased by one and, thus, only they can satisfy the
ascent condition.

Now, consider the restructuring done on the backward pass. If the object u
satisfies the descent condition, i.e., v precedes u and

T = hits(Chu
v ) + hits(Chu

u ) ⩽ m

2k−h

we have to demote it. After the descent, the ascent potential of the objects between
v and u on the lower level hu − 1 have changed. However, these potentials cannot
exceed T , meaning that these objects cannot satisfy the ascent condition.

Consider the backward pass, and focus on the set of objects at height h. We
claim that only the leftmost object at that height can be promoted, i.e., its preceding
object has a height greater than h. This statement is proven by induction on the
backward path. Suppose that we have ℓ objects with height h on the path, which
we denote by u1, u2, . . . , uℓ. By induction, we know that none of the objects on the
path with lower height can ascend higher than h: these objects appear to the right
of u1. We know that each object was accessed at least once, shui

⩾ 1, and, thus,
we can guarantee that hits(Su1

) > hits(Su2
) > . . . > hits(Suℓ

). Since the ascent
potentials hits(Sui

) are increased only by one per operation, the first and the only
object that can satisfy the ascent condition is u1, i.e., the leftmost object with the
height h. If it satisfies the condition, we promote it. Consider the predecessor of u1
on the forward path: the object v with height hv > h. Object u1 can be promoted to
height hv, but not higher, since the ascent potential of the objects on the path with
height hv does not change after the promotion of u, and only the leftmost object on
that level can ascend. However, note that hitshv

v can decrease and, thus, it can satisfy
the descent condition, while u1 cannot since hitshu1

was equal to hits(Su1
) before

the promotion and it satisfied the ascent condition.
Because the only objects that can satisfy the ascent condition lie on the path,

and we promoted necessary objects during the backward pass, no object may satisfy
the ascent condition at the end of the traversal. That is exactly what we set out to
prove.



21

Lemma 3. Given a hit­operation with argument u, the number of sub­lists vis­
ited during the forward pass is at most 3 + log m

shu
.

Proof. During the forward pass the number of hits does not change; thus, ac­
cording to Lemma 2, the ascent condition does not hold for u. Hence shu ⩽ m

2k−hu−1 .
We get that k − hu − 1 ⩽ log m

shu
. Since during the forward pass (k + 1)− hu + 1

sub­lists are visited (notice the sentinel sub­list), the claim follows.

... ...

...... ...

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

... ...

...

...

.

.

.

.

.

.

.

.

.

Figure 4 – Depiction of Lemma 4

Lemma 4. In each sub­list, the forward pass visits at most four objects that do
not satisfy the descent condition.

Proof. Suppose the contrary and that the algorithm visits at least five objects
u1, u2, . . . , u5 in order from left to right, that do not satisfy the descent condition in
sub­list h. The height of the objects u2, . . . , u5 is h, while the height of u1 might be
higher. See Figure 4.

Note that if the descent condition does not hold for an object u, the demo­
tion of another object of the same height cannot make the descent condition for
u satisfiable. Therefore, since the condition is not met for u3 and u5, the sum
hits(Su2

) ⩾ (hits(Ch
l(u3)

)+hits(Ch
u3
))+(hits(Ch

l(u5)
)+hits(Ch

u5
)) > m

2k−h+
m

2k−h =

= m
2k−h−1 , where l(u3) and l(u5) are the predecessors of u3 and u5 on height h. Note

that it is possible that l(u3) and l(u5) would be the same as u2 and u4 respectively.
This means that u2 satisfies the ascent condition, which contradicts Lemma 2.



22

Note that we considered four objects since u1 is an object of height greater
than h.

Since only the leftmost object can be promoted, the backward path coincides
with the forward path. Thus, the following lemma trivially holds.

Lemma 5. During the backward pass, in each sub­list h, at most four objects
are visited that do not satisfy the descent condition.

Theorem 6. If d descents occur when accessing object u, the sum of the lengths
of the forward and backward paths is at most 2d+ 8y, where y = 3 + log m

shu
.

Proof. Each object satisfying the descent condition is passed over twice, once
in the forward and again in the backward pass. According to Lemma 3, there are
at most y sub­lists that are visited during either passes. Excluding the descended
objects, the total length of the forward path, according to Lemma 4 is 4y. Lemma 5
gives the same result for the backward path. Hence, the total length is 2d+8y which
is the desired result.

We can now finally state our main analytic result.
Theorem 7. The hit­operations with argument u take amortized O

(
log M

shu

)
time, where M is the total number of hits to non­marked objects of the splay­list.
At the same time, all other operations take amortized O(logM) time.

Proof. We will prove the same bounds but with m instead ofM . Please note
that since the rebuild of the splay­list is triggered whenM becomes less than m

2 , we
can always assume thatM ⩾ m

2 and, thus, the bounds withm andM differ only by
a constant.

First, we deal with the splay­list expansion procedure: it adds onlyO(1) amor­
tized time to an operation. The expansion happens whenm is equal to the power of
two and costs O(m). Since, from the last expansion we performed at least m

2 hits
operations we can amortize the cost O(m) against them. Note that each operation
will be amortized against only once, thus the amortization increases the complexity
of an operation only by O(1).

Since the primitive operations such as following the list pointer, a promotion
with the ascent check and a demotion with the descent check are all O(1), the cost
of an operation is in the order of the length of the traversed path. According to
Theorem 6, the total length of the traversed path during an operation is 2×d+8×y

where d is the number of vertices to demote and y is the number of traversed layers:



23

if the object u was found y is equal to O
(
log m

shu

)
, otherwise, it is equal to logm,

the height of the splay­list.
Note that the number of promotions per operation cannot exceed the number

of passed levels y, since only one object can satisfy the ascent condition per level.
At the same time, the total number of demotions across all operations, i.e., the sum
of all d terms, cannot exceed the total number of promotions. Thus, the amortized
time of the operation can be bounded byO(number of levels passed)which is equal
to what we required.

The amortized bound for delete operation needs some additional care. The
operation can be split into two parts:

a) find the object in the splay­list, mark it as deleted and adjust the path;
b) the reconstruction part when the object is physically deleted.

The first part is performed inO(log m
shu

) as shown above. For the second part,
we perform the reconstruction only when the number of hits on objects marked for
deletionm−M exceeds the number of hits on all objectsm, and, thus,M ⩽ m

2 . The
reconstruction is performed in O(M) = O(m) time as explained in Section 2.1.2.
Thus we can amortize this O(m) to hits operations performed on logically deleted
items. Since there were O(m − M) = O(m) such operations, the amortization
“increases” their complexities only on some constant and only once, since after the
reconstruction the corresponding objects are going to be deleted physically.

For example, if all our operations were successful contains, then the
asymptotics for contains(u) will be O(log m

shu
) where m is the total number

of operations performed.
Furthermore, under the same load we can prove the static optimality prop­

erty [6]. Let mi ⩽ m be the total number of operations when we executed i­th
operation on u, then the total time spent on operations with argument u is

O

(
shu∑
i=1

log
mi

i

)
= O

(
shu∑
i=1

log
m

i

)

which by Lemma 3 from [3] is equal to O(shi + shi × log m
shi

). This is exactly the
static optimality property.



24

2.2. The Sequential Distribution­Adaptive Interpolation Search Tree
The distribution­adaptive interpolation search tree design builds on the IST

described in [8].
The overall idea, is that we can logically treat each access as a separate ele­

ment. So, let’s define a modified version of the IST.
Let a and b be reals, a < b. An Interpolation Search Tree for a parameter α,

0 < α ⩽ 1
2 with boundaries a and b for a set S = {x1 < x2 < . . . < xn} ⊆ [a, b]

of n elements, with ac1, ac2, . . . , acn accesses made to respective elements, consists
of:

a) An integerm—the total number of accesses to all elements x1, x2, . . . , xn.
b) A set REP of representatives xi1, xi2, . . . xik , i1 < i2 < . . . < ik stored in

an array REP [1 . . . k], that is, REP [j] = xij . Furthermore, k not more than
2×mα.

c) An arrayAC[1 . . . k]—the number of accesses made to xi1, xi2, . . . xik respec­
tively.

d) An array ID[1 . . . lenId], where lenId is some integer, with
ID[i] = j if REP [j] < a+ i× b−a

lenId ⩽ REP [j + 1].
e) Interpolation search trees T1, T2, . . . , Tk+1 for the subfiles S1, S2, . . . , Sk+1

where Sj = {xij−1+1, . . . xij−1} for 2 ⩽ j ⩽ k, S1 = {x1, . . . xi1−1} and
Sk+1 = {xik+1, . . . xn}, and the respective subsequences of ac. Furthermore,
tree Tj, 2 ⩽ j ⩽ k, has boundaries xij−1

and xij , T1 has boundaries a and xi1
and Tk+1 has boundaries xk and b.

2.2.1. Ideal IST and its properties
Obviously, we have to modify the definition of the ideal IST. An IST for set

S, |S| = n, and number of accesses ac1, ac2, . . . , acn to x1, x2, . . . , xn respectively,
is ideal for a parameter α, 0 < α ⩽ 1

2 , if: (1) for each j > 0, ij is the first element
to the right of ij−1 such, that the number of accesses made to elements between
it and ij−1, including ij is at least m1−α ; and (2) if the interpolation search trees
T1, T2, . . . , Tk+1 are also ideal.

We are using m for the number of accesses made to all elements of an IST
andm(Ti) for the number of accesses made to all elements of a subtree Ti.

The number of representatives stored in a root of the subtree Ti of an ideal
IST does not exceed m(Ti)

α. This happens since the number of accesses made to
all elements between two adjacent representatives is at least m(Ti)

1−α and, by the



25

Dirichlet principle, there cannot be more than m(Ti)
m(Ti)1−α = m(Ti)

α representatives.
Also, it is obvious from the definition that the sum of accesses in the subtree Ti of
tree T ,m(Ti) ⩽ m(T )1−α.

We start with the algorithm on how to build the ideal IST for an or­
dered set augmented with the array of accesses. At the beginning, we count prefix
sums of all accesses made to an ordered set. We do this once before counting repre­
sentatives and ID arrays for each level. We use binary search on the prefix sums to
find the next representative and recursively build the subtrees. Then, we use simple
loop through the array of representatives to build array ID.

Let us prove the several properties of that algorithm and the ideal IST.
Lemma 8. An ideal IST for a parameter α for an ordered set and array of ac­

cesses can be built in time O(m) and requires O(mα×(1−α) × n +mα) memory. It
has depth O(log logm).

Proof. Let Time(m) be the time needed to build an ideal IST, then

Time(m) ⩽ mα + log2(m)×mα + (mα + 1)× Time(m1−α) :

we spend no more than log2(m) × mα, to get all the representatives using bi­
nary searches, mα is spent to count ID array, and there are no more than
mα + 1 subtrees Ti and for each of them m(Ti) ⩽ m1−α. Our tree is inter­
nal. So, every node is chosen as a representative only once and there are no
more than m representatives. Also, each binary search spends no more than
log2(m) to find a new representative. So, Time(m) ⩽ m × log2(m). So,
Time(m) = 2 × log2(m) × mα + mα × Time(m1−α) + o(m). The fact that it
is O(m) is proved in Lemma 9.

Now, let us count the required memory. It is obvious that the first level of IST
requiresO(mα) space. Also, the total number of nodes in IST does not exceed 3×n,
because our tree is internal and, thus, each node has at least one value inside. Now,
note that for each node with subtree Ti on lower levels satisfiesm(Ti) < m1−α. So,
the lengths of REP and ID for each of these nodes are no more than mα×(1−α),
and, thus, the memory required for all of the nodes, except from the root, does not
exceed O(mα×(1−α) × n). If sum everything up, we get that the memory does not
exceed O(mα×(1−α) × n+mα).

Let d(m) be the depth of the IST for a parameter α, then d(m) = 1+d(m1−α).
So the IST with a parameter α has depth O(log logm) .



26

Lemma 9. If T (n) = c× log2(n)×nα+nα×T (n1−α) where 0 < α < 1, then
T (n) = O(n) for n ∈ N.

Proof. To simplify the presentation we choose n greater than 4. Consider
F (n) = T (n)

n , then it is obvious that F (n) = c × log2(n)
n1−α + F (n1−α). So

F (n) = c×
∞∑
k=1

log2(n(1−α)k−1
)

n(1−α)k
, which means that F (n) = c×

∞∑
k=1

(1−α)k−1×log2 n
n(1−α)k

.

Consider two functions

Q(n) = β × F (n)

log2(n)
=

∞∑
k=1

βk

nβk

and
f(x) =

βx

nβx ,

where β = 1−α. We want to find intervals on which f(x) is monotonous. For that
we take a derivative

f ′(x) = −βx × ln β × n−βx × (βx × lnn− 1)

and compare it with 0. One can see that f ′(x) = 0 only if x = logβ 1
lnn = x0. Thus,

the function f has only one point where the monotony changes. On the left of x0
the derivative is positive. To prove that we substitute x with x0 − 1:

f ′(x0 − 1) = f ′(logβ
1

lnn
− 1) = −1

β
× 1

lnn
× ln β × n− 1

β×
1
lnn × (

1

β
− 1).

All the multipliers are positive except for lnβ < 0 which gives us the positive value
in total. Similarly, we substitute x with x0 + 1 and get the negative value. So, f ′

was positive and then negative, which means that x0 is the point of the maximum.
Now, consider our target function Q(n).

Q(n) =
∞∑
k=1

βk

nβk ⩽
∞∫
1

f(x) dx+ 2f(x0)

. ∫
f(x)dx =

∫
βx

nβx dx = − n−βx

ln β × lnn
+ C.



27

So, Q(n) ⩽
∫∞
1 f(x)dx+ 2× f(x0) = − 1

lnβ×lnn + n−β

lnβ×lnn + 2× 1

lnn×n
1
lnn

⩽
⩽ − 1

lnβ × 1
lnn + 1

lnn × 2 = 1
lnn × (2− 1

lnβ )

Now, if we countT (n) usingQ(n), we getT (n) = c×Q(n)×n×log2 n× 1
β ⩽

⩽ c× 1
lnn×(2− 1

lnβ )×n× lnn
ln 2×

1
β ⩽ c×n×(2− 1

lnβ )×
1

β×ln 2 = c×n×(2− 1
ln (1−α))

1
(1−α)×ln 2 .

Since α is constant we get that T (n) = O(n).

2.2.2. Insert, Delete and Rebuild operations
Insert, delete and contains are done in the same way as in [8]. Ex­

cept we use operation counters m, im instead of size, isize, and rebuild a subtree
when the number of operations from the last rebuilding exceeds im

4 . The number of
accesses for nodes is changed for each delete, insert, and contains operation.

Now, let us consider how the asymptotics changes for the modified version of
the algorithm.

Lemma 10. The worst­case depth of an IST for a parameter α for a file of n
keys is O(logm). It requires O(mα × n) space.

Proof. At first, we prove the bound on the depth. Consider a node v and its
parentw. Thenm(Tv) (current number of accesses made to that subtree) is not more,
than im(Tw)

4 , which is the maximum number of accesses made to its parent since last
rebuild, plus im(Tw)

1−α which is the number of accesses in it after the last rebuild
of its parent. So,m(Tv) ⩽ im(Tw)

4 + im(Tw)
1−α ⩽ im(Tw)

2 . So, the depth is obviously
O(logm).

At any moment, each node requires no more than O(mα)memory per ID and
REP, because the amount of memory which is used by node doesn’t change between
rebuild operations and new nodes take only constant memory. Also, the number
of nodes is proportional to number of elements in the data structure. So, the total
memory is O(mα × n).

Lemma 11. The amortized number of searches on level of contains,
insert or delete isO(logm). The total expected amortized number of searches
on level of the firstm contains, insertions and deletions is O(m× logm).

Proof. We have to amortize the rebuild over all operations. For that we use the
following accounting scheme is used: every operation puts one token on each node
on the path to the target element. Each operation puts no more thanO(logm) tokens
by Lemma 10. Suppose that C(v) be the number of tokens in node v holds C(v).
Since the total number of operation before the rebuilding to the subtree are m(Tv)

4 ,



28

we have that C(v) ⩾ m(Tv)
4 . We know that the rebuild operation takesO(m(Tv)), so

we have enough tokens to amortize over it.

2.2.3. Searching in the distribution­adaptive IST
In this subsection we discuss how to search in our IST in O

(
log logm

log ac(u)

)
expected time and we prove several facts which are important for the analysis.

Let µ be the probability density function on reals. A random file of size n

is generated by drawing independently n reals according to density µ. A random
IST for a parameter α with number of accessesm to all its elements is generated as
follows:

a) Take a random file F of size n′ for some n′ and build an ideal IST with a
parameter α (the number of accesses to each element equals to the number of
its ocсurrences in the file).

b) Perform a sequence of i µ­random insertions, d random deletions and c µ­
random containsOp1, . . . , Opi+c+d. Such that the number of accesses on non­
deleted elements is m. An insertion is µ­random if it inserts a random real
drawn according to density µ into the tree. A deletion is random if it deletes a
random element from the tree, all elements in the tree are equally likely to be
chosen for the deletion. A contains operation is µ­random if it finds a random
real drawn according to density µ in the tree.
The following lemma can be proven the same way as in [8].
Lemma 12. Let µ be a density function with a finite support, let T be a µ­

random IST for a parameter α with boundaries a and b and let T ′ be a subtree of T .
Then there are reals c, d such that T ′ is a µ[c, d]­random IST, where a ⩽ c < d ⩽ b,
µ[c, d](x) = 0 for x < c or x > d and µ[c, d](x) = µ(x)∫ d

c
µ(x)

for c ⩽ x ⩽ d.
Now, we can state the following important lemmas.
Lemma 13. Let µ be a density function with a finite support [a, b], let T be a

µ­random IST for a parameter α with number of accesses to all its elements equal
tom, and let T ′ be a direct subtree of T . Then,m(T ′) is O(m1−α) with probability
at least 1−O(m−(1−α)).

Proof. Each access can be treated as a separate element with only one access.
Looking at the world from that point of view, a definition of an ideal IST is the same
as in [8] and this theorem is even easier than the respective one. We repeat the proof
of the corresponding lemma from [8], except thatm1−α

0 is used instead of√m0. The



29

only change for the theorem from the Appendix of [8] is that in the case of the same
values an additional key sampled uniformly at random, so they can be in any order
in the sorted sequence with equal probability.

Lemma 14. Let µ be a density with finite support [a, b]. Then the expected total
number of searches on level for processing a sequence ofmµ­random insertions and
µ­random contains to an initially empty IST is O(m log logm), that is, expected
amortized number of searches on level of insertion and contains is O(log logm).

Proof. Let f(m) be the expected number of tokens put down by the m­th
operation. Then

f(m) ⩽ 1 + f
(
O
(
m1−α

))
+O

(
m−(1−α)

)
×O

(
logm

)
.

This can be seen as follows: If the operation goes into a subtree of size O(m1−α),
then we put down 1+ f(O(m1−α)) tokens. If it does not, then we put down at most
O(logm) tokens by Lemma 10. The probability of the latter event is O(m−(1−α))

by Lemma 13. Thus, f(m) = O(log logm).
The search on the level is made in the same manner as in [8]. However, we

have to change the definition of smoothness of the density since we have a little bit
different setting.

A density µ is smooth for a parameter α, 0 < α < 1, if there are constants
a, b and d such that µ(x) = 0 for x < a and x > b and such that for all c1, c2, c3,
a ⩽ c1 < c2 < c3 ⩽ b, and all integers n andm withm = ⌈nα⌉,∫ c2

c2− c3−c1
m

µ[c1, c3](x) dx ⩽ d× n−α,

where µ[c1, c3](x) = 0 for x < c1 or x > c3 and µ[c1, c3](x) = µ(x)
p for c1 ⩽ x ⩽ c3

where p =
∫ c3
c1

µ(x)dx. This definition of smoothness is still pretty wide, and dis­
tributions like zipf, 90/10, 95/5 and 99/1 are smooth for any parameter. The
following lemma proves it.

Lemma 15. Let µ be a probability density function that operates on [a, b] and
which values on [a, b] lies in [x, y], where x > 0. Then, µ is smooth for any param­
eter α (0 < α < 1).

Proof. At first, we fix a parameter α, n and m = ⌈nα⌉. Then, consider any
triple of reals c1, c2, c3 with a ⩽ c1 < c2 < c3 ⩽ b. Let us look on the integral from



30

the definition of smoothness. Now, denote c3 − c1 as len, and c3−c1
m asmlen. Then,∫ c2

c2− c3−c1
m

µ[c1, c3](x) dx =
∫ c2
c2−mlen µ[c1, c3](x) dx ⩽ y×mlen

y×mlen+x×(len−mlen) =

= y×len
y×len+x×len×(m−1) =

y
y+x×(m−1) .

By that we upperbounded the integral. Now, we have to find d that satisfies
the definition. For that, we check an upper bound on y

y+x×(m−1) × nα. We have two
cases where n < (⌈yx⌉+ 1)

1
α and where n ⩾ (⌈yx⌉+ 1)

1
α .

In first case

y

y + x× (m− 1)
× nα ⩽ y

y
× nα ⩽ nα < ⌈y

x
⌉+ 1.

In second case

y

y + x× (m− 1)
× nα ⩽ y

x× (m− 1)
× nα ⩽ 2× y

x× nα
× nα ⩽ 2× y

x
.

Therefore∫ c2

c2− c3−c1
m

µ[c1, c3](x) dx ⩽ y

y + x× (⌈nα⌉ − 1)
⩽ max

(⌈y
x

⌉
+ 1, 2× y

x

)
× 1

nα

for every n, c1, c2, c3. So, there exist constant d for which for every n, c1, c2, c3 the
value of integral is no more than d

nα . So, µ is smooth for a chosen parameters α and
α.

Lemma 16. Let µ be a smooth density for a parameter α and let T be a µ­
random IST for a parameter α. Then the expected search time in the root array is
O(1).

Proof. Suppose that we spent l + 1 iterations while searching for an element
in the root array. Similar to the reasoning in [8], at least t = l×m1−α

0 accesses lie in
the interval of ID

[
y − b−a

m , y
]
, where m0 is the number of accesses before the last

rebuild. The probability of this event is at most
(
3×d
l

)t by Lemma 17 , and, hence,
the expected number of iterations over the array is

∑
l⩾1

min
(
1,
(3× d

l

)t)
⩽ 6×d+

∑
l⩾1

(1
2

)t
⩽ 6×d+

∑
l⩾1

(1
2

)l
⩽ 6×d+1 = O(1)



31

Lemma 17. Let µ be a smooth density for a parameter α, with support [a, b].
Let y ∈ [a, b], let F be a µ­random file of size n0, and letm = ⌈nα

0 ⌉. Then

pr
(∣∣∣F ∩

[
y − b− a

m
, y
]∣∣∣ ⩾ l × n1−α

0

)
⩽
(3× d

l

)l×n1−α
0

Proof. To proof it we use the technique given in [8]. Let

p =

∫ y

y− b−a
m

µ(x)dx.

p ⩽ d × n−α
0 for some constant d since µ is smooth. Let F = X1, X2, . . . , Xn0

.
Remember that we use t instead of l × n1−α

0 . If
∣∣∣F ∩

[
y − b−a

m , y
]∣∣∣ ⩾ t then there

must be at least t Xi’s withXi ∈
[
y− b−a

m , y
]
. We know that for each particularXi

Pr
[
Xi ∈

[
y − b−a

m , y
]]

= p. Thus,

Pr
[∣∣∣F ∩

[
y − b− a

m
, y
]∣∣∣ ⩾ t

]
⩽
(
n0

t

)
× pt ⩽ nt

0

t!
× (d× n−α

0 )t

Finally, if we use Stirling approximation s! ⩾ (se)
s:

⩽
( n0 × e× d

l × n1−α
0 × nα

0

)t
⩽
(e× d

l

)t
⩽
(3× d

l

)l×n1−α
0

.

Now, we are ready to proof the bound on the expected search time.
Theorem 18. Let µ be a smooth density for a parameter α. Then the expected

search time of an element with the number of accesses ac in a µ­random IST for a
parameter α is O(log logm

log ac).
Proof. Let T (m) be the expected search time in a µ­random IST of size m.

Then
T (m) = O(1) + T

(
O
(
m1−α

))
+O(m−(1−α))×O(m(1−α)).

The search time in the root array is O(1) by Lemma 16. The next subtree in which
we search is µ­random by Lemma 12. Its total number of accesses isO(m1−α) with
probability exceeding 1 − O(m−(1−α)) by Lemma 13, otherwise the search time is
bounded by O(m1−α).

The search stops when the total number of accesses to a subtree is less or equal
to ac. So, T (m) = O(log logm

log ac)



32

Conclusions on Chapter 2
In this chapter, we presented two new designs based on the skip­list and IST.

Then, we proved the amortized running time of the operations on these data struc­
tures. By that, we showed that the splay­list holds static optimality property and
that its time and memory complexities are not worse, than for the CBTree, which
is the only existing concurrent self­adjusting data­structure. For the self­adjusting
IST, we proved the better expected complexity for the search on a big class of access
distributions, but its worst case memory bound is worse than one for the CBTree and
for the splay­list.



33

CHAPTER 3. THE CONCURRENT DISTRIBUTION­ADAPTIVE DATA
STRUCTURES

In this chapter we discuss how to make concurrent versions of algorithms,
presented in the previous chapter. Also, we describe an updated version of the splay­
list.

3.1. The Concurrent Splay­List
In this section we describe on how to implement scalable lock­based imple­

mentation of the splay­list described in the previous section.

3.1.1. Overview
The first idea, on how to make splay­list concurrent, that comes to the mind

is to implement the operations as in Lazy Skip­list [5]: (1) we traverse the data
structure in a lock­free manner in the search of x and fill the array of predecessors
of x on each level; (2) if x is not found then the operation stops; otherwise, we try to
lock all the stored predecessors; if some of them are no longer the predecessors of
x we find the real ones or, if not possible, we restart the operation; (3) when all the
predecessors are locked we can traverse and modify the backwards path using the
presented sequential algorithm without being interleaved. When the total number of
operationsm becomes a power of two, we have to increase the height of the splay­
list by one: in a straightforward manner, we have to take the lock on the whole data
structure and then rebuild it.

There are several major issues with this straightforward implementation. At
first, the balancing part of the operation is too coarse­grained—there are a lot of
locks to be taken and, for example, the lock on the topmost level forces the operations
to serialize. The second is that the list expansion by freezing the data structure and
the following rebuild whenm exceeds some power of two is very costly.

3.1.2. The Relaxed Rebalancing Analysis
If we build the straightforward concurrent implementation on top of the se­

quential implementation described in the previous section, it will obviously suf­
fer in terms of performance since each operation (either contains, insert, or
delete) must take locks on the whole path to update hits counters. This is not a
reasonable approach, especially in the case of the frequent contains operation.
Luckily for us, contains can be split into two phases: the search phase, which



34

traverses the splay­list and is lock­free, and the balancing phase, which updates the
counters and maintains ascent and descent conditions.

A straightforward heuristic is to perform rebalancing infrequently—for ex­
ample, only once in c operations. For this, we propose that the operation perform
the rebalancing, i.e., update of the hit counters with ascents and descents, only with
a fixed probability 1/c. Conveniently, if the operation does not perform the global
operation counter update and the balancing, the counters will not change and, so, all
the conditions will still be satisfied. The only remaining question is how much this
relaxation will affect the guarantees of the data structure. The next result character­
izes the effects of this relaxation.

Theorem 19. Fix a parameter c ⩾ 1. In the relaxed sequential algorithm where
operation updates hits counters and performs balancing with probability 1

c , the hit­
operation takesO

(
c× log m

shu

)
expected amortized time, wherem is the total num­

ber of hit­operations performed on all objects in splay­list up to the current point in
the execution.

Proof. The theoretical analysis above (Theorems 6 and 7) is based on the as­
sumption that the algorithm maintains exact values of the counters m and shu —
the total number of hit­operations performed to the existing objects and the current
number of hit­operations to u. However, given the relaxation, the algorithm can no
longer rely on m and shu since they are now updated only with probability c. We
denote bym′ and sh′

u the relaxed versions of the real countersm and shu.
The proof consists of two parts. First, we show that the amortized complex­

ity of hits operation to u is equal to O
(
c× log m′

sh′
u

)
in expectation. Secondly, we

show that the approximate counters behave well, i.e., E
[
log m′

sh′
u

]
= O

(
log m

shu

)
.

Bringing these two together yields that the amortized complexity of hits operations
is O

(
c× log m

shu

)
in expectation.

The first part is proven similarly to Theorem 7. We start with the statement
that follows from Theorem 6: the complexity of any contains operation is equal
to 2d + 8y where d is the number of objects satisfying the descent condition and
y = 3 + log m′

sh′
u
. Obviously, we cannot use the same argument as in Theorem 7

since now d is not equal to the number of descents: the objects which satisfy the
descent condition are descended only with probability 1

c . Thus, we have to bound
the sum of d by the total number of descents.



35

Consider some object x that satisfies the descent condition, i.e., it is counted
in d term of the complexity. Then x will either be descended, or will not satisfy the
descent condition after c operations passing through it in expectation. Mathemati­
cally, the event that x is descended follows an exponential distribution with success
(demotion) probability 1

c . Hence, the expected number of operations that traverse
x before it is descended is c. This means that the object x will be counted in terms
of type d no more than c times in expectation. By that, the total complexity of all
operations is equal to the sum of 8y terms plus 2c times the number of descents.
Since the number of descents cannot exceed the number of ascents, which in turn
cannot exceed the sum of the y terms, the total complexity does not exceed the sum
of 10 × c × y terms. Finally, this means that the amortized complexity complexity
of hits operation is O(c× y) = O

(
c× log m′

sh′
u

)
in expectation.

Next, we prove the second main claim, i.e., that

E
(
log

m′

sh′
u

)
= O

(
log

m

shu

)
.

Note that the relaxed countersm′ and sh′
u are Binomial random variables with prob­

ability parameter p = 1
c , and number of trialsm and shu, respectively.

To avoid issues with taking the logarithm of zero, let us bound E
(
log m′+1

sh′
u+1

)
,

which induces only a constant offset. We have:

E
[
log

m′ + 1

sh′
u + 1

]
=E [log(m′ + 1)] − E [log(sh′

u + 1)]

⩽
Jensen

log(Em′ + 1) − E log(sh′
u + 1)

= log(mp+ 1) − E log(sh′
u + 1).

The next step in our argument will be to lower bound E log(sh′
u+1). For this,

we can use the observation that sh′
u ∼ Binshu,p, the Chernoff bound, and a careful

derivation to obtain the following result.
Lemma 20. IfX ∼ Binn,p and np ⩾ 3n2/3 then E [log(X + 1)] ⩾ lognp− 4.

Proof. Recall the standard Chernoff bound, which says that if X ∼ Binn,p,
then P (|X − np| > δnp) ⩽ 2e−µδ2/3. Applying this with δ = 1

n1/3p
, we obtain

P (|X − np| > n
2
3 ) ⩽ 2e

−n1/3

3p2 .



36

E log(X + 1) = E log(np+ (X − np+ 1)) = lognp+ E log
(
1 + X−np+1

np

)
= lognp+

n∑
k=0

pk log
(
1 + k−np+1

np

)
⩾

Taylor series and
1+k−np+1

np ⩾ 1
np

lognp+

+
np+n2/3∑

k=np−n2/3

pk

(
k−np+1

np − (k−np+1)2

2n2p2 + . . .
)
+P (|X−np| > n

2
3 )×log 1

np ⩾ lognp −

−
np+n2/3∑

k=np−n2/3

pk

(
2n2/3

np + (2n2/3)2

2(np)2 + . . .
)
− 2 lognp× e

−n1/3

3p2 ⩾∑np+n2/3

k=np−n2/3
pk⩽1

lognp−

−
(
2n2/3

np + (2n2/3)2

(np)2 + . . .
)
−2 lognp×e

−n1/3

3p2 = lognp− np
np−2n2/3−2 lognp×e

−n1/3

3p2 ⩾

⩾ lognp− 3− 2 lognp× e
−n1/3

3p2 ⩾ lognp− 4.
Based on this Claim we obtain

log(mp+ 1)−E[log(sh′
u + 1)] ⩽ log(mp+ 1)− log(shu × p) + 4 ⩽ log

m

shu
+ 5.

However, this bound works only for the case when shu×p ⩾ 3×(shu)
2/3. Consider

the opposite: shu ⩽ 27
p3 . Then, E[log(sh

′
u + 1)] ⩾ 0 ⩾ log shu − log 27

p3 . Note that
the last term is constant, so we can conclude that E[log m′+1

sh′
u+1 ] ⩽ log m

shu
+ C. This

matches our initial claim that E[log m′+1
sh′

u+1 ] = O(log m
shu

).

3.1.3. Relaxed and Forward Rebalancing
The first problem from Section 3.1.1 can be fixed in two steps. The most

important one is to relax guarantees and perform rebalancing only periodically, for
example, with probability 1

c for each operation. Of course, this relaxation will affect
the bounds—please see Section 3.1.2 for the proofs.

However, this relaxation is not sufficient, since we cannot relax the balancing
phase of insert(u) which physically links an object. All these insert functions
are going to be serialized due to the lock on the topmost level. Note that without
further improvements we cannot avoid taking locks on each predecessor of x, since
we have to update their counters.

We would like to have more fine­grained implementation. However, our cur­
rent sequential algorithm does not allow this, since it updates the path only back­
wards and, thus, needs the whole path to be locked. To address this issue, we in­
troduce a different variant of our algorithm, which does rebalancing on the forward
traversal.



37

We briefly describe how this forward­pass algorithm works. We maintain
the basic structure of the algorithm. At first, we make a lock­free traversal to find
x. Only after this we perform forward traversal with rebalancing if necessary. We
traverse the splay­list in the search of x, and suppose that we are now at the last
node v on the level h which precedes x. The only node on level h − 1 which can
be ascended is v’s successor on that level, node u: we check the ascent condition
on u or, in other words, compare

∑
w∈Su

hits(Ch−1
w ) = hitshv − hitsh−1

v with m
2k−h ,

and promote u, if necessary. Then, we iterate through all the nodes on the level
h− 1 while the keys are less than x: if the node satisfies the descent condition, we
demote it. Note that the complexity bounds for that algorithm are the same as for
the previous one and can be proven exactly the same way (see Theorem 7).

The main improvement brought by this forward­pass algorithm is that now
the locks can be taken in a hand­over­hand manner: take a lock on the highest level
h and update everything on level h − 1; take a lock on level h − 1, release the
lock on level h and update everything on level h − 2; take a lock on level h − 2,
release the lock on level h − 1 and update everything on level h − 3; and so on.
By this locking pattern, the balancing part of different operations is performed in a
sequential manner: an operation cannot overtake the previous one and, thus, the hits
counters cannot be updated asynchronously. However, at the same time we reduce
contention: locks are not taken for the whole duration of the operation.

3.1.4. Lazy Expansion.
The expansion issue is resolved in a lazy manner. The splay­list maintains the

counter zeroLevel which represents the current lowest level. When m reaches the
next power of two, zeroLevel is decremented, i.e., we need one more level. (To
be more precise, we decrement zeroLevel also lazily: we do this only when some
node is going to be demoted from the current lowest level.) Each node is allocated
with an array of next pointers with length 64 (as discussed, the height 64 allows
us to perform 264 operations which is more than enough) and maintains the lowest
level to which the node belonged during the last traverse. When we traverse a node
and it appears to have the lowest level higher than zeroLevel, we update its lowest
level and fill the necessary cells of next pointers. By doing that we make a lazy
expansion of splay­list and we do not have to freeze whole data structure to rebuild.

For the pseudo­code of the splay­list, we refer to the Section 4.1.



38

3.2. The Concurrent Distribution­Adaptive Interpolation Search Tree
We use the same ideas as described in [14] for the IST to make the concurrent

version of self­adjusting interpolation search tree. The only difference is that we
store the number of accesses and how it changes, instead of storing sizes. So, in
markAndCount [14] function we count the number of accesses made to the subtree
and choose representatives on the first level using it. Then, we do exactly the same
trick with the collaborative rebuild described in [14], except we use our modified
ideal builder, which uses binary searches. See Section 2.2.1.

Conclusions on Chapter 3
In this chapter, we developed the concurrent designs of splay­list and self­

adjusting interpolation search tree. To do this, we came up with the forward­pass
rebalancing algorithm instead of backward pass from the previous chapter. Also,
we proved that if we rebalance the splay­list only with some probability, than the
expected hit­operation time would be O

(
c× log m

shu

)
.

Overall, we created a simple lock­based design for the splay­list and a lock­
free design for the self­adjusting IST.



39

CHAPTER 4. EXPERIMENTS AND RESULTS
In this chapter, we describe more precisely, how our algorithms work, state

key points of the implementation. Also, we provide results of the experiments,
which show how the height of the element in the splay­list depends on its number
of accesses. Moreover, we compare skip­list and CBTree with the splay­list with
different parameters on several workloads.

4.1. The Splay­List Implementation
In this section, we introduce the implementation for contains operation.

Insert and delete (that simply marks) operations are performed similarly. The
rebuild is a little bit complicated since we have to freeze whole data structure, how­
ever, since we talk about lock­based implementations it can be simply done by pro­
viding the global lock on the data structure.

Listing 1 – The data structure class definitions.

c l a s s Node :
K key
V va l u e
i n t z e r oLev e l
i n t t o pLeve l
Lock l o ck
i n t s e l f h i t s
Node nex t [MAX_LEVEL]
i n t h i t s [MAX_LEVEL]
boo l d e l e t e d

c l a s s S p l a yL i s t :
i n t m
i n t M
i n t z e r oLev e l
Node head
Node t a i l

S p l a yL i s t l i s t
doub l e p

The main class that is used in our implementation is Node (Listing 1). It
contains nine fields:

a) key field stores the corresponding key,
b) value field stores the value for the corresponding key,
c) zeroLevel field indicates the lowest sub­list to which the object belongs (for

lazy expansion),



40

d) topLevel field indicates the topmost sub­list to which the object belongs,
e) lock field allows to lock the object,
f) selfhits field stores the total number of hit­operations performed to key, i.e.,

shkey,
g) next[h] is the succesor of the object in the sub­list of height h,
h) hits[h] equals to hitshkey or, in other words, hits(Ch

key)−selfhits, and, finally,
i) deleted mark that indicates whether the key is logically deleted.

The splay­list itself is represented by class SplayList with five fields:
a) m field stores the total number of performed hit­operations to all the keys,
b) M field stores the total number of hit­operations to non­marked objects,
c) zeroLevel indicates the current lowest level of splay­list(for lazy expansion),
d) head and tail are sentinel nodes with −∞ and +∞ keys, correspondingly.

Moreover, the algorithm has a parameter p which is the probability how often
we should perform the rebalancing.

Listing 2 – Contains function

fun c o n t a i n s (K key ) :
Node node := f i n d ( key )
i f node = n u l l :

r e t u r n f a l s e
i f random ( ) < p :

r e b a l a n c e ( key )
r e t u r n no t node . d e l e t e d

The contains function is depicted at Listing 2. If find does not find an
object with the corresponding key we return false. Otherwise, we rebalance, i.e.,
call function rebalance, with the probability p.

The findmethod which checks the existence of the key is almost identical to
the standard find function in skip­lists. It is presented on the following Listing 3.

Note, that we use the lazy expansion: when we pass an object we check (List­
ing 3) whether it should belong to lower levels, i.e., the expansion should be per­
formed, and if it should be we update the node. For the lazy expansion functions
we refer to the Listing 4. In function updateZeroLevel we check whether the
current level of a node is higher than the level of the list. If this happens we link the
node on the lower level, decrement its zeroLevel field, and set the next field as
the next on a higher level. In function updateUpToLevel we link the node to
the levels until the argument level.



41

Listing 3 – Find function

fun f i n d (K key ) :
p r ed := l i s t . head
succ := head . n ex t [MAX_LEVEL]
f o r l e v e l := MAX_LEVEL−1 . . z e r oLev e l :

updateUpToLevel ( pred , l e v e l )
succ := p red . n ex t [ l e v e l ]
i f succ = n u l l :

c o n t i n u e
updateUpToLevel ( succ , l e v e l )
wh i l e succ . key < key :

p r ed := succ
succ := p red . n ex t [ l e v e l ]
i f succ = n u l l :

b r e ak
updateUpToLevel ( succ , l e v e l )

i f succ != n u l l and succ . key = key :
r e t u r n succ

r e t u r n n u l l

Listing 4 – Lazy expansion functions

/ / t h i s f u n c t i o n i s c a l l e d on ly when node . l o ck i s t a k en
fun upda t eZe roLeve l ( Node node ) :

i f node . z e r oLeve l > l i s t . z e r oLeve l :
node . h i t s [ node . z e r oLeve l − 1 ] := 0
node . n ex t [ node . z e r oLeve l − 1 ] :=

node . n ex t [ node . z e r oLeve l ]
node . z e roLeve l −−

r e t u r n

fun updateUpToLevel ( Node node , i n t l e v e l ) :
node . l o ck . l o ck ( )
wh i l e node . z e r oLeve l > l e v e l :

upda t eZe roLeve l ( node )
node . l o ck . un lock ( )
r e t u r n

The method rebalance that performs the rebalancing in forward pass is
presented on Listing A.1.

At first, we introduce the function getHits that returns the total num­
ber of hits at the level h to the “subtree” of node node: this corresponds to
hits(Ch

node) = shnode + hitshnode, where shnode is node.selfhits and hitshnode
is node.hits[h].



42

Now, we describe how rebalance function works. It takes a key key as an
argument, increments counters on the way down to the node with the corresponding
key, and checks ascent and descent conditions. It starts by taking the lock on the
head, by incrementing the total number of hit­operations on the list, list.m, and
by incrementing the total number of hits in the “subtree” of the head.

Then, it starts the standard traversal procedure for the skip­list operation: we
iterate over levels in order to find a node with the requested key. For that, we main­
tain three pointers curr, pred and predpred— the current node in the traversal
as in skip­list, the previous node that has been passed (typically, pred.next is
equal to curr), and the last traversed node on the previous level on which we al­
ready have a lock.

At each iteration h of the loop, the function first takes pred from the level
h + 1 which now becomes predpred and its next neighbour curr on level h.
When we touch a node we lazily update it (pred and curr) so that their lowest
level becomes at most h. If the key of curr is already bigger than the argument
key the function just increments the number of hit­operations in “subtree” of pred
and continues with the lower level. Otherwise, it traverses the list at level h and
stops when the key of curr becomes bigger than the argument key.

When touching a new node curr the function always lazily updates its
height. If we find that the next node at the level has a key bigger than key, it locks
curr, checks whether the next node is still has a bigger key, and updates either the
selfhits field if the key in curr is equal to key or updates the number of hits
at the “subtree”. Also, note that if the function finds a node with the requested key,
it has to change the counterM of our splay­list if the node is not marked.

After that the function checks ascent and descent conditions. We start with the
ascent condition. If the number of hit­operations to

⋃
Ch

x for x ∈ Scurr which is cal­
culated as predpred.hits[h + 1] ­ predpred.hits[h] is big enough,
the function should promote the node curr to the higher levels and should recal­
culate hits field for predpred and curr. Please note that in this case curr is
always the neighbour of predpred.

Then, the function checks the descent condition: whether the total number of
hit­operations at “subtrees” of pred and curr at the current level is small enough.
If the condition is satisfied the function locks pred and curr. If after the lock
the condition is not satisfied (this can happen if someone inserted a new node, the



43

function unlocks all the nodes and continue with the next neighbour of pred on
level h. If the descent condition is satisfied the function should demote curr node
from level h to lower level h− 1. At first, it checks the current lowest level of our
splay­list and decreases it lazily if necessary, also after that it tries to lazily increase
the height of curr and pred. Finally, the function demotes curr, updates the
counters and next field of pred, unlocks curr and pred, and continues with
the next neighbour of pred.

If none of the conditions are satisfied we simply continue with the next node
at the level.

4.2. The Splay­List Experiments
We aim to determine whether:

a) the splay­list can improve over the throughput of the baseline skip­list by suc­
cessfully leveraging the skewed access distribution;

b) it scales, and what is the impact of update rates and number of threads;
c) it can be competitive with the CBTree data structure in sequential and con­

current scenarios;
d) we get the further improvement in the throughput during the long run under

the same workload.
We split our experimental evaluation into two parts: on read­only workloads

where there are only contains operations and general workloads with moderate
amount of update (insert and delete) calls.

4.2.1. Read­Only Workloads
In our read­only experiments, we describe a family of workloads by n−x−y,

which should be read as: given n keys, x% of the contains are performed on y%
of the keys while other contains operations are on the rest of the keys. More
precisely, we first populate the splay­list with n keys and randomly choose a set of
“popular” keys S of size y × n. We then start T threads, each of which iteratively
picks an element and performs the contains operation, for 10 seconds. With
probability xwe choose a random element from S, otherwise, we choose an element
outside of S uniformly at random.

For our experiments, we choose the following five workloads: uniform (or
105 − 100− 100), 105 − 90− 10, 105 − 95− 5, 105 − 99− 1, and Zipf distribution
with the parameter 1. That is, 100%, 90%, 95%, and 99% of the operations go into



44

100%, 10%, 5%, and 1% of the keys, respectively. Further, we vary the balancing
rate/probability, which we denote by p: this is the probability that a given operation
will update hit counters and perform rebalancing.

Table 1 – Operations per second and average length of a path on uniform workload.

uniform Skip­list SL p = 1 SL p = 1
2 SL p = 1

5
ops/sec 2747000.0 0.35x 0.46x 0.57x
length 30.86 25.53 25.54 25.55

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5
ops/secs 0.64x 0.74x 0.84x
length 9.84 9.84 9.84

SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/secs 0.63x 0.69x 0.70x
length 25.56 25.59 25.65

CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 0.89x 0.94x 0.95x
length 9.84 9.88 9.93

Table 2 – Operations per second and average length of a path on 105 − 90 − 10
workload.

105 − 90− 10 Skip­list SL p = 1 SL p = 1
2 SL p = 1

5
ops/sec 2874600.0 0.60x 0.78x 1.00x
length 30.81 23.06 23.07 23.08

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5
ops/secs 1.15x 1.36x 1.59x
length 9.13 9.14 9.15

SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/secs 1.10x 1.12x 1.02x
length 23.13 23.75 25.06

CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 1.71x 1.71x 1.52x
length 9.17 9.37 9.81

In the first round of experiments, we compare how the single­threaded splay­
list performs under the chosen workloads. We execute it with different settings of
p, the probability of adjustment, taking values 1, 1

2 ,
1
5 ,

1
10 ,

1
100 and

1
1000 . We compare

against the sequential skip­list and CBTree. We measure two values: the number of
operations per second and the average length of the path traversed. The results are



45

Table 3 – Operations per second and average length of a path on 105 − 95 − 5
workload.

105 − 95− 5 Skip­list SL p = 1 SL p = 1
2 SL p = 1

5
ops/sec 2844520.0 0.69x 0.93x 1.21x
length 30.84 21.62 21.63 21.65

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5
ops/secs 1.33x 1.61x 1.90x
length 8.61 8.61 8.62

SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/secs 1.34x 1.39x 1.17x
length 21.70 22.33 24.46

CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 2.04x 2.09x 1.79x
length 8.65 8.90 9.58

Table 4 – Operations per second and average length of a path on 105 − 99 − 1
workload.

105 − 99− 1 Skip­list SL p = 1 SL p = 1
2 SL p = 1

5
ops/sec 3559320.0 0.85x 1.19x 1.65x
length 31.00 17.13 17.16 17.23

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5
ops/secs 1.37x 1.72x 2.06x
length 7.25 7.23 7.26

SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/secs 1.89x 2.01x 1.64x
length 17.30 18.59 21.00

CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 2.25x 2.36x 2.04x
length 7.28 7.52 8.53

presented in Tables 1­5 (splay­list is abbreviated SL). For readability, throughput
results are presented relative to the skip­list baseline.

Relative to the skip­list, the first observation is that, for high update rates
(1 through 1/5), the splay­list predictably only matches or even loses performance.
However, this trend improves as we reduce the update rate, and, more significantly,
as we increase the access rate imbalance: for 99−1, the sequential splay­list obtains
a throughput improvement of 2×. This improvement directly correlates with the
length of the access path (see third row). At the same time, notice the negative
impact of very low update rates (last column), as the average path length increases,



46

Table 5 – Operations per second and average length of a path on Zipf 1 workload.

Zipf 1 Skip­list SL p = 1 SL p = 1
2 SL p = 1

5
ops/sec 2700290.0 0.91x 1.15x 1.40x
length 30.76 14.14 14.14 14.12

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5
ops/secs 1.26x 1.47x 1.66x
length 5.80 5.80 5.80

SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/secs 1.51x 1.63x 1.64x
length 14.11 14.06 14.12

CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 1.75x 1.85x 1.86x
length 5.80 5.81 5.81

which leads to higher average latency and decreased throughput. We empirically
found the best update rate to be around 1/100, trading off latency with per­operation
cost.

Relative to the sequential CBTree, we notice that the splay­list generally yields
lower throughput. This is due to two factors:

a) the CBTree is able to yield shorter access paths, due to its structure and con­
stants;

b) the tree tends to have better cache behavior relative to the skip­list backbone,
i.e., more nodes can be stored in cache.

Given the large difference in terms of average path length, it may seem surprising
that the splay­list is able to provide close performance. This is because of the caching
mechanism: as long as the path length for popular elements is short enough so that
all the topmost nodes are mostly in cache, the average path length is not critical. We
will revisit this observation in the concurrent case.

Next, we analyze concurrent performance. Unfortunately, the original imple­
mentation of the CBTree is not available, and we therefore re­implemented it in our
framework. Here, we make an important distinction relative to usage: the authors
of the CBTree paper propose to use a single thread to perform all the rebalancing.
However, this approach is not standard, as in practice, updates could come from dif­
ferent threads. Therefore, we implement two versions of the CBTree, one in which
updates are performed by a single thread (CBTree­Unfair), and one in which up­
dates can be performed by every thread with some probability (CBTree­Fair). In



47

both cases, synchronization between readers and writers is performed via an effi­
cient readers­writers lock [4], which prevents concurrent updates to the tree. We
note that in theory we could further optimize the CBTree to allow fully­concurrent
updates via fine­grained synchronization. However, this would require a signifi­
cant re­working of their algorithm and, as we will see below, this would not change
results significantly.

Figure 5 – Concurrent throughput for uniform workload

Our experiments, presented in Figures 5—9, analyze the performance of the
splay­list relative to standard skip­list and the CBTree across different workloads
(one per figure), different update rates (one per panel), and thread counts (X axis).

Examining the figures, at first, notice the relatively good scalability of the
splay­list under all chosen update rates and workloads. By contrast, the CBTree
scales well for moderately skewed workloads and low update rates, but performance
decays for skewed workloads and high update rates (see for instance Figure 8 for
p = 1

10). We note that, in the former case the CBTree matches the performance of



48

Figure 6 – Concurrent throughput for 105 − 90− 10 workload

the splay­list in the low­update case (see Figure 6 for p = 1
1000), but its performance

can decrease significantly if the update rates are reasonably high (p = 1
100). We

further note the limited impact of whether we consider the fair or unfair variant of
the CBTree (although the Unfair variant usually performs better).

We consider a uniform workload 105 − 100 − 100, i.e., the arguments of
contains operations are chosen uniformly at random (Figure 5). As expected
we lose performance lose relative to the skip­list due to the additional work our data
structure performs. Note also that the CBTree outperforms the Splay­List in this
setting. This is also to be expected, since the access cost, i.e., the number of links
to traverse, is less for the CBTree.

We also ran the data structures on an input coming from a Zipf distribution
with the skew parameter set to 1, which is the standard value: for instance, the
frequency of words in the English language satisfies this parameter. As one can see
on Figure 9, our splay­list outperforms or matches all other data structures.



49

Figure 7 – Concurrent throughput for 105 − 95− 5 workload

These results may appear surprising given that the splay­list generally has
longer access paths. However, it benefits significantly from the fact that it allows
additional concurrency, and that the caching mechanism serves to hide some of its
additional access cost. Our intuition here is that one critical measure is which frac­
tion of the “popular” part of the data structure fits into the cache. This suggests that
the splay­list can be practically competitive relative to the CBTree on a subset of
workloads.

We run the splay­list with the best parameter p = 1
100 for ten minutes on one

process on the following distributions: 105−90−10, 105−95−5, 105−99−1, and
Zipf with the parameter 1. Then, we compare the measured throughput per second
with the throughput per second on runs of ten seconds. Obviously, we expect that
the throughput increases since the data structure learns more and more about the
distribution after each operation. And it indeed happens as we can see on Table 6.
In the long run, the improvement is up to 30%.



50

Figure 8 – Concurrent throughput for 105 − 99− 1 workload

4.2.2. General workloads
In addition to read­only workloads we implemented general workloads, al­

lowing for inserts and deletes, in our framework. General workloads are specified
by five parameters n− r − x− y − s:

a) n, the size of the workset of keys;
b) r%, the amount of contains performed;
c) x% of contains are performed on y% of keys;
d) insert and delete choose a key uniformly at random from s% of keys.

Talking in more details, we choose n keys as set S and we pre­populate the
splay­list: we add a key from S with probability 50%. Then, we choose s× n keys
uniformly at random to get a key set named W . Also, we choose y × n keys from
inserted keys to get a key set namedR. We start T threads, each of which chooses an
operation: with probability r% it chooses contains and with probabilities 100−r

2 %
it chooses insert or delete. Now, the thread has to choose an argument of the



51

Figure 9 – Concurrent throughput on Zipf 1 workload

operation: for contains operation it chooses an argument from R with probabil­
ity x%, otherwise, it chooses an argument from S \ R; for insert and delete
operations it chooses an argument fromW uniformly at random.

We did not perform a full comparison with all other data structures (skip­
list and the CBTree). However, we did a comparison to the splay­list itself on the
following two types of workloads: read­write workloads, 105 − 98− 90− 10− 25,
105 − 98 − 95 − 5 − 25 and 105 − 98 − 99 − 1 − 25 — choosing contains
operation with probability 98%, and insert and delete operations takes one
quarter of elements as arguments; and read­only workloads, 105 − 0− 90− 10− 0,
105−0−95−5−0, and 105−0−99−1−0which relate to the read­only workloads
105 − 90− 10, 105 − 95− 5, and 105 − 99− 1 described above.

The intuition is that the splay­list should perform better on the second type
of workloads, but by how much? We answer this question: the overhead does not



52

Table 6 – Comparison of the throughput on runs for 10 seconds and 10 minutes

Distribution 10 sec 10 min
105 − 90− 10 2777150 3630640 (+30%)
105 − 95− 5 3401220 4403906 (+29%)
105 − 99− 1 6707690 8184215 (+22%)

Zipf 1 3806500 4261981 (+12%)

exceed 15%on 99−1­workloads, does not exceed 7%on 95−5­workloads, and does
not exceed 5% on 90 − 1­workloads. As expected, the less a workload is skewed,
the less the overhead. By that, we obtain that the small amount of insert and
delete operations does not affect the performance significantly.

4.2.3. The Correlation between Key Popularity and Height
We run the splay­list with the best parameter p = 1

100 for 100 seconds on one
process on the following distributions: 105 − 90− 10, 105 − 95− 5, 105 − 99− 1

and Zipf with parameter 1. Then, we build the plots (see Figures 10) where for each
key we draw a point (x, y) where x is the number of operations per key and y is
the height of the key. We would expect that the larger the number of operations, the
higher the nodes will be. This is obviously the case under Zipf distribution. With
other distributions the correlation is not immediately obvious, however, one can see
that if the number of operations per key is high, then the lowest height of the key is
much higher than 1.



53

Figure 10 – The correlation between the popularity and the height

Conclusions on Chapter 4
In this chapter we discussed important details of the implementation. Also,

we provided results of the experiments, which indicate, that the sequential and con­
current implementations of splay­list show overall better results on the general and
read­only highly skewed workloads, than the skip­list and the CBTree. Thirdly, we
showed, that performance of the splay­list becomes better if it runs for longer time
period.

Fourthly, we investigated the correlation between height of the elements in the
splay­list and number of accesses made to them, and our experiments showed, that
for more popular elements minimal height is bigger, and they tend to be presented
on the higher levels, than less popular ones.



54

CONCLUSION
In this work, we revisited the question of efficient self­adjusting concurrent

data structures, we presented the first self­adjusting concurrent instances of skip­list
and IST.

The splay­list design ensures static optimality, and has an arguably simple
structure and implementation, which allows for additional concurrency and good
performance under skewed access. In addition, this design provides guarantees un­
der approximate access counts, required for good practical behavior. Also, we em­
pirically showed, that the splay­list shows better performance, than the skip­list and
the CBTree for highly skewed distributions of accesses.

For the self­adjusting IST design we proved theoretical bounds that show for
the big class of access distributions it has better expected amortized time complexity,
than the splay­list and the CBTree, and can be made lock­free.



55

REFERENCES
1 A simple optimistic skiplist algorithm / M. Herlihy [et al.] // Proceedings

of the 14th international conference on Structural information and commu­
nication complexity. — Castiglioncello, LI, Italy : Springer­Verlag, 2007. —
P. 124–138. — (SIROCCO’07).

2 Benchmarking cloud serving systems with YCSB / B. F. Cooper [et al.]
// Proceedings of the 1st ACM symposium on Cloud computing. — 2010. —
P. 143–154.

3 CBTree: A Practical Concurrent Self­adjusting Search Tree / Y. Afek [et al.]
// Proceedings of the 26th International Conference on Distributed Computing.
—Salvador, Brazil : Springer­Verlag, 2012.—P. 1–15.— (DISC’12).—URL:
http://dx.doi.org/10.1007/978­3­642­33651­5_1.

4 Correia A., Ramalhete P. Scalable Reader­Writer Lock in C++1x [Electronic
resource]. — 2015. — URL: http : / / concurrencyfreaks .
blogspot.com/2015/01/scalable­reader­writer­lock­
in­c1x.html.

5 Herlihy M., Shavit N. The Art of Multiprocessor Programming. — San Fran­
cisco, CA, USA : Morgan Kaufmann Publishers Inc., 2008. — 536 p.

6 Knuth D. E. The art of computer programming. Vol. 3. — Pearson Education,
1997.

7 Lea D. Concurrent Skip­List Map [Electronic resource]. — 2007. — URL:
http://java.sun.com/javase/6/docs/api/java/util/
concurrent/ConcurrentSkipListMap.html.

8 Mehlhorn K., Tsakalidis A. Dynamic interpolation search. — 1991. — URL:
https : / / people . mpi ­ inf . mpg . de / ~mehlhorn / ftp /
DynamicInterpolationSearch.pdf.

9 Michael M. M. High performance dynamic lock­free hash tables and list­based
sets // Proceedings of the fourteenth annual ACM symposium on Parallel algo­
rithms and architectures. — 2002. — P. 73–82.



56

10 Natarajan A.,Mittal N. Fast Concurrent Lock­free Binary Search Trees // Pro­
ceedings of the 19th ACMSIGPLAN Symposium on Principles and Practice of
Parallel Programming.—Orlando, Florida, USA : ACM, 2014.— P. 317–328.
— (PPoPP ’14).—URL: http://doi.acm.org/10.1145/2555243.
2555256.

11 Non­blocking Binary Search Trees / F. Ellen [et al.] // Proceedings of the 29th
ACM SIGACT­SIGOPS Symposium on Principles of Distributed Computing.
— Zurich, Switzerland : ACM, 2010. — P. 131–140. — (PODC ’10). — URL:
http://doi.acm.org/10.1145/1835698.1835736.

12 Poess M., Floyd C. New TPC benchmarks for decision support and web com­
merce // ACM Sigmod Record. — 2000. — Vol. 29, no. 4. — P. 64–71.

13 Prefix sum [Electronic resource]. — 2021. — URL: https : / / en .
wikipedia.org/wiki/Prefix_sum.

14 Prokopec A., Brown T., Alistarh D. Analysis and Evaluation of Non­Blocking
Interpolation Search Trees // Proceedings of Principles and Practice of Parallel
Programming 2020. — 2020. — (PPoPP’20).

15 Pugh W. A Probabilistic Alternative to Balanced Trees. — 1989.

16 Pugh W. Concurrent maintenance of skip lists. — 1998.

17 Tarjan R., Sleator D. Self­Adjusting Binary Search Trees [Electronic resource].
— 1985. — URL: https://www.cs.princeton.edu/courses/
archive/spring04/cos423/handouts/splay%5C%20trees.
pdf.



57

APPENDIX A. PSEUDO CODE OF REBALANCING OPERATION

Listing A.1 – Pseudocode of the rebalance function.

fun g e tH i t s ( Node node , i n t h ) :
i f node . z e r oLeve l > h :

r e t u r n node . s e l f h i t s
r e t u r n node . s e l f h i t s + node . h i t s [ h ]

fun r e b a l a n c e (K key ) :
l i s t . head . l o ck ( )
l i s t .m++
currM := l i s t .m
l i s t . head . h i t s [MAX_LEVEL]++
Node p red := l i s t . head
f o r h := MAX_LEVEL−1 . . z e r oLeve l :

wh i l e p r ed . z e r oLeve l > h :
upda t eZe roLeve l ( p r ed )

p r e dp r e d := p red
c u r r := p red . n ex t [ h ]
updateUpToLevel ( cu r r , h )
i f c u r r . key > key :

p r ed . h i t s [ h ]++
c o n t i n u e

found_key := f a l s e
wh i l e c u r r . key ⩽ key :

updateUpToLevel ( cu r r , h )
a c q u i r e d := f a l s e
i f c u r r . n ex t [ h ] . key > key :

c u r r . l o ck . l o ck ( )
i f c u r r . n ex t [ h ] . key ⩽ key :

c u r r . l o ck . un lock ( )
e l s e :

a c q u i r e d := t r u e
i f c u r r . key = key :

c u r r . s e l f h i t s ++
found_key := t r u e
i f ! c u r r . d e l e t e d :

f e t c h_and_add ( l i s t .M)
e l s e :

c u r r . h i t s [ h ]++



58

/ / Ascen t c o n d i t i o n
i f h + 1 < MAX_LEVEL and h < p r edp r e d . t o pLeve l and

p r edp r e d . h i t s [ h + 1] − p r edp r e d . h i t s [ h ] >
currM

2MAX_LEV EL−1−h−1 :
i f no t a c q u i r e d :

c u r r . l o ck . l o ck ( )
cu rh := c u r r . t o pLeve l
wh i l e cu rh + 1 < MAX_LEVEL and

cu rh < p r edp r ed . t o pLeve l and
p r edp r e d . h i t s [ cu rh + 1] −

p r edp r e d . h i t s [ cu rh ] >
currM

2MAX_LEV EL−1−curh−1 :
c u r r . t o pLeve l ++
cu rh++
c u r r . h i t s [ cu rh ] := p r edp r ed . h i t s [ cu rh ] −

p r edp r e d . h i t s [ cu rh − 1] − c u r r . s e l f h i t s
c u r r . n ex t [ cu rh ] := p r edp r ed . n ex t [ cu rh ]
p r e dp r e d . h i t s [ cu rh ] := p r e dp r e d . h i t s [ cu rh − 1]
p r e dp r e d . n ex t [ cu rh ] := c u r r

p r e dp r e d := c u r r
p r ed := c u r r
c u r r := c u r r . n ex t [ h ]
c o n t i n u e

/ / Descen t c o n d i t i o n
e l i f c u r r . t o pLeve l = h and

c u r r . n ex t [ h ] . key ⩽ key and
g e tH i t s ( cu r r , h ) + g e t H i t s ( pred , h )

⩽ currM
2MAX_LEV EL−1−h :

c u r rZ e r oLev e l := l i s t . z e r oLeve l
i f p r ed ̸= p r edp r e d :

p r ed . l o ck . l o ck ( )
c u r r . l o ck . l o ck ( )
/ / Check t h e c o n d i t i o n s t h a t n o t h i n g has changed
i f c u r r . t o pLeve l ̸= h or

g e t H i t s ( cu r r , h ) + g e t H i t s ( pred , h ) >
currM

2MAX_LEV EL−1−h or
c u r r . n ex t [ h ] . key > key or
p red . n ex t [ h ] ̸= c u r r :

i f p r ed ̸= p r edp r e d :
p r ed . l o ck . un lock ( )

c u r r . l o ck . un lock ( )



59

c u r r := p red . n ex t [ h ]
c o n t i n u e

e l s e :
i f h = c u r rZ e r oLev e l :
CAS( l i s t . z e roLeve l , c u r rZe r oLeve l ,

c u r rZ e r oLev e l − 1 )
i f c u r r . z e r oLeve l > h − 1 :

upda t eZe roLeve l ( c u r r )
i f p r ed . z e r oLeve l > h − 1 :

upda t eZe roLeve l ( p r ed )
p red . h i t s [ h ] := p red . h i t s [ h ] +

g e t H i t s ( cu r r , h )
c u r r . h i t s [ h ] := 0
p red . n ex t [ h ] := c u r r . n ex t [ h ]
c u r r . n ex t [ h ] := n u l l
i f p r ed ̸= p r edp r e d :

p r ed . l o ck . un lock ( )
c u r r . t opLeve l −−
c u r r . l o ck . un lock ( )
c u r r := p red . n ex t [ h ]
c o n t i n u e

p red := c u r r
i f p r e dp r e d ̸= pred :

p r e dp r e d . l o ck . un lock ( )
i f found_key :

p r ed . l o ck . un lock ( )
r e t u r n

p red . l o ck . un lock ( )


