Ministry of Science and Higher Education of the Russian Federation

ITMO UNIVERSITY

GRADUATION THESIS

DEVELOPMENT OF CONCURRENT HIERARCHICAL DATA
STRUCTURES WITH EFFICIENT RANGE QUERIES

Author: Kokorin Ilya Vsevolodovich

Subject area: 01.04.02 Applied mathematics
and informatics

Degree level: Master

Thesis supervisor: Aksenov V.E., PhD

Saint Petersburg, 2022

Student Kokorin Ilya Vsevolodovich
Group M42381¢ Faculty of IT&P

Subject area, program/major

Technologies of software engineering

Thesis received “° i 20

Originality of thesis %

Thesis completed with grade

Date of defense “° ”? 20

Secretary of State Exam Commission Khlopotov M.V.

Number of pages

Number of supplementary materials/Blueprints

CONTENTS

INTRODUCTION . ..t e e e e 6
1. Review of the subjectarea................cc i 9
1.1. Hierarchical Data Structures ..., 9
1.2, RanN@e QUETIESottt e e et aiee e 11
1.3. Efficient sequential algorithm for range queries 12
L1.3.1. Tree Structure.ovueein e 12
1.3.2. Executing the count query asymptotically optimal 15
1.3.3. Time complexity analysis.................ccciviiiiiiia... 18

1.4. Range queries applications............cooiiiiiiiiieniieninann. 19
1.4.1. Spammers identificationt 19
1.4.2. Traffic jams identification................, 21

1.5. Executionmodel i 22
1.6. Concurrent cOrrectness Criteriaovreeeireeenineeeneennnnenns 23
1.7. Progress guarantees.ouuurueeeeeniiieeeeniiieeeannnnnn, 25
1.8. EXisting SOIUtIONSc.iiuiiii i 27
1.8.1. Lock-based solutionsccooviiiiiiiiiiinennn... 27
1.8.2. Linear-time solutionscooiiiiiiiiiiiiinnnnn... 27
1.8.3. Solutions based on the Universal Construction 28
1.8.4. Solutions, based on augmented persistent trees 32
Conclusionson Chapter 1 ...t 32
2. General description of the algorithm, 34
2.1. Concurrent solution: the main invariant............................. 34
2.2. Operation €XeCUtION: OVETVIEWttt eeeeeieeiieaeeeennnnns 36
2.3. Waystoachieve parallelism................. 43
2.4. Executing an operation inanode via CAS=N..........covvuevnen... 45
2.4.1. CAS-N definition and implementation....................... 45
2.4.2. Using CAS-N for operation execution 46

2.5. Execution of an operation in a node without CAS-N................. 50
2.6. Operation queue implementationcccoiviiinann.... 55
2.6.1. QUEUE SIIUCIUIC. . .. 55
2.6.2. push with acquiring operation timestamp 56
2.6.3. push if implementation...................... 61

2.6.4. pop if implementation................. oLl 62

2.6.5. Queues progress guarantees and implementation details. 66
2.7. One possible tree balancing strategycooviiiio.... 67
Conclusionson Chapter 2 ...t 72
3. Binary search tree, supporting the count range query.................... 73
3.1 Tree StruCtuIeottt e e e 73
3.2. insert and remove Operationsc.eeiureeenneeennnnnnnn 73
3.3. Determining the existence ofakeyl 81
3.4. Executing the count qUery........coviiiiiiiiii i, 85
3.4.1. Query execution algorithm 85
34,2, USINg CAS =2 ittt et et 87
3.4.3. Without using CAS=2 ...ttt 88
Conclusionson Chapter 3ot 91
4. Different applications of the algorithm 92
4.1. Binary search tree with collectrangequery...................... 92
4.2. Number of pointsinarectangle, 93
4.3. Sorted key-value map with range add and range sum operations. 95
Conclusionson Chapter4 ...t 97
5. Practical results and future work.......... 98
5.1. Linearizability checking in polynomial time 98
5.2. Benchmarkresults............ ... i 100
5.3, Future Work 101
5.3.1. Collaborative rebuilding i, 101
5.3.2. O(log N) tree balancing strate@ies.cooverernen... 101

5.3.3. Executing insert (k) and remove (k) operation without
checking, whether key k exists inthetree..................... 102
5.3.4. Getting rid of EmptyNode structure 103
CONCLUSION .. e e e 105

REFERENCES . .. e 106

INTRODUCTION
The purpose of this work is to develop an algorithm for executing lock-free
range queries on Hierarchical Data Structures (hereinafter, HDS) in an asymptoti-

cally optimal manner.

The following goals are to be achieved in order to complete the work:

1. Get familiar with existing methods of implementing concurrent range queries
on HDS and outline the drawbacks of these methods.

2. Develop a general algorithm for executing asymptotically optimal lock-free
range queries on HDS.

3. Apply the developed algorithm to implement binary search tree, supporting
asymptotically optimal count range query.

4. Develop a method to test such HDS implementations for correctness (i.e., lin-
earizability) in polynomial time and test our binary search tree implementation
for correctness.

5. Show how to apply the developed algorithm to a broad class of HDS and a

wide variety of range queries.

The importance of the topic is justified by the widespread applicability of
range queries in modern Database Management Systems (DBMS) and other data
storage and processing systems. However, existing methods that support range
queries suffer from one or more of the following drawbacks:

— Lack of progress guarantees. Such implementations are usually lock-based,
and do not satisfy lock-freedom or obstruction-freedom.

— Asymptotic sub-optimality. Many range queries (especially, the aggregating
ones) can be executed in sub-linear (e.g. logarithmic) time in the sequen-
tial implementation. One example of such a query is count (Set, min,
max) = | { x € Set : min < x < max } |—thenumberofel-
ements of the dataset, located in the range [min; max]. Using a relatively
simple technique (that is described in our work later), the count query can
be executed in O(log N) time on a binary search tree where N is the size of
the tree. However, many concurrent range query algorithms can only execute
such queries in O(]ANS|) time where |AN S| is the number of elements in
the range. Thus, being O(N) in the worst case.

— Lack of parallelism. Many data structures, despite allowing range queries,

that are both lock-free and asymptotically efficient, allow only one modifying

(e.g. insert or remove,) operation at a time to be completed successfully,
thus, effectively making the data structure sequential.

The innovative nature of this work is justified by the absence of an algorithm,
that can execute concurrent range queries on HDS, while not suffering from any of

the aforementioned drawbacks. This work presents such an algorithm.

The practical significance of this work 1is justified by the possibility to apply
the developed algorithm in database management systems. Such DBMS will be able
to execute range queries in a more optimal way (e.g., with higher throughput and

lower latency), than without the proposed algorithm.

This work i1s structured the following way:

— The first chapter contains the review of the subject area. We present the no-
tion of Hierarchical Data Structures, algorithms for sequential range queries
on HDS, concurrent correctness criteria, progress guarantees in a concurrent
environment, and possible applications of range queries in database manage-
ment systems. Also, we consider known algorithms for concurrent range
queries, and show that all of them suffer from significant drawbacks.

— The second chapter contains general description of the concurrent range query
execution algorithm. In this chapter we describe the algorithm in general
terms, without applying it to any specific data structure. In particular, this
chapter contains the description of the heart of the algorithm — the queue
propagation framework.

— The third chapter contains description of the algorithm in application to one
particular data structure — binary search tree with count (min, max) op-
eration.

— The forth chapter briefly describes the applicability of our algorithm to other
HDS. In this chapter, we do not describe the application of our algorithm to
each considered data structure in details. Instead, we briefly describe the HDS
and the range query, the algorithm has to work with, and present an idea of
how this range query can be efficiently implemented.

— The fifth chapter presents practical result and discusses future work. In par-
ticular, this chapter contains description of the method, that can be used to

verify executions of the algorithm for correctness in polynomial time. We

apply this method to the binary search tree, described in Chapter 3, and show
that our implementation passes all tests.

CHAPTER 1. REVIEW OF THE SUBJECT AREA
1.1. Hierarchical Data Structures

We start with a notion of a Hierarchical Data Structure.

Definition 1. Hierarchical Data Structure (henceforth HDS), or a tree, is a data
structure, that consists of a set of nodes. Each node can be connected to many child
nodes, but can have no more than one parent node. All nodes, except for the one,
called the root node, have exactly one parent. Root node does not have a parent.

Moreover, HDS must not contain loops.

Figure 1 presents an example of a tree. There are: 1) node r is the root node,

2) nodes a and b are children of node r, and 3) node r is a parent of nodes a and b.

Figure 1 — An example of a tree

Figure 2 contains example of data structures, that are not hierarchical. Fig-
ure 2a presents a data structure, that has two nodes without a parent (nodes a and
b), while a hierarchical data structure can contain only one such node. Figure 2b
presents a data structure with a loop, consisting of nodes a, b, and c. Figure 2c
presents data structure, in which node ¢ has two parents simultaneously: nodes a
and b.

10

% & (¢) Data structure, in

(a) Data structure with two root (b) Data structure with which a node has two
nodes a loop parents

Figure 2 — Examples of data structures, that are not trees

Trees are defined in [43].

Multiple kind of trees have been studied in the literature. Amongst the most
useful ones we may outline binary search trees [19] (Fig. 3), quad trees [9] (Fig. 4)
and tries [4] (Fig 5). Algorithm, that we will design and implement in that work,
will work with all of them, and with various other kind of trees.

Figure 3 — Example of a binary search tree

11

o @

ol e D@
e @O0

Figure 4 — Example of a quad tree

W v
S
0 O O
o/ 1

OO O A

s OO
SO O
L DIl L

Figure 5 — Example of a trie

1.2. Range queries
Definition 2. Consider a tree, storing multiple data items. We call a query,
retrieving or modifying a single data item, a scalar query; and a query, involving

multiple consecutive (by value) data items, a range query.

Consider a sorted set, stored in a binary search tree. In this case, the following
queries are scalar:
— insert (key) — if key exists in the data set, do not modify the set and

return false. Otherwise, add key to the set and return true.

12

— remove (key) —if key does not exist in the set, do not modify the set and
return false. Otherwise, remove key from the set and return true.
— contains (key) — return true if the set contains key, false, other-

wise.

And the following queries are range queries:

— count (min, max) — returns the number of keys fromthe [min; max]
interval.

— collect (min, max) — returns an array of set keys from the [min;

max] interval.

1.3. Efficient sequential algorithm for range queries
Many range queries, especially the aggregating ones, can be executed in sub-
linear (e.g. logarithmic) time. Consider, an example of such range query:
count (Set, min, max) = | { x € Set : min < x < max } | —
the number of keys, located in the range [min; max]. It can be calculated in
O(log N) time on binary search trees (where NV is the number of keys in the set),

using the following algorithm.

1.3.1. Tree structure

Let us begin with a couple of definitions:

Definition 3. A node is a leaf if it has no children.

Definition 4. A node is an internal node if it is not a leaf.

Definition 5. External binary search tree (Fig. 6a) is a binary search tree, in
which keys are stored only in leaf nodes. In contrast, internal nodes store only auxil-
iary information, used for query routing (e.g., the minimal key, that might be located
in the right subtree).

Definition 6. Internal binary search tree (Fig. 6b) is a binary search tree, in

which keys are stored in both leaf nodes and in internal nodes.

13

-
Store a
right
subtree

minimums
Store
O O [OSNC
w0 00 © ®
data
(-

(a) External binary search tree (b) Internal binary search tree

Figure 6 — Different types of search trees

To explain how to implement the count query, we consider external bi-
nary search trees. Each internal node will store Right Subtree Min —
the minimal key, that might be located in the right subtree. All keys less than
Right Subtree Min should be stored in the left subtree, and, thus, all scalar
queries (insert, remove and contains) on such keys are redirected to the left
subtree. Similarly, all keys greater than or equal to Right Subtree Min should
be stored in the right subtree, and, thus, all scalar queries on such keys are redirected
to the right subtree (Fig. 7).

Figure 7 — Using Right Subtree Min for query routing

Moreover, each internal node will store the size of that node’s subtree —i.e.,
the number of keys in that node’s subtree. Of course, that information should be
properly maintained:

— When inserting new key k to the tree, increase by one subtree sizes of each

node on the path from the root to the leaf, storing key k (Fig. 8).

— When removing key k from the tree, decrease by one subtree sizes of each

node on the path from the root to the leaf, storing key k (Fig. 9).

14

Figure 8 — Maintaining subtree sizes on node insertion

Figure 9 — Maintaining subtree sizes on node removal

15

Definition 7. We call additional information, stored in tree nodes and required
for fast range queries execution, augmentation values.
For example, subtree sizes are augmentation values, required for asymptoti-
cally optimal execution of the count range query.
Note, that different range queries may require different augmentations in order
to be executed asymptotically optimal. In Chapter 4 we shall describe augmenta-
tions, required for fast execution of different range queries.

1.3.2. Executing the count query asymptotically optimal
To implement the count query in an asymptotically optimal way, we present
the following three functions:

— count both borders(node, min, max) — returns the number of
keys in node subtree, that are located in the range [min; max]

— count left border (node, min) — returns the number of keys in
node subtree, that are greater than or equal to min

— count right border (node, max) — returns the number of keys in
node subtree, that are less than or equal to max
Trivially, count (Set, min, max) =

count both borders (Set.Root, min, max).

Let us begin with defining count both borders(node, min,
max) procedure recursively:

— If node i1s a leaf, we check whether min < node.Key < max holds. If
so, we return 1, otherwise, we return 0.

— If min > node.Right Subtree Min, then all keys from the
left subtree are less than min (since for all such keys Key <
node.Right Subtree Min holds, as guaranteed by the tree struc-
ture). Thus, all the required keys are located in the right subtree. Therefore,
we return count both borders (node.Right, min, max).

— Ifmax < node.Right Subtree Min, thenallkeys from the right sub-
tree are greater than max. Thus, all the required keys are located in the
left subtree. Therefore, we return count both borders (node.Left,
min, max).

— Otherwise, min < node.Right Subtree Min < max.

In that case, some satisfying keys may be located in the left

ner:

16

subtree, and some of them may be located in the right sub-
tree. Thus, we return count both borders (node.Left,
min, node.Right Subtree Min) +

count both borders (node.Right,

node.Right Subtree Min, max). In that case, we call node
with such a condition a fork node.

Note, that the tree structure guarantees, that all keys in the left
subtree are already less than node.Right Subtree Min and
all keys in the right subtree are already greater than or equal to
node.Right Subtree Min. Thus, we do not need to check, that
keys in the left subtree are < node.Right Subtree Min and that
keys in the right subtree are > node.Right Subtree Min —
these inequations are guaranteed to be true by the tree structure itself.
Thus, we return count left border (node.Left, min) +

count right borders (node.Right, max).

Now, we shall define count left border (node, min):
If node is a leaf, we check whether node.Key > min holds. If so, we
return 1, otherwise, we return 0.
Ifmin > node.Right Subtree Min, then all keys from the left sub-
tree are less than min. Thus, all the required keys are located in the right
subtree. Therefore, we return count left border (node.Right,
min).
Otherwise, min < node.Right Subtree Min. In that case, all the
keys from the right subtree are greater than or equal to min. Thus,
we should count all keys from the right subtree plus some keys from
the left subtree. Therefore, the answer i1s get size (node.Right) +
count left border (node.Left, min).
Size of the right subtree can be calculated easily:

— If node.Right is a leaf, the size of the right subtree is 1;

— Otherwise, node .Right is an internal node — in that case the size of

the right subtree is node .Right.Size;

We can define count right border (node, max) in the same man-

17

— If node is a leaf, we check whether node.Key < max holds. If so, we
return 1, otherwise, we return O.

— Ifmax < node.Right Subtree Min,thenall keys from the right sub-
tree are greater than max. Thus, all the required keys are located in the
left subtree. Therefore, we return count right border (node.Left,
max) .

— Otherwise, max > node.Right Subtree Min. In that case,
all keys from the left subtree are less than max. Thus, we should
count all keys from the left subtree plus some keys from the right
subtree. Therefore, the answer i1s get size(node.Left) +
count right border (node.Right, max). The size of the

left subtree can be calculated similarly to the previous case.

We show how to implement the algorithm in Listing 1 !

1 fun count both borders(node, min, max):

2 case node of

3 | EmptyNode —

4 /*

5 EmptyNode is a dummy node that contains neither key nor children.
6 We can use it to represent an empty set, for example
7 */

8 return 0

9 | LeafNode —

10 if min < node.Key < max:

1 return 1

12 else:

13 return 0

14 | InnerNode —

15 if min > node.Right Subtree Min:

16 return count both borders (mode.Right, min, max)
17 elif max < node.Right Subtree Min:

18 return count both borders(node.Left, min, max)

19 else:

20 return count left border (node.Left, min) +

21 count right border (node.Right, max)

22
2 fun get size(node):
24 case node of

25 | EmptyNode —

'In all subsequent pseudocode listings we denote shared objects (including names of fields, that may
be accessed by multiple processes) in Upper Snake Case; class names in CamelCase; local variables
in lower snake case; functions in lower snake case; Creation of a new variable is denoted by
variable name := initial value syntax; Assigning a new value to the existing variable is denoted by
variable name < new_value syntax,

18

26 return 0

27 | LeafNode —

28 return 1

29 | InnerNode —

30 return node.Size

31

32 fun count left border (node, min):

33 case node of

34 | EmptyNode —

35 return 0

36 | LeafNode —

37 if node.Key > min:

38 return 1

39 else:

40 return 0O

41 | InnerNode —

a2 if min > node.Right Subtree Min:

43 return count left border (node.Right, min)
44 else:

45 return get size(node.Right) +

46 count left border (node.Left, min)

47

4 fun count right border (node, max):

49 case node of

50 | EmptyNode —

51 return 0

52 | LeafNode —

53 if node.Key < max:

54 return 1

55 else:

56 return 0

57 | InnerNode —

58 if max < node.Right Subtree Min:

59 return count right border (node.Left, max)
60 else:

61 return get size(node.Left) +

62 count right border (node.Right, max)

Listing 1 — Implementation of the count range query

1.3.3. Time complexity analysis
Theorem 8. The time complexity of the count query is O(height).
Proof. ~ We state that both count left border and
count right border work in O(height) time. Indeed, on each tree
level both these procedures visit only one node per level, performing O(1)

operations in each visited node.

19

Let us now switch to proving the time complexity of
count both borders. At upper tree levels (higher than the fork node)
it visits one node per level performing O(1) operations in each visited node, giving
O(height) time at upper levels.

At one of the nodes (the fork node) the execution may fork: we shall call
count left border on the left subtree and count right border on the
right subtree. Note, that the execution can fork at most once and both called pro-
cedures have O(height) time complexity. Thus, at lower tree levels the procedure
also has O(height) + O(height) = O(height) time complexity. Therefore, the
total time complexity of the procedure is O(height) (Fig 10).

—

O(height) @
at upper - Q

levels

O(height) Q & O(height)

at lower . at lower

levels on AN levels on
count left border & g count right border

Figure 10 — Time complexity of the count both borders procedure

+

Suppose we use balanced binary search trees with height € O(log N) where
N is the size of the tree. Thus, the count query is executed in O(log N) time.

1.4. Range queries applications
1.4.1. Spammers identification
Suppose we are developing a database for a messenger. In that case, SQL
definition of a table, that will store sent messages might look like this (Listing 2):

20

1 CREATE TABLE Messages

2 (

sender_ id INT,
receiver id INT,

send timestamp TIMESTAMP,
message text VARCHAR

N =N [} ES w

)
Listing 2 — SQL definition of the Messages table

Suppose also, that we want to identify spammers, given that database. One
possible approach is to find users, that send a lot of messages during a short time pe-
riod. To implement that approach, we should be able to answer a certain query: how
many messages has some particular user sent during some particular time period?
When written in SQL, that query might look like this (Listing 3):

1 SELECT COUNT (*)

2 FROM Messages

3 WHERE sender id = :s_id AND

4 send_timestamp BETWEEN :start ts AND :start ts + :time delta

Listing 3 — SQL query for getting the number of messages, sent by a particular user

during a particular time period

How can such queries be answered fast? We can build an ordered index on
fields (sender id, send timestamp) (Fig. 11).

s id = 15
ts = 10:05

Figure 11 — Binary search tree (BST) as an ordered index on fields
(sender 1d, send timestamp)

In such case, executing such SQL queries can be reduced to executing
a range query count (min = (:s 1d, :start ts), max = (:s 1id,

:start ts + :time delta)) ona binary search tree, serving as an ordered

21

index. In that case, the faster the BST can process such queries, the faster we can
identify spammers. Thus, we need our index implementation to process such range

queries in an asymptotically optimal manner.

1.4.2. Traffic jams identification

Suppose we are building an application, that should identify traffic jams based
on a car location information and warn drivers to change their route, if it is expected
to go through a traffic jam. In such case, a crucial part of our application would be
an algorithm, that can identify traffic jams very fast.

But what is a traffic jam? To a first approximation it is a small area, that
contains an enormous number of cars. Thus, to identify traffic jams, we must be
able to answer a certain query: how many cars are located in the specified area?
Assuming a car is a point on a plane and a search area is a rectangle (Fig. 12), we
can solve this task using range queries on R-trees [14] or k-d trees [9]. Therefore,
once again, we need our R-tree or k-d tree implementation to process such range

queries in an asymptotically optimal manner.

Figure 12 — Traffic jams identification problem

Thus, as can be seen, in both above-described cases the quality of our appli-

cation directly depends on our ability to perform efficient range queries on trees.

22

1.5. Execution model

We consider the standard concurrent system model with a set of n processes
2 {p, }* | that work asynchronously and each of which executes its own sequence
of operations.

Process communicate with each other by executing operations on objects, lo-
cated in the shared memory. Basic shared objects (called registers) provide atomic
read/write operations. Moreover, they can provide atomic read-modify-
write operations, like compare-and-swap [38], fetch-and-add [40],
test-and-set [42].

Amongst all read-modify-write operations, the most relevant for us
is compare-and-swap (or compare—-and-set, or CAS). This operation has
three arguments: register, the expected value and the new value. CAS atomically
checks, whether the value of the register equals to the expected value. If so, CAS
sets the value of the register equal to the new value and returns t rue. Otherwise, it
lefts the register value unmodified and returns false. The CAS operation can be
specified in the following pseudocode (Listing 4):

fun cas(Register, expected value, new value):

1

2 atomically:

3 cur value := Register

4 if cur value = expected value:
5 Register < new value

6 return true

7 else:

8 return false

Listing 4 — Pseudocode for the CAS operation

We can use basic shared objects to build more complex shared objects, rep-
resenting different concurrent data structures. For example, we can use a collection
of read/write/CAS registers to build a concurrent queue [27] or stack [35].

Moreover, each process p; has access to an arbitrary set of local objects, on
which only p; can execute operations. If an object Ob7j is local to process p;, only
the process p; has access to it and can execute operations on Obj (Fig. 13).

2Hereinafter terms ‘‘process’” and ‘‘thread’’ are used interchangeably: in the context of this work they mean the
same.

23

Process 1
local objects

Shared memory

Process 1

Shared
object M

ProcessN|

Process N
local objects

Figure 13 — Concurrent system model

We assume that the processes work asynchronously, each with its own speed,
without synchronizing neither their pace nor the number of operations executed.
Moreover, each process can be suspended indefinitely by the underlying (e.g., OS)

scheduler.

1.6. Concurrent correctness criteria

Consider an execution of a program, where two operations:
Set.insert (5) and Set.contains(5) are performed concurrently.
Suppose the former request returns true (i.e., 5 was inserted to the set) and the
latter request returns false (i.e. 5 did not exist in the set). How can one tell,
whether the code works correctly or not?

More formally, consider a concurrent implementation of a data type 7. We
want to have a correctness criteria, that will tell us, whether this concurrent imple-

mentation is correct (in some sense) or not.

24

Before we can get to the formulation of correctness criteria, we should give

additional definitions.

Definition 9. A low-level history (or an execution) is a finite or infinite se-
quence of primitive steps: invocations and responses of high-level operations, in-
vocations and responses of primitives on the shared registers (reads, writes, etc.).
We assume that executions are well-formed: no process invokes a new primitive,
or high-level operation before the previous primitive, or a high-level operation, re-
spectively, returns or takes steps outside its operation’s interval.

Definition 10. A high-level history (or simply a history) of execution a on
high-level object O is the subsequence of a consisting of all invocations and re-
sponses of operations on O.

Definition 11. Two high-level histories H and L are considered equivalent iff
three conditions are met:

— They are defined on the same object O;

— H and L consists of the same set of operations;

— All operations in L have the same input and the same output as the corre-
sponding operations in H,

Definition 12. High-level history L is said to be sequential if for any two op-
erations 01,09 € L either o; precedes 09 or vice-versa, i.e. there are no concurrent

operations in L.

Multiple correctness conditions for concurrent executions exist. We outline
some of them, from the least to the most strict.

— Serializability, described in [31, 37]. History H is said to be serializable iff
there exists sequential history L, equivalent to H. As can be seen from the
definition, operations in H can be reordered arbitrary, we only care about the
equivalence of operation results.

A concurrent implementation of a data type is serializable iff each of its pos-
sible histories is serializable.

— Sequential consistency, described in [23]. To reason about the notion of se-
quential consistency, we should consider a set of processes {p; }!"_;, executing
operations from history H.

History H 1is said to be sequentially consistent iff there exists a sequential
history L, equivalent to the history H. Moreover, history L should satisty

25

one additional requirement: if operations o; and o, were executed by the same
process p; in H and o; was executed before 0, 3, 01 should precede o, in L.
As follows from the definition, each sequentially consistent history is serial-
1zable, since serializability only requires that an equivalent sequential history
L exists, while sequential consistency places additional requirements on L.
A concurrent implementation of a data type is sequentially consistent iff each

of its possible histories is sequentially consistent.

— Linearizability, described in [18]. To reason about the notion of linearizabil-

ity, we should consider — 5 (pronounced happens-before): partial order on
operations from a concurrent history H. We say, that o; —p 0y | 01,00, € H
(pronounced o0, happens-before 0-) if 01 1s completed before 0, begins. Such
operations can be causally related, i.e., 0, can be a cause of 09. If operations 0,
and o0, are executed by the same process p; and o1 precedes o, in p; execution,
01 — g 09. The happens-before relation is discussed more formally in [25].
History H 1is said to be linearizable iff there exists a sequential history L,
equivalent to the history H. Moreover, execution L should satisfy one ad-
ditional requirement: if oy —py 02, 01 should precede o, in L. Thus,
01 — g 09 = 01 —, 09 should hold.

As follows from the definition, each linearizable history is also sequentially
consistent (and, thus, serializable), since sequential consistency only requires
that ordering of operations from a single process should be preserved in L,
while linearizability requires, that ordering of all causally related operations
(including operations from a single process) should be preserved in L.

A concurrent implementation of a data type is linearizable iff each of its pos-

sible histories is linearizable.

1.7. Progress guarantees

Consider a simple lock-based concurrent algorithm (Listing 5):

1 fun do_something concurrent () :

2

3

4

Mutex.lock ()
do_something ()

Mutex.unlock ()

Listing 5 — An example of a simple lock-based algorithm

Consider the following sequence of actions:

3*Note, that for each pair (01, 02) of operations, executed by a single process p;, either o1 precedes oo or vise-versa,
since a single process always has sequential behaviour, even in a concurrent environment

26

1. Processes P and R are willing to execute the operation
do something concurrent at the same time.

2. Process P manages to acquire the mutex first, process R has to wait for the
mutex to be released.

3. Process P is suspended by the operating system.

In that case, neither P nor R is able to execute the operation: P is suspended
by the OS and R has to wait until P finishes the operation execution and releases the
mutex (which may take arbitrary long, given that P is suspended). Therefore, the
whole system does not achieve any progress at all.

To prevent such situations from happening, we should design algorithms so
that they guarantee progress even in the presence of scheduler-initiated suspends
and arbitrary processes speed.

Multiple progress guarantees have been studied and described in the literature.
We outline some of them from the most relaxed one to the most strict.

— Obstruction-freedom, described in [17]. This progress guarantee requires,
given that all system processes {p; };_; .y, except for the one — p;, are
suspended, p; can finish its execution within a bounded number of steps.
Note, that the lock-based algorithm, described in the beginning of the section,
is not obstruction-free. Indeed, even when all processes except R (thus, only
the process P) are suspended, R cannot finish its execution within a bounded
number of steps, because it is waiting for the mutex to be released.

— Lock-freedom, described, e.g. in [34]. This progress guarantee requires that at
least one non-suspended process should finish its execution within a bounded
number of steps.

Note that each lock-free algorithm is also obstruction-free. Indeed, suppose

that all processes, except for p; are suspended. Since the algorithm is lock-

free, at least one non-suspended process should finish its execution within a

bounded number of steps. After suspending all but one processes, we have

only one non-suspended process — p;. Therefore, p; will finish its execution
within a bounded number of steps, therefore, the algorithm is also obstruction-
free.

— Wait-freedom, described in [16]. This progress guarantee requires, that all
non-suspended processes should finish their execution within a bounded num-

ber of steps.

27

Indeed, each wait-free algorithm is also lock-free, since lock-freedom requires
at least one non-suspended process to finish its execution within a bounded
number of steps, while wait-freedom guarantees, that all non-suspended pro-

cesses will do so.

1.8. Existing solutions
1.8.1. Lock-based solutions
The easiest and the most obvious way to implement a concurrent data structure
is to protect a sequential data structure with a lock, or mutex (Fig. 14) to guarantee
mutual exclusion [24] to the protected data structure. However, such construction
is not lock-free (it is not even obstruction-free) and suffers from the stagnation, as
described in Section 1.7. Moreover, since a lock allows only one process to work
with the data structure at a time, the throughput of the resulting construction will be

very low and the resulting construction will not scale.

Figure 14 — Sequential data structure, protected with a lock

1.8.2. Linear-time solutions
A number of papers [2, 5] address the issue of executing lock-free range
queries on concurrent trees. However, the aforementioned papers address only the
collect (min, max) query, returning the list of keys, located within a range
[min; max]. All other range queries are proposed to be implemented on top
of the collect query. For example, the count query can be implemented as

count (min, max) = collect (min, max).length().

28

This approach suffers from a major drawback: the collect query is exe-
cuted in time, proportional to the length of the resulting list. Thus, for wide ranges,
the query is executed in O(N) time, since for wide ranges the result contains almost
all the keys from the tree.

Thus, all range queries, implemented on top of the collect query, have
O(N) time complexity. However, this implementation is not asymptotically ef-
ficient: e,g, the count query can be executed in O(log V) time in a sequential
environment instead of O(V), as was shown in Section 1.3.

Therefore, despite being lock free, this method does not guarantee time ef-
ficiency, and thus cannot be used in environments, where low request latency is

required.

1.8.3. Solutions based on the Universal Construction

These solutions are based on persistent data structures [41]. Each modifying
operation (e.g. insert or remove) creates a new version of the data structure
without modifying the existing one. In order to reduce time and memory consump-
tion, for a lot of persistent data structures the new version shares most of its nodes
with the old version.

For example, persistent trees can be implemented using path-copying
method [26]. This method merely copies each node on the path from the modified
(e.g., inserted or removed) node to the root (Fig. 15), achieving O(log N) copied

nodes in balances trees.

29

insert(e)

—>

Figure 15 — An example of a persistent tree with path-copying. insert operation
creates new version of the data structure instead of modifying the existing one, the
new version shares most of its nodes with the old version

The basic idea of the Universal Construction, proposed first by Herlihy [16],
is to store pointer to the root of the current version of the persistent data structure in
the read/CAS register. Read-only queries (e.g. contains or count) on such
data structures can be implemented very easily, no matter how complex are they:
we just read the pointer to the latest version of the data structure and execute the
query on it. Since the data structure is persistent, other processes cannot modify the
fetched version, thus, it is completely safe to execute arbitrary read-only logic on the

fetched version. For example, the count query can be implemented the following

way (Listing 6):
1 fun count (Set, min, max):
2 /k
3 Other read-only operations (e.g. contains) can be
4 implemented the same way
5 *//
6 cur_ root := Set.Root Pointer
7 result := sequential count (cur_root, min, max)
8 return result

Listing 6 — Universal Construction-based implementation of a count query

Update queries (e.g. insert or remove) are a bit more complex and have
to go through the following steps:

30

1. Fetch cur root — the root of the current version of the data structure by

reading the root pointer.

. Obtain new root — the root of the new version by executing the modifica-

tion operation on the current version. Since the data is persistent, the current

version is left unmodified.

. Use CAS (&Root Pointer, cur root, new root) to atomically

change the current version to the new version. If the CAS returns true, it
means that we have successfully applied the modifying operation. Otherwise
(if the CAS returns false), we conclude that some other process has already
changed the version, performing its modification operation. In that case, we

retry the whole operation from the very beginning, i.e., from step (1).

For example, insert operation can be implemented the following way (List-

ing 7):

1 fun insert (Set, key):
/*
Other modification operations (e.g. remove) can be

implemented the same way
*/
while true:
cur_root := Set.Root Pointer
new root := persistent insert (cur root, key)
if CAS(&Set.Root Pointer, cur_root, new_root):
return

/* Otherwise, retry the whole operation from the very beginning */

Listing 7 — Universal Construction-based implementation of the insert operation

This solution is lock-free, since each unsuccessful CAS indicates that some

other process has successfully executed its operation (and changed the root pointer

using CAS). The Universal Construction can even be implemented with a wait-free

progress guarantee, as shown in [16].

However, despite being lock-free (or even wait-free) this solution suffers from

a major drawback. Suppose we are executing multiple concurrent modification op-

erations. Only one of them can be finished successfully, while others have to retry

(Fig 16). To better understand the drawback, consider the following sequence of

actions:

1. Process P tries to execute the operation insert (2), fetches the current root

pointer (RP);

31

2. Process Q tries to execute the operation remove (5) , fetches the current root
pointer (RP);

3. Process P obtains the new version of the data structure (root pointer is RPp),
with key 2 inserted to the set;

4. Process Q obtains the new version of the data structure (root pointer is RP),
with key 5 removed from the set;

5. Process P successfully executes CAS (&Set.Root Pointer, RP,
RPp);

6. Process Q tries to execute CAS (&Set.Root Pointer, RP, RPg) but
fails to do so, because Set .Root Pointer now contains RPp. Process Q
has to retry the whole remove (5) operation from the beginning;

V) S
(,})‘Q/ version: 1 %
CAS executed @ @O
successfully | A@/
S
2/
version: 2 % . J
) T
Have to ret [OAG CAS executed
the removgy J By unsuccessfully
operation
(-

Figure 16 — Only one of multiple concurrent modifying operations can be executed
successfully, the others have to retry

Therefore, all modification operation are applied sequentially, one after an-
other, making the data structure effectively sequential for modifications. This
greatly reduces the throughput of the overall data structure and dramatically limits

the scalability. Thus, Universal Construction-based data structures cannot be used

32

in situations, when concurrent updates must be processed concurrently, instead of

being processed one after another.

1.8.4. Solutions, based on augmented persistent trees

Sun, Ferizovic and Belloch [33] addressed the problem of executing range
queries on persistent trees. They proposed augmenting each node of a persistent
tree with an arbitrary value, that can be used to execute the range query faster (for
example, the count query can be executed efficiently if each node of the tree is
augmented with the size of its subtree).

However, the paper does not propose the method of executing concurrent op-
erations on augmented data structures — only the method to execute a large batch
of operations in parallel, e.g., an insertion of a batch of keys to the data structure (or
a removal of a batch of keys from the data structure) using fork-join parallelism to
speed up the execution.

Therefore, in some cases this method simply cannot be used — for example,
when updates do not come in large batches. In cases, when there is a large num-
ber of concurrent single-value updates instead of a small number of batch updates,
following sequentially, one after another, we cannot use augmented persistent trees
as-is.

We can use various combining techniques [1, 11] to form large batches of up-
dates from individual concurrent updates (Fig. 17). However, combining techniques
increase individual operation latency and thus they are not acceptable in settings,

where low operation latency is required.

Additional operation latency

. . Time

/(- 7 ==

Op: Op2 Opn~ _
apply in parallel

3
>

Figure 17 — Forming batches of updates from individual concurrent updates

Conclusions on Chapter 1
In this chapter, we have performed a review of the subject area. We have re-
viewed the notion of a tree, the notion of range queries, along with the sequential

33

time-efficient algorithm for execution of the count range query. We glanced over
some examples of how efficient range queries can be used in modern databases.
Also, we reminded the basics of concurrent computing: the notion of concurrency,
along with concurrent correctness criteria, and concurrent progress guarantees. Fi-
nally, we studied modern solutions to the problem of executing range queries on
concurrent trees and made sure, that all actual solutions suffer from various draw-

backs, which we ought to overcome in this work.

34

CHAPTER 2. GENERAL DESCRIPTION OF THE ALGORITHM
2.1. Concurrent solution: the main invariant
The main problem with the sequential algorithm, described in Section 1.3, is
that in a concurrent environment it will be incorrect. Indeed, each modifying op-
eration (e.g. insert or remove) should modify not only the tree structure, but
the augmentation values (e.g., subtree sizes) too. Thus, augmentation values may
become inconsistent with the tree structure (Fig.18). In that case, the process exe-
cuting a count query is not able to execute it correctly, given such an inconsistent

view of the tree.

Figure 18 — Tree structure is inconsistent with the augmentation value: while both
leaves have already been removed from the tree the subtree size is still two.

Therefore, the main purpose of our concurrent solution is to get rid of such
situations by ensuring that all operations are executed in a particular order. We will
enforce a particular execution order by maintaining operation queue in each node.

Consider an arbitrary node v and its subtree vs. At v we maintain operations
queue, that contains descriptors of operations to be applied to vs (Fig. 19). These
operations can, for example, insert a key to vs or remove a key from vs. We
maintain the following invariant: operations should be applied to vs in the order,

their descriptors were added to v queue.

35

@)
©
v

@)
§©)
N
v

@)
o
w

VS A

—

Figure 19 — Node v contains operations queue with descriptors of three operations:
Op;, Op, and Op5. These three operations should be applied to vs in the order of
descriptors in the queue: first Op,, then Op,, and, finally, Op,

Note, that the aforementioned invariant can be applied to the root node too:
indeed, since the whole tree is just the root’s subtree, operations should be applied to
the tree in the order their descriptors were added to the root operation queue. Thus,
the order, in which operation descriptors are added to the root operation queue, is
exactly the linearization order, in which the operations should seem to be applied
to the tree.

Thus, we may use the operation queue at the root node to allocate timestamps
for operations. Timestamp allocation mechanism should provide the following guar-
antee: if descriptor of operation A was added to the root queue before descriptor
of operation B, then timestamp (A) < timestamp (B) should hold. In Sec-
tion 2.6.2, we will show how such timestamp allocation mechanism can be imple-
mented. Since, the order, in which operation descriptors are added to the root queue,
equals to the linearization order, operations should linearize in the order, determined
by their timestamps. For example, operation A should precede operation B in the
sequential execution I from the linearizability definition (that is described in Sec-
tion 1.6). Therefore, the following three orders will be the same:

— The linearization order L.
— The timestamp order: operation A precedes operation B in the timestamp order

if timestamp (A) < timestamp (B).

— The order, in which operation descriptors were added to the root queue.

As described in Section 2.2, system processes want to examine timestamps

of different operations during the operation execution. To allow them do so, we

36

include the operation timestamp in the operation descriptor and store it in the

descriptor.Timestamp field.

2.2. Operation execution: overview

At first, we start with unbalanced trees. One possible balancing strategy via
subtree rebuilding is discussed in Section 2.7, while studying other concurrent bal-
ancing strategies we leave for the future work.

The execution of an operation Op by a process P (we call process P the initia-
tor process) begins with inserting the descriptor of Op into the root queue and ob-
taining the operation timestamp. In Section 2.6.2, we describe, how the root queue
with lock-free timestamp allocation may be implemented.

After that, the initiator process starts traversing the tree downwards, from the
root to the appropriate lower node, i.e. to the node, at which the operation (e.g.,
insertion of a new data item, or removal/modification of an existing one) should be
performed (Fig. 20).

&

Figure 20 — Execution of operation insert (31) in an external binary search tree
consists of traversing the tree from the root downwards to the leaf, where key 31
should be inserted.

Definition 13. In each visited node v some actions should be performed, in
accordance with the meaning of the operation Op being executed. For example, size
of v subtree or pointers to v children should be changed during insert or remove
operation. We call the process of performing these actions execution of operation
Op in node v.

As stated in Section 2.1, operations should be applied to v subtree in the order

operation descriptors are inserted to v queue. Thus, if the descriptor of Op is not

38

located at the head of v queue the initiator process P will have to wait for the ability
to begin executing Op in node v (Fig. 21). The execution of Op in node v cannot

begin until execution of all preceding operations in node v is finished.

Can be

executed

—
Do > D —™ — Op —>
L J

Have to wait

Figure 21 — Process P has to wait for ability to begin executing Op in node v, since
only the operation Dy, corresponding to the descriptor at the head of v queue, can
be executed in v.

The algorithms seems to be blocking, but that is where the Aelping mechanism
comes to the rescue. Instead of simply waiting for the Op descriptor to move to
the head of the queue, P helps executing in node v the operation from the head of
v queue — Dy in the example above. Thus, even if the initiator process of Dy is
suspended, the system still achieves progress.

As discussed later, while helping to execute operations Dg, Dy, ... in node
v the process P removes their descriptors from the head of v queue and inserts
them to the appropriate child queues. Thus, while helping other processes execute
their operations in v, P moves Op descriptor closer to the head of v queue. Once P
helps all preceding operations to finish their execution in node v, it can finally begin
executing Op in V.

The process of executing an operation Op in a node v consists of the following
actions:

— Determine the set of child nodes C, in which Op execution should continue.

For example, execution of the count query on an external binary search tree

may continue in either single child or both children: consider the explanations

in Section 1.3 — the execution continues in both children iff node v is a fork

39

node and in a single child (either left or right) otherwise. In contrast, the
insert operation should always be continued in a single child, since any
key should be stored in exactly one leaf of the tree.
— For each child ¢ from the set C:
1. Modify c state (e.g., c subtree size), if necessary;
2. Insert Op descriptor to c operations queue, thus allowing Op to continue
its execution at lower levels of the tree;

— Remove Op descriptor from the head of v queue.

Note, that in the process of executing operation Op in node v the said operation
only modifies states of v children, not v itself. Thus, no operation can ever modify
the root state, since the root is not a child of some other node. We shall overcome
that by introducing the fictive root node (Fig. 22). The fictive root does not contain
any state and has only one child (no matter how many children each tree node should
have according to the tree structure) — the real tree root. The only purpose of the
fictive root is to allow operations to modify the state of the real root. The state of the
real root can be modified by operation Op while Op is being executed in the fictive
root, since the real root is the child of the fictive root.

Fictive
root

Tree A

Figure 22 — The fictive root of the tree with no state and the only child: the real root

40

In the latter sections we will describe, how an operation Op can be executed
in a node v: either by using CAS-N (Section 2.4) or without it (Section 2.5).

Since we allow processes help each other, operation Op, initiated by process
P, in any node v can be executed by some other (helper) process. Thus, we need to
provide a mechanism for the process P by which it distinguishes between the two
following situations:

— Operation Op has not yet been executed in node v. Thus, the descriptor of
Op s still located somewhere in v queue. In that case, P needs to continue
executing operations from the head of v queue in node v.

— Operation Op has already been executed in node v. In that case, P can proceed
to execute Op in lower nodes from the subtree of v.

We can use timestamps to distinguish between these two situations. We de-
scribe that usage of timestamps with formulating and proving timestamps increasing
property.

Theorem 14. In each queue, operation timestamps form a monotonically in-
creasing sequence. More formally, if at any moment we traverse any queue Q from
the head to the tail and obtain t 1, t,, ... t, — a sequence of timestamps of descrip-
tors, located in Q, then t; < t, < ... < t, will hold.

Proof. We prove the theorem by the induction on the tree structure. As the
induction basis, we will show that the statement holds for the tree root. As the
induction step, we will prove that, given that the statement holds for some node
pv, the statement holds for v — an arbitrary child of pv. Thus, the statement is
guaranteed to hold for each tree node.

— As requested in Section 2.1 and as explained in Section 2.6.2, the root queue
provides timestamp allocation mechanism with the following guarantees: if
descriptor of operation A is inserted to the root queue before descriptor of
operation B, then timestamp (A) < timestamp (B) holds. Thus, the
induction base is proven.

— Consider non-root node v and its parent pv. According to the induction as-
sumption, the statement holds for pv. Thus, at pv queue descriptor times-
tamps form a monotonically increasing sequence: t; < t, < ... < t.
Consider descriptors D; and D (Fig. 23), such that:

— Both D; and D5 should continue their execution at v;

— timestamp (D;) = t;;

41

— timestamp (Dy) = ty;
— D; is located closer to the head of pv queue than D5 (therefore, D; was

inserted to pv queue prior to Dy) — thus according to the induction

assumption t; < tj.

)Dj> _)Dn

Figure 23 — Descriptor D; 1s located closed to the head of pv queue than D, both

D; and Dy will continue their execution in v subtree

In that case, according to the algorithm, the execution of D5 in pv cannot
begin until the the execution of D; in pv is finished. Since the execution of
D; in pv includes inserting D; into v queue, the execution of D5 in pv cannot
begin until D; 1s inserted into v queue. Thus, D; is inserted into v queue prior

to D5, thus the timestamps increasing property holds for v.

As follows from that property, the initiator process P can easily learn, whether

its operation Op has been executed in node v by using the following algorithm:

1. Try toread head descriptor — the descriptor, located at the head of v

queue.
. If the queue is empty, we conclude that some other process has executed Op
in node v. Thus, P continues traversing the tree, trying to execute Op at other
nodes.

. Otherwise, P examines the timestamp of the obtained descriptor. If
head descriptor.Timestamp > Op.Timestamp, P yet again

concludes, that some other process has executed Op at node v.

4.

42

Otherwise (head descriptor.Timestamp < Op.Timestamp)
Op is still located in v queue: either at the head (if
head descriptor.Timestamp = Op.Timestamp) or some-
where closer to the tail (if head descriptor.Timestamp <
Op.Timestamp). In that case, P executes the operation, denoted by

head descriptor atnode v.

Therefore, we can implement the algorithm of executing all operations, up to

Op.Timestamp, from v queue the following way (Listing 8):

1 fun execute until timestamp (ts, v):

2

while true:

/*
Queue.peek () returns the first descriptor in FIFO order
*/

head descriptor := v.Queue.peek()

if head descriptor = nil:
return
if head descriptor.Timestamp > ts:
return
/*
execute in node changes states of v children
(in accordance with the operation, denoted by head descriptor),
pushes head descriptor to child queues,
removes head descriptor from v queue
*/

execute in node (head descriptor, v)

Listing 8 — The algorithm to execute all operations, up to the specified timestamp

ts, from v queue

Also, we should have a method to determine whether the operation execution

has been finished or not. The motivation to introduce such a method is the following

situation:

l.

wokh

Process P starts executing operation Op.

P inserts descriptor of Op to the root queue.

P is suspended by the OS.

Other processes finish the execution of Op.

After being resumed by the OS, P should be able to learn, whether Op has

already been executed or not.

We shall implement this capability by storing result pointer in each operation

descriptor (Fig. 24). This pointer will point to a specific memory location that stores

43

either the operation result (if the operation execution has been already finished —
in that case P can return that result to the caller) or ni1 (if the operation execution
has not been finished yet — in that case P should continue traversing the tree and

finish Op execution).

Operation | Operation Result
type arguments pointer
L J
T
Result or nil
D1 > D2 » D3

Figure 24 — A glance into a descriptor internals: each descriptor contains at least
operation type (e.g. insert, remove, count), operation arguments (e.g., a key
to insert or remove) and the result pointer

2.3. Ways to achieve parallelism

As was stated in Section 2.1, operations should be applied to the tree in the
order, their descriptors were added to the root descriptor queue. Therefore, one can
wonder: how can we achieve parallelism, while linearizing all operations via the root
queue? It seems, that our proposed solution is not better than the solutions, based on
the Universal Construction (see Section 1.8.3 for discussion on drawbacks of such
solutions). Our scheme has one major advantage over the Universal Construction.
As we remember, in solutions, based on the Universal Construction, execution of
modifying operation O, could be started only after the execution of modifying oper-
ation O; has been finished — otherwise, one of these operations faces unsuccessful
CAS and has to retry. In contrast, in our solution, two successful modifying opera-

tions may be executed in parallel if they are executed on different subtrees (Fig. 25).

44

Y
O
-

Y
@,
N

(= (=

Figure 25 — After being routed to different subtrees, modifying operations O; and
O, may be executed in parallel, in contrast to the Universal Construction-based
solutions

45

Note that a particular execution order, determined by the queue, is enforced
only in the root node — in the root node we execute O; before starting executing
O,. At lower tree levels, we do not enforce a particular execution order. This can
be achieved because at lower tree levels O; and Oy do not conflict with each other
anymore, since they operate on different subtrees. Thus, our logical order (in which
O, precedes OJs) does not require us to enforce a particular physical execution order
on these operations, i.e., executing O, before starting executing Os.

2.4. Executing an operation in a node via CAS-N
2.4.1. CAS-N definition and implementation
CAS-N is a powerful concurrent primitive that takes N registers, N expected
values, and N new values as an input. After that, it atomically checks, whether
Vi € [1...N] : value of i-th register equals to the i-th expected value. If so, it
modifies values of all registers, so that the value of the i-th register becomes equal to
the i-th new value, and returns true. Otherwise — if 3j € [1... N]| : value of j-
th register does not equal to j-th expected value — it leaves all registers unmodified

and returns false. The pseudocode of CAS—-N is presented on Listing 9:

1 fun multi cas(n: int, Registers: [n]Register,

2 expected values: [n]Value, new values: [n]Value):
3 atomically:

4 for i «~ 1 .. n:

5 v := Registers[i]

6 if v # expected values[i]:

7 return false

8 for i «+ 1 .. n:

9 Registers[i] < new values[i]

10 return true

Listing 9 — Pseudocode for CAS—N operation

We can use Two-Phase Locking protocol, described e.g., in [3], to implement
CAS-N the following way (Listing 10):

1 fun multi cas(n: int, Registers: [n]Register, Locks: [n]Mutex,
2 expected values: [n]Value, new values: [n]Value):
3 for i «<~ 1 .. n:

4 Locks[i].lock ()

5 v := Registers[i]

6 if v # expected values[i]:

7 for 7 « 1 .. 1i:

8 Locks[7J] .unlock ()

9 return false

10 for i <~ 1 .. n:

46

11 Registers[i] < new values([i]
12 Locks[i].unlock ()

13 return true

Listing 10 — Two-phase lock-based implementation of CAS-N

This implementation is lock-based, thus, it does not guarantee even the
obstruction-freedom (see Section 1.7 for discussion on concurrent progress guar-
antees). Moreover, it is prone to deadlocks [3] — thus, the need for an implementa-
tion, not suffering from these drawbacks, arise. Harris et al. [15] described software
lock-free implementation of CAS—-N. Feldman et al. [10] showed that there exists a
practical wait-free implementation of CAS-N. For efficiency reasons, it is possible to
implement special cases of CAS-N (e.g., CAS-2 [39]) in a hardware, making them
wait-free and extremely efficient (e.g., since the hardware implementation does dot

require dynamic memory allocation).

2.4.2. Using CAS~-N for operation execution
As was discussed in Section 2.2, execution of operation Op in node v consists
of:
— Modifying states of v children;
— Modifying v child queues — inserting Op descriptor into some of them;
— Modifying v queue — removing Op descriptor from its head;

We can do it atomically using CAS-N. To allow atomic modification
of queues with CAS-N, we shall employ persistent queues (Fig. 26). We
can simply store a pointer to the current version of node persistent queue
in node.Q Ptr register. After that, we can use CAS (&node.Q Ptr,
cur queue, new queue) or CAS-N to try to atomically modify the queue
(see Section 1.8.3 for explanation on how CAS can be used to modify persistent

data structures).

47

Queue Queue’

L J

CAS

Queue
pointer

Figure 26 — Using CAS to atomically modify persistent queues

Multiple persistent queues have been studied and described in the literature.
Bankers queue [30] is considered one of the fastest and the most memory-optimal.

Node state can be modified either: 1) the same way as queues — via stor-
ing the current state in the heap and modifying the pointer to it located in the tree
node (this method is described in more details in Section 2.5); 2) directly in the tree
node — each component of the state (e.g., subtree size) is located directly in the
tree node and modified inplace. In the last case, CAS—-N should be applied to each
component of the state.

Therefore, we can use CAS-N to atomically modify all the necessary registers:

child queue pointers, v queue pointer, and child states (Fig. 27).

Figure 27 — Using CAS-N to atomically modify child queues, parent queue, and
child states in a binary tree. Here we store the node state in the heap and store
S _Ptr — a pointer to the node state — in the node. In that case, CAS-5 is
sufficient to modify all the required registers: both child queues, both child states
and the parent queue

If CAS-Nreturns t rue we conclude that we have successfully executed Op in
node v. Otherwise, the CAS-N may return false because of any of the following
two reasons (Fig 28):

1. Other process has executed in node v the operation we are trying to execute,
including removal of its descriptor from the head of v queue (Fig. 28a).
2. Other process has inserted new operation descriptor to v queue, without exe-

cuting in node v the operation we are trying to execute (Fig. 28b).

execute(Opl) insert(Opa)
(a) cAS-N fails due to other process (b) cAS-N fails due to other process inserting
executing Op; in v new descriptor into v queue

Figure 28 — Reasons for CAS-N to return false

49

We can distinguish between these two situations by peeking descriptor from
the head of v queue. If that descriptor still denotes the operation, we are trying to
execute — we conclude, that situation (2) happened and try to execute that operation
in v one more time. Otherwise, we can conclude, that some other process executed
the operation, we are trying to execute, in node v, i.e., situation (1) happened. In
that case, we may proceed to execute the next operation from v queue or to traverse
the tree, depending on whether our initiated operation has been executed in v or not
(see Section 2.2 for details).

Thus, the algorithm executing operation op in node v using CAS-N can be
implemented the following way (Listing 11):

1 fun execute in node(op, Vv):

2 while true:

3 cur v_queue := v.Queue Ptr

4 if cur v queue.peek() # op:

5 /* another process has executed op in v */
6 return

7 new_v_dqueue := Cur_ V_queue.pop persistent ()

8

9 cas _registers := [&v.Queue Ptr]

10 cas_expected values := [cur v _ queue]

11 cas new values := [new_v_ queue]

12

13 C « /*

14 set of v children in which the execution of op should continue
15 */

16 for ¢ in C:

17 cur child state := c.State Ptr

18 new_child state := op.get modified state(cur child state)
19 cas_registers.append(&c.State Ptr)

20 cas_expected values.append(cur child state)
21 cas_new values.append(new child state)

22

23 cur_child queue = c.Queue Ptr

24 new child queue := cur child queue.push persistent (op)
25 cas_registers.append (&c.Queue Ptr)

26 cas_expected values.append(cur_child queue)
27 cas_new values.append(new_child gueue)

28

29 cas_res := multi cas(

30 n = cas_registers.length(),

31 Registers = cas_ registers,

32 expected values = cas_expected values,

33 new values = cas_new values

34)

50

35 if cas res:

36 return

37 /*

38 Otherwise, try to execute op in v

39 from the very beginning one more time

40 */

Listing 11 — Algorithm for executing operation op in node v using CAS—-N

The algorithm is lock-free since each retry means that some other descriptor

was inserted into v queue, i.e., another process executed some operation in v parent.

2.5. Execution of an operation in a node without CAS-N
Despite the fact that CAS-N provides the ability to execute an operation in
a node atomically with lock-freedom progress guarantees, this concurrent primitive
remains very inefficient due to indirections and a dynamic memory allocation. Thus,
we want to design a method to execute operations in a node without using CAS-N.
The algorithm to execute operation Op in node v consists of the following
steps:
1. Determine the set of children C, in which execution of Op should continue.
2. Traverse the set C. For each child ¢ from C:
2.1. Atomically read c state.
2.2. If c state has not been modified by Op yet, modify it. We explain how
to do it below.
2.3. Insert Op descriptor to c queue if it has not been yet inserted. We explain
in Section 2.6.3 how to do it.
3. If Op descriptor has not been yet removed from v queue, remove it. We
explain in Section 2.6.4 how to do it.

Note, that the removal of Op descriptor from the head of v queue should be
done after the insertion of Op descriptor to child queues and modification of child
states are finished. Otherwise, the execution of later operations in v may start be-
fore the execution of Op in v is finished, which may break the main invariant (Sec-
tion 2.1). Consider, for example, the following scenario:

1. Descriptors of O and O, are located in v queue and execution of both O; and

O, should be continued in v.Right (Fig. 29a).

2. Process P reads O; descriptor from the head of v queue and starts executing

O; in v: removes O; descriptor from the head of v queue before inserting it

to v.Right queue (Fig. 29b).

51

3. P is suspended by the OS.

4. Process R reads Os descriptor from the head of v queue and executes O in
v: removes it from the head of v queue and inserts it to v.Right queue
(Fig. 29¢).

5. Process P finishes executing O in v: inserts O; descriptorto v.Right queue
(Fig. 29d). Thus, the descriptors are placed in v.Right queue in the wrong
order and the main invariant is broken: O, will be applied to v.Right sub-

tree before O, despite O descriptor was inserted to v queue before O, de-

scriptor.
P local memory
f—)ﬁ
O > O2
(b) Process P removes O; descriptor from
the head of the parent queue before inserting
(a) The initial tree structure it to the child queue
P local memory
f—%
O: 01
O:
(d) Process P finishes executing O; in node
(c) Process R executes O, in v v

Figure 29 — The main invariant is broken if a descriptor is removed from the head
of the parent queue before being inserted to child queues

Note also, that actions (2) and (3) may be executed by multiple processes

concurrently. Consider the following scenario:

52

1. Descriptor of operation Op is located at the head of v queue, execution of Op
should continue at v.Left;

Processes P and Q both read Op descriptor from the head of v queue;

P and Q both try to modify v. Left state;

P and Q both try to push Op descriptor to v.Left queue;

Al

P and Q both try to remove Op descriptor from the head of v queue;

Thus, inserting the descriptor to child queues, modifying child states, and re-
moving the descriptor from the parent queue should happen exactly once, no matter
how many processes are working on the descriptor concurrently.

Exactly-once insertion to and removal from queues is handled by our imple-
mentation of concurrent queues. Queues provide two procedures:

— push_1if inserts the descriptor to the tail of the queue only if it has not been
inserted yet, otherwise, the queue is left unmodified. The implementation of

this procedure is discussed in Section 2.6.3.

— pop_1if removes the descriptor from the head of the queue only if it has not
been removed yet, otherwise, the queue is left unmodified. The implementa-

tion of this procedure is discussed in Section 2.6.4.

Therefore, in this chapter we explain on how to change the node state exactly
once and how to read it atomically.

The main problem with reading the state atomically is that it may consist of
multiple fields. To solve this problem, we do not store the state directly inside the
node (Fig. 30a) — instead, the immutable state is located somewhere in the heap
and the node will contain only one field S Ptr — the pointer to the heap location
of the state (Fig. 30b).

53

State: {
a: 38,
b: 52,
c:4

}

(b) Storing node state in a separate memory
location, while storing the pointer to it inside
(a) Storing node state inside the node the node

Figure 30 — Different methods of storing the node state

The state, located in the heap, is considered immutable and is never modified.
To modify the node state, we simply do the following (Fig. 31):
1. Create the structure, corresponding to the modified state, with an arbitrary set
of fields changed.
2. Place the modified state somewhere in the heap.
3. Change the node .S Ptr so than it points to the modified state.

State: {
a: 38,
b: 52,
c:4

Figure 31 — The modification of the node state via the creation of a new state
structure and change of S Ptr

To read the state atomically, we simply read the S Ptr register. After that,
we can safely access any field from the state structure, pointed at by the fetched
pointer, without worrying that the state structure is being modified concurrently by
another process. Since the structure is immutable, it can never be modified by an-

other process.

Now, we return to the problem of modifying the state exactly once. In the
state we shall store one additional field: Ts Mod — timestamp of the operation,
that was the last to modify the state. Thus, if the operation Op is willing to modify
node v state, we should first read the current v state and acquire the last modification

timestamp.

— If Ts Mod > Op.Timestamp then v state has been already modified by
Op. In that case, we simply do not try to modify v state according to Op

anymore.

— Otherwise, we create a new state (with Ts Mod
try to change the state pointer using CAS (&v.S Ptr, cur state,
new state). We then go to the next step, no matter what was the CAS
result. If the CAS returned t rue — we have successfully modified the state,
otherwise (if the CAS returned false) some other process has already mod-

54

Change
pointer

State: {
a: 39,
b: 52,
c:1

ified the state according to Op.

Op.Timestamp) and

55

Thus, the state is modified in accordance with each executed operation exactly
once. Therefore, the algorithm can be implemented the following way (Listing 12):

1 fun execute in node (op, V):

2 C <« /* set of v children in which execution of op should continue */
3 for c in C:

4 cur state := v.State Ptr

5 if cur state.Ts Mod < op.Timestamp:

6 new state := op.get modified state(cur state)

7 new state.Ts Mod < op.Timestamp

8 CAS (&v.State Ptr, cur state, new state)

9 Cc.Queue.push if (op)

10 v.Queue.pop_ if (op)

Listing 12 — Algorithm for executing operation op in node v without using CAS-N

2.6. Operation queue implementation
2.6.1. Queue structure
We implement all the necessary operations on a slightly modified version of
the Michael-Scott queue [27].
We maintain the descriptor queue as a linked list of nodes. Each node contains
two fields (Listing 13, Fig. 32):
— Data, that stores the operation descriptor.
— Next, that stores a pointer to the next node in the queue, or ni1 if that node

is the last in the queue.

Data /
nil

Next

Figure 32 — Queue node structure

1 type QueueNode = struct ({
2 Data: OperationDescriptor,
3 Next: QueueNode*

4}

Listing 13 — Queue node structure

56

For each queue we maintain two pointers: Tail, that points to the last node
of the queue, and Head, that points to the node before the first node of the queue
(Fig. 33). Note that the node at Head pointer does not store any data, residing in the
queue. This node is considered dummy and only the node at Head . Next pointer

contains the first real descriptor in the queue.

Head Tail

nil

Figure 33 — Queue structure

An empty queue consists of a single dummy node, pointed at by both Head
and Tail pointers (Fig. 34).

Head Tail

nil

Figure 34 — Empty queue structure

2.6.2. push with acquiring operation timestamp
As discussed in Section 2.1, the operation queue in the root node should pro-
vide timestamp allocation mechanism, with the following guarantees: if the descrip-
tor of operation A was added to the root queue before the descriptor of the operation
B, then timestamp (A) < timestamp (B) should hold.
Note, that the descriptor becomes visible to all the system processes at the
moment it is added to the root queue, and, as described in Section 2.2, the system

processes examine timestamps of all descriptors in order to execute their operations.

57

Thus, the timestamp should be written to the descriptor.Timestamp field
before the descriptor is added to the root queue.
As was stated in Section 2.6.1, we can use a slight modification of Michael-
Scott queue [27] to implement the timestanp alocation mechanism for the root queue.
The algorithm can be structured the following way:

1. Read cur tail := Queue.Tail — the current queue tail to learn the
maximal allocated timestamp and start inserting the new descriptor to the tail
of the queue. At this moment, multiple possible situations can happen:

— The queue is not empty and the tail points to the latest added descriptor
(Fig. 35).

Head Tail

nil

Figure 35 — The queue is not empty and the tail points to the latest added descriptor

Thus, that descriptor contains the maximal timestamp, allocated
by now and we can learn that timestamp by simply reading
cur tail.Data.Timestamp

— The queue is empty, but at least one node has been added to it since the
beginning of the execution (Fig. 36). In that case, cur tail points to
the node that was the last removed from the queue, as guaranteed by the

Michael-Scott queue structure [27].

58

Head Tail

nil

Figure 36 — The queue is empty but it was non-empty at least once

Therefore, the node, pointed at by cur tail, is the last node added to
the queue, thus it contains the maximal allocated timestamp. Therefore,
as in the previous case, we can learn the maximal allocated timestamp
by reading cur tail.Data.Timestamp.

— The queue is empty and not a single node has been inserted to it since the
beginning of the execution. In that case, the cur tail points at the
dummy node, as guaranteed by the Michael-Scott queue structure [27]
and stated in Section 2.6.1 (Fig 37).

Head Tail

nil

Figure 37 — The queue has always been empty

We may consider zero to be the maximal timestamp, allo-
cated at the beginning of the execution. Thus, we construct
a dummy node so that it contains zero as its timestamp (i.e.

Dummy Node.Data.Timestamp = 0). Thus, yet again

59

we we can learn the maximal allocated timestamp by reading
cur tail.Data.Timestamp

— The queue is not empty and the tail does not point to the latest added de-
scriptor (Fig. 38). This can happen if another descriptor is being inserted

to the queue concurrently.

Head Tail

Figure 38 — The queue is not empty and the tail does not point to the latest added
descriptor

In that case, as described later, we retry the whole procedure from
the very beginning, i.e., from step (1). Thus, it does not mat-
ter, which timestamp we learn — for example, we may choose

cur tail.Data.Timestamp to be the learned timestamp.

Therefore, in all possible cases we can learn the maximal allocated timestamp
by reading cur tail.Data.Timestamp.

2. After learning the maximal allocated timestamp, we set
new descriptor.Timestamp equal to the the learned maximal
timestamp incremented by one. Note, that this write operation is not
concurrent with any read or write operation on new descriptor.
Indeed, writing new descriptor.Timestamp is performed only by
the initiator process on the new descriptor before it is inserted to the
queue, and thus before the new descriptor becomes visible to other
processes.

3. We try to add the new descriptor to the tail of the queue the same way
we insert elements to the Michael-Scott queue: we simply try to perform
CAS (&cur tail.Next, nil, new node). We can have two pos-
sible outcomes of that CAS:

— Ifthe CAS returns fal se, then some other process successfully inserted
its descriptor to the tail of the queue thus modifying cur tail.Next.

In that case, we help the successful process finish its insertion. We be-

Head

60

gin with reading other process tail := cur tail.Next,
after that we try to move the queue tail forward by executing
CAS (&Queue.Tail, cur tail, other process tail)
(Fig. 39).

Tail

Figure 39 — Moving the queue tail forward

As any CAS, that CAS can be either 1) successful — in that case we
have helped the other process and moved the queue tail forward; 2) un-
successful — in that case, some other process helped before us. In either
case, we simply retry the whole procedure from the from step (1).

If CAS returns true, we added the descriptor to the tail of the queue.
In that case, as in the previous one, we should move the queue tail for-
ward by CAS (&Queue.Tail, cur tail, new node). After
that, we simply finish the insertion, no matter is the second CAS suc-
cessful (if so, we moved Queue.Tail forward) or not (in that case,

some other process moved it to help us, as described above).

The algorithm can be implemented the following way (Listing 14):

1/

2 Executed by the initiator process at the

3 beginning of the operation execution

4 */

5 fun push acquire timestamp (Root Queue, descriptor):

6 new _node := new QueueNode (Data = descriptor, Next = nil)

7 while true:

cur_tail := Root Queue.Tail
max timestamp := cur_ tail.Data.Timestamp
descriptor.Timestamp < max timestamp + 1
if CAS(&cur_tail.Next, nil, new node):
CAS (&Root Queue.Tail, cur tail, new node)

return

61

14 else:

15 other process tail := cur tail.Next

16 CAS (&Root Queue.Tail, cur_tail, other process tail)

17 /* Retry the whole operation from the very beginning */

Listing 14 — Implementation of the push procedure with acquiring operation

timestamp

2.6.3. push_if implementation
As discussed in Section 2.5, non-root queues should provide push if op-
eration that inserts a descriptor into the queue if it was not inserted yet (otherwise,
the queue should be left unmodified). Just like in the previous case, the procedure is
based on the Michael-Scott queue insertion algorithm [27] and can be implemented
the following way:

1. We learn the current queue tail by reading cur tail := Queue.Tail;

2. We learn the maximal operation timestamp, that has ever been inserted
to the queue. We do it the same way as in Section 2.6.2 — by reading
cur queue.Data.Timestamp value.

3. Ifthat timestamp is greater than or equal to descriptor.Timestamp, we
can conclude that the descriptor was already inserted to the queue. Thus, we
can simply finish the operation, leaving the queue unmodified.

As was stated in Section 2.6.2, we can learn the timestamp not from the last

node, but from the penultimate node (Fig. 40).

Head Tail

Figure 40 — The queue tail does not point to the latest added descriptor

Nevertheless, our conclusion remains the same: if at least one descriptor
in the queue has Timestamp > descriptor.Timestamp (even if
the said descriptor is located in the penultimate queue node), it means that
descriptor has already been inserted to the queue and we can simply fin-
ish the insertion.

62

4. Otherwise, we try to insert the descriptor to the tail of the queue the same
way, we did in Section 2.6.2. Note, that if the acquired cur tail pointer
was pointing to the penultimate node, we shall simply retry the insertion from

the very beginning.

Therefore, the algorithm can be implemented the following way (Listing 15):

1 fun push if (Non Root Queue, descriptor):

2 new node := new QueueNode (Data = descriptor, Next = nil)

3 while true:

4 cur_tail := Non Root Queue.Tail

5 if cur tail.Data.Timestamp > descriptor.Timestamp:

6 return

7 elif CAS(&cur_ tail.Next, nil, new node):

8 CAS (&Non_Root Queue.Tail, cur_tail, new_node)

9 return

10 else:

11 other process tail := cur_ tail.Next

12 CAS (&Non_Root Queue.Tail, cur_ tail, other process tail)
13 /* Retry the whole operation from the very beginning */

Listing 15 — Implementation of the push_if procedure

2.6.4. pop_if implementation

As discussed in Section 2.5, the operation queue in any node should provide
pop_1if operation, that tries to remove descriptor with the specified timestamp TS
from the head of the queue. If descriptor D with timestamp TS is still located at the
head of the queue, it is removed (Fig. 41a). Otherwise, the queue is left unmodified
(Fig. 41b) — in this case, we assume that D was removed by some other process.
We assume that at some moment D was located at the head of the queue (it may still
be located at the head of the queue or it may be already removed), i.e., we never try

to remove a descriptor from the middle of the queue (Fig. 41c).

63

Head Tail
Head Tail
pop_if(ts = 5)
pop _if(ts = 5)
Head Tail
Head Tail

S

(b) pop_i£: the descriptor has already

(a) pop_if: removing the descriptor from been removed from the head of the queue,
the head of the queue the queue is not modified
Head Tail
CaATR et
pop _if(ts = 7)

Y

(C) pop if: cannot try to remove a
descriptor that was never located at the head
of the queue

Figure 41 — Execution of pop 1if procedure for different queues

Yet again, we can use slightly modified version of Michael-Scott queue [27]
to implement such a procedure in the following way:
1. Acquire head and tail nodes by reading cur head := Queue.Head and
cur tail := Queue.Tail, respectively. According to the Michael-
Scott queue structure [27] the head node is a dummy node, that does not con-
tain any data. Instead, the first descriptor is located at the node, pointed at by
cur head.Next (Fig. 42).

64

Head Tail
First descriptor Last descriptor

Figure 42 — The head node is a dummy node that does not store any data

2. If cur head and cur tail point to a single node, queue may be
empty. In that case, to distinguish empty queue from non-empty, we read
cur tail.Next. Two possible situations can happen:

— cur_ tail.Next = nil (Fig. 43). In that case, the queue is empty
and we finish the procedure, leaving the queue unmodified — we can-
not remove the node from an empty queue. We can conclude that the

descriptor was already removed by another process.

Head Tail

nil

Figure 43 — The queue is empty

— cur_tail.Next # nil (Fig. 44). In that case,the queue is not
empty since new descriptor is being concurrently inserted to the queue.
We should help finish the insertion by trying to move Queue.Tail

forward the same way that was described in Section 2.6.2.

Head Tail

nil

Figure 44 — The queue is not empty, we move the queue tail forward

After that, we simply retry the the pop if procedure from the very
beginning, i.e., from step (1).

3. If cur headand cur tail point to different nodes, we continue execut-
ing the operation. We begin with reading first timestamp — times-
tamp of the first descriptor of the queue. The said timestamp can be acquired
innext head := cur head.Next node (Fig. 45).

Head Tail

Removed nodes

first timestamp = 6

Figure 45 — Acquiring first timestamp

— If first timestamp > TS (e.g., 1S TS = 4), we can conclude
that the descriptor with timestamp TS has already been removed by an-
other process. Thus, we simply finish the pop if procedure leaving
the queue unmodified.

— Otherwise, first timestamp = TS. Note that

first timestamp cannot be less than TS since, as was stated

66

above, we never try to remove a node, that has never been located at
the head of the queue.

In that case, we try to move the queue head forward by execut-
ing CAS (&Queue.Head, cur head, next head). Ifthe CAS
succeeds, we conclude that we have removed the requested descrip-
tor from the queue and finish the operation. Otherwise, we conclude
that some other process removed the requested descriptor and modified
Queue.Head. In that case, we yet again simply finish the execution
of the procedure.

Therefore, pop if can be implemented in the following way (Listing 16):

1 fun pop if (Queue, timestamp) :

2 while true:

3 cur_head := Queue.Head

4 cur tail := Queue.Tail

5 if cur head = cur tail:

6 next tail := cur tail.Next

7 if next tail = nil:

8 return

9 else:

10 CAS (&Queue.Tail, cur_ tail, next tail)

11 /* Retry the operation from the very beginning */
12 else:

13 next head := cur head.Next

14 first timestamp := next head.Data.Timestamp
15 if first timestamp = timestamp:

16 CAS (&Queue.Head, cur head, next head)

17 return

Listing 16 — Implementation of the pop 1if procedure

2.6.5. Queues progress guarantees and implementation details

Note that all the queue operations described above are lock-free, just like in
the original queue by Michael and Scott [27]. Indeed, the repetition of each proce-
dure from the very beginning indicates that other process successfully executed its
procedure, thus modifying the queue.

Of course, we can take other queue algorithms as a basis for our solu-
tion, not only the one proposed by Michael and Scott. For example, we can
use fetch-and-add queue, proposed by Yang et al. [36] or practical wait-
free queue, proposed by Kogan and Petrank [22]: pop if, push if, and

67

push acquire timestamp implementation principles remain the same. We

use Michael-Scott queue only due to the simplicity of its implementation.

2.7. One possible tree balancing strategy

Until now, we considered only unbalanced trees. However, using unbalanced
trees may result in height € w(log V). Since most of the queries (e.g., insert,
remove or contains) are executed on a tree in ©(height) time, using unbal-
anced trees may result in these queries being executed in non-optimal w(log V)
time. Therefore, we must design an algorithm to keep the tree balanced. One possi-
ble balancing strategy is based on subtree rebuilding and is similar to the balancing
strategy proposed in [6]. The idea of this approach can be formulated the following
way: when the number of modifications, applied to a particular subtree, exceeds a

threshold, we completely rebuild that subtree, making it perfectly balanced (Fig 46).

68

mod cnt > T

rebuild(R)

Figure 46 — Tree balancing via subtree rebuilding: when the number of
modifications, applied to a subtree, exceeds a threshold, we rebuild the whole
subtree

69

For each tree node we maintain Mod Cnt — the number of modifications,
applied to the subtree of this node. We store Mod Cnt in the node state. Moreover,
for each node we store an immutable number Init Sz — initial size of its subtree,
1.e., the number of data items in that node subtree at the moment of node creation
(node can be created when a new data item is inserted to the tree or when the subtree,
where the node is located, is rebuilt). We rebuild the node subtree when Mod Cnt
> K - Init Sz, where K is a predefined constant.

We check whether the subtree of node v needs rebuilding (and perform the
rebuilding itself) only before inserting an operation descriptor to v queue and chang-
ing v state. Therefore, we can perform v subtree rebuilding only <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>