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INTRODUCTION

The purpose of this work is to develop an algorithm for executing lock-free

range queries on Hierarchical Data Structures (hereinafter, HDS) in an asymptoti-

cally optimal manner.

The following goals are to be achieved in order to complete the work:

1. Get familiar with existing methods of implementing concurrent range queries

on HDS and outline the drawbacks of these methods.

2. Develop a general algorithm for executing asymptotically optimal lock-free

range queries on HDS.

3. Apply the developed algorithm to implement binary search tree, supporting

asymptotically optimal count range query.

4. Develop a method to test such HDS implementations for correctness (i.e., lin-

earizability) in polynomial time and test our binary search tree implementation

for correctness.

5. Show how to apply the developed algorithm to a broad class of HDS and a

wide variety of range queries.

The importance of the topic is justified by the widespread applicability of

range queries in modern Database Management Systems (DBMS) and other data

storage and processing systems. However, existing methods that support range

queries suffer from one or more of the following drawbacks:

— Lack of progress guarantees. Such implementations are usually lock-based,

and do not satisfy lock-freedom or obstruction-freedom.

— Asymptotic sub-optimality. Many range queries (especially, the aggregating

ones) can be executed in sub-linear (e.g. logarithmic) time in the sequen-

tial implementation. One example of such a query is count(Set, min,

max) = | { x ∈ Set : min 6 x 6 max } |—the number of el-

ements of the dataset, located in the range [min; max]. Using a relatively

simple technique (that is described in our work later), the count query can

be executed in O(logN) time on a binary search tree where N is the size of

the tree. However, many concurrent range query algorithms can only execute

such queries in O(|ANS|) time where |ANS| is the number of elements in
the range. Thus, being O(N) in the worst case.

— Lack of parallelism. Many data structures, despite allowing range queries,

that are both lock-free and asymptotically efficient, allow only one modifying
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(e.g. insert or remove,) operation at a time to be completed successfully,

thus, effectively making the data structure sequential.

The innovative nature of this work is justified by the absence of an algorithm,

that can execute concurrent range queries on HDS, while not suffering from any of

the aforementioned drawbacks. This work presents such an algorithm.

The practical significance of this work is justified by the possibility to apply

the developed algorithm in database management systems. Such DBMSwill be able

to execute range queries in a more optimal way (e.g., with higher throughput and

lower latency), than without the proposed algorithm.

This work is structured the following way:

— The first chapter contains the review of the subject area. We present the no-

tion of Hierarchical Data Structures, algorithms for sequential range queries

on HDS, concurrent correctness criteria, progress guarantees in a concurrent

environment, and possible applications of range queries in database manage-

ment systems. Also, we consider known algorithms for concurrent range

queries, and show that all of them suffer from significant drawbacks.

— The second chapter contains general description of the concurrent range query

execution algorithm. In this chapter we describe the algorithm in general

terms, without applying it to any specific data structure. In particular, this

chapter contains the description of the heart of the algorithm — the queue

propagation framework.

— The third chapter contains description of the algorithm in application to one

particular data structure — binary search tree with count(min, max) op-

eration.

— The forth chapter briefly describes the applicability of our algorithm to other

HDS. In this chapter, we do not describe the application of our algorithm to

each considered data structure in details. Instead, we briefly describe the HDS

and the range query, the algorithm has to work with, and present an idea of

how this range query can be efficiently implemented.

— The fifth chapter presents practical result and discusses future work. In par-

ticular, this chapter contains description of the method, that can be used to

verify executions of the algorithm for correctness in polynomial time. We
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apply this method to the binary search tree, described in Chapter 3, and show

that our implementation passes all tests.
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CHAPTER 1. REVIEW OF THE SUBJECT AREA

1.1. Hierarchical Data Structures

We start with a notion of a Hierarchical Data Structure.

Definition 1. Hierarchical Data Structure (henceforth HDS), or a tree, is a data

structure, that consists of a set of nodes. Each node can be connected to many child

nodes, but can have no more than one parent node. All nodes, except for the one,

called the root node, have exactly one parent. Root node does not have a parent.

Moreover, HDS must not contain loops.

Figure 1 presents an example of a tree. There are: 1) node r is the root node,

2) nodes a and b are children of node r, and 3) node r is a parent of nodes a and b.

Figure 1 – An example of a tree

Figure 2 contains example of data structures, that are not hierarchical. Fig-

ure 2a presents a data structure, that has two nodes without a parent (nodes a and

b), while a hierarchical data structure can contain only one such node. Figure 2b

presents a data structure with a loop, consisting of nodes a, b, and c. Figure 2c

presents data structure, in which node c has two parents simultaneously: nodes a

and b.
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(a) Data structure with two root
nodes

(b) Data structure with
a loop

(c) Data structure, in
which a node has two

parents

Figure 2 – Examples of data structures, that are not trees

Trees are defined in [43].

Multiple kind of trees have been studied in the literature. Amongst the most

useful ones we may outline binary search trees [19] (Fig. 3), quad trees [9] (Fig. 4)

and tries [4] (Fig 5). Algorithm, that we will design and implement in that work,

will work with all of them, and with various other kind of trees.

Figure 3 – Example of a binary search tree
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Figure 4 – Example of a quad tree

Figure 5 – Example of a trie

1.2. Range queries

Definition 2. Consider a tree, storing multiple data items. We call a query,

retrieving or modifying a single data item, a scalar query; and a query, involving

multiple consecutive (by value) data items, a range query.

Consider a sorted set, stored in a binary search tree. In this case, the following

queries are scalar:

— insert(key) — if key exists in the data set, do not modify the set and

return false. Otherwise, add key to the set and return true.
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— remove(key)— if key does not exist in the set, do not modify the set and

return false. Otherwise, remove key from the set and return true.

— contains(key) — return true if the set contains key, false, other-

wise.

And the following queries are range queries:

— count(min, max)— returns the number of keys from the [min; max]

interval.

— collect(min, max) — returns an array of set keys from the [min;

max] interval.

1.3. Efficient sequential algorithm for range queries

Many range queries, especially the aggregating ones, can be executed in sub-

linear (e.g. logarithmic) time. Consider, an example of such range query:

count(Set, min, max) = | { x ∈ Set : min 6 x 6 max } | —
the number of keys, located in the range [min; max]. It can be calculated in

O(logN) time on binary search trees (where N is the number of keys in the set),

using the following algorithm.

1.3.1. Tree structure

Let us begin with a couple of definitions:

Definition 3. A node is a leaf if it has no children.

Definition 4. A node is an internal node if it is not a leaf.

Definition 5. External binary search tree (Fig. 6a) is a binary search tree, in

which keys are stored only in leaf nodes. In contrast, internal nodes store only auxil-

iary information, used for query routing (e.g., the minimal key, that might be located

in the right subtree).

Definition 6. Internal binary search tree (Fig. 6b) is a binary search tree, in

which keys are stored in both leaf nodes and in internal nodes.
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(a) External binary search tree (b) Internal binary search tree

Figure 6 – Different types of search trees

To explain how to implement the count query, we consider external bi-

nary search trees. Each internal node will store Right_Subtree_Min —

the minimal key, that might be located in the right subtree. All keys less than

Right_Subtree_Min should be stored in the left subtree, and, thus, all scalar

queries (insert, remove and contains) on such keys are redirected to the left

subtree. Similarly, all keys greater than or equal to Right_Subtree_Min should

be stored in the right subtree, and, thus, all scalar queries on such keys are redirected

to the right subtree (Fig. 7).

Figure 7 – Using Right_Subtree_Min for query routing

Moreover, each internal node will store the size of that node’s subtree — i.e.,

the number of keys in that node’s subtree. Of course, that information should be

properly maintained:

— When inserting new key k to the tree, increase by one subtree sizes of each

node on the path from the root to the leaf, storing key k (Fig. 8).

— When removing key k from the tree, decrease by one subtree sizes of each

node on the path from the root to the leaf, storing key k (Fig. 9).
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Figure 8 – Maintaining subtree sizes on node insertion

Figure 9 – Maintaining subtree sizes on node removal
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Definition 7. We call additional information, stored in tree nodes and required

for fast range queries execution, augmentation values.

For example, subtree sizes are augmentation values, required for asymptoti-

cally optimal execution of the count range query.

Note, that different range queriesmay require different augmentations in order

to be executed asymptotically optimal. In Chapter 4 we shall describe augmenta-

tions, required for fast execution of different range queries.

1.3.2. Executing the count query asymptotically optimal

To implement the count query in an asymptotically optimal way, we present

the following three functions:

— count_both_borders(node, min, max)— returns the number of

keys in node subtree, that are located in the range [min; max]

— count_left_border(node, min) — returns the number of keys in

node subtree, that are greater than or equal to min

— count_right_border(node, max)— returns the number of keys in

node subtree, that are less than or equal to max

Trivially, count(Set, min, max) =

count_both_borders(Set.Root, min, max).

Let us begin with defining count_both_borders(node, min,

max) procedure recursively:

— If node is a leaf, we check whether min 6 node.Key 6 max holds. If

so, we return 1, otherwise, we return 0.

— If min > node.Right_Subtree_Min, then all keys from the

left subtree are less than min (since for all such keys Key <

node.Right_Subtree_Min holds, as guaranteed by the tree struc-

ture). Thus, all the required keys are located in the right subtree. Therefore,

we return count_both_borders(node.Right, min, max).

— If max < node.Right_Subtree_Min, then all keys from the right sub-

tree are greater than max. Thus, all the required keys are located in the

left subtree. Therefore, we return count_both_borders(node.Left,

min, max).

— Otherwise, min < node.Right_Subtree_Min 6 max.

In that case, some satisfying keys may be located in the left
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subtree, and some of them may be located in the right sub-

tree. Thus, we return count_both_borders(node.Left,

min, node.Right_Subtree_Min) +

count_both_borders(node.Right,

node.Right_Subtree_Min, max). In that case, we call node

with such a condition a fork node.

Note, that the tree structure guarantees, that all keys in the left

subtree are already less than node.Right_Subtree_Min and

all keys in the right subtree are already greater than or equal to

node.Right_Subtree_Min. Thus, we do not need to check, that

keys in the left subtree are 6 node.Right_Subtree_Min and that

keys in the right subtree are > node.Right_Subtree_Min —

these inequations are guaranteed to be true by the tree structure itself.

Thus, we return count_left_border(node.Left, min) +

count_right_borders(node.Right, max).

Now, we shall define count_left_border(node, min):

— If node is a leaf, we check whether node.Key > min holds. If so, we

return 1, otherwise, we return 0.

— If min > node.Right_Subtree_Min, then all keys from the left sub-

tree are less than min. Thus, all the required keys are located in the right

subtree. Therefore, we return count_left_border(node.Right,

min).

— Otherwise, min < node.Right_Subtree_Min. In that case, all the

keys from the right subtree are greater than or equal to min. Thus,

we should count all keys from the right subtree plus some keys from

the left subtree. Therefore, the answer is get_size(node.Right) +

count_left_border(node.Left, min).

Size of the right subtree can be calculated easily:

– If node.Right is a leaf, the size of the right subtree is 1;

– Otherwise, node.Right is an internal node — in that case the size of

the right subtree is node.Right.Size;

We can define count_right_border(node, max) in the same man-

ner:
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— If node is a leaf, we check whether node.Key 6 max holds. If so, we

return 1, otherwise, we return 0.

— If max < node.Right_Subtree_Min, then all keys from the right sub-

tree are greater than max. Thus, all the required keys are located in the

left subtree. Therefore, we return count_right_border(node.Left,

max).

— Otherwise, max > node.Right_Subtree_Min. In that case,

all keys from the left subtree are less than max. Thus, we should

count all keys from the left subtree plus some keys from the right

subtree. Therefore, the answer is get_size(node.Left) +

count_right_border(node.Right, max). The size of the

left subtree can be calculated similarly to the previous case.

We show how to implement the algorithm in Listing 1 1.

1 fun count_both_borders(node, min, max):

2 case node of

3 | EmptyNode →
4 /*

5 EmptyNode is a dummy node that contains neither key nor children.

6 We can use it to represent an empty set, for example

7 */

8 return 0

9 | LeafNode →
10 if min 6 node.Key 6 max:

11 return 1

12 else:

13 return 0

14 | InnerNode →
15 if min > node.Right_Subtree_Min:

16 return count_both_borders(mode.Right, min, max)

17 elif max < node.Right_Subtree_Min:

18 return count_both_borders(node.Left, min, max)

19 else:

20 return count_left_border(node.Left, min) +

21 count_right_border(node.Right, max)

22

23 fun get_size(node):

24 case node of

25 | EmptyNode →

1In all subsequent pseudocode listings we denote shared objects (including names of fields, that may

be accessed by multiple processes) in Upper_Snake_Case; class names in CamelCase; local variables

in lower_snake_case; functions in lower_snake_case; Creation of a new variable is denoted by

variable_name := initial_value syntax; Assigning a new value to the existing variable is denoted by

variable_name ← new_value syntax;
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26 return 0

27 | LeafNode →
28 return 1

29 | InnerNode →
30 return node.Size

31

32 fun count_left_border(node, min):

33 case node of

34 | EmptyNode →
35 return 0

36 | LeafNode →
37 if node.Key > min:

38 return 1

39 else:

40 return 0

41 | InnerNode →
42 if min > node.Right_Subtree_Min:

43 return count_left_border(node.Right, min)

44 else:

45 return get_size(node.Right) +

46 count_left_border(node.Left, min)

47

48 fun count_right_border(node, max):

49 case node of

50 | EmptyNode →
51 return 0

52 | LeafNode →
53 if node.Key 6 max:

54 return 1

55 else:

56 return 0

57 | InnerNode →
58 if max < node.Right_Subtree_Min:

59 return count_right_border(node.Left, max)

60 else:

61 return get_size(node.Left) +

62 count_right_border(node.Right, max)

Listing 1 – Implementation of the count range query

1.3.3. Time complexity analysis

Theorem 8. The time complexity of the count query is O(height).

Proof. We state that both count_left_border and

count_right_border work in O(height) time. Indeed, on each tree

level both these procedures visit only one node per level, performing O(1)

operations in each visited node.
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Let us now switch to proving the time complexity of

count_both_borders. At upper tree levels (higher than the fork node)

it visits one node per level performing O(1) operations in each visited node, giving

O(height) time at upper levels.

At one of the nodes (the fork node) the execution may fork: we shall call

count_left_border on the left subtree and count_right_border on the

right subtree. Note, that the execution can fork at most once and both called pro-

cedures have O(height) time complexity. Thus, at lower tree levels the procedure

also has O(height) + O(height) = O(height) time complexity. Therefore, the

total time complexity of the procedure is O(height) (Fig 10).

Figure 10 – Time complexity of the count_both_borders procedure

Suppose we use balanced binary search trees with height ∈ O(logN) where

N is the size of the tree. Thus, the count query is executed in O(logN) time.

1.4. Range queries applications

1.4.1. Spammers identification

Suppose we are developing a database for a messenger. In that case, SQL

definition of a table, that will store sent messages might look like this (Listing 2):
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1 CREATE TABLE Messages

2 (

3 sender_id INT,

4 receiver_id INT,

5 send_timestamp TIMESTAMP,

6 message_text VARCHAR

7 );

Listing 2 – SQL definition of the Messages table

Suppose also, that we want to identify spammers, given that database. One

possible approach is to find users, that send a lot of messages during a short time pe-

riod. To implement that approach, we should be able to answer a certain query: how

many messages has some particular user sent during some particular time period?

When written in SQL, that query might look like this (Listing 3):

1 SELECT COUNT(*)

2 FROM Messages

3 WHERE sender_id = :s_id AND

4 send_timestamp BETWEEN :start_ts AND :start_ts + :time_delta

Listing 3 – SQL query for getting the number of messages, sent by a particular user

during a particular time period

How can such queries be answered fast? We can build an ordered index on

fields (sender_id, send_timestamp) (Fig. 11).

Figure 11 – Binary search tree (BST) as an ordered index on fields

(sender_id, send_timestamp)

In such case, executing such SQL queries can be reduced to executing

a range query count(min = (:s_id, :start_ts), max = (:s_id,

:start_ts + :time_delta)) on a binary search tree, serving as an ordered
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index. In that case, the faster the BST can process such queries, the faster we can

identify spammers. Thus, we need our index implementation to process such range

queries in an asymptotically optimal manner.

1.4.2. Traffic jams identification

Suppose we are building an application, that should identify traffic jams based

on a car location information and warn drivers to change their route, if it is expected

to go through a traffic jam. In such case, a crucial part of our application would be

an algorithm, that can identify traffic jams very fast.

But what is a traffic jam? To a first approximation it is a small area, that

contains an enormous number of cars. Thus, to identify traffic jams, we must be

able to answer a certain query: how many cars are located in the specified area?

Assuming a car is a point on a plane and a search area is a rectangle (Fig. 12), we

can solve this task using range queries on R-trees [14] or k-d trees [9]. Therefore,

once again, we need our R-tree or k-d tree implementation to process such range

queries in an asymptotically optimal manner.

Figure 12 – Traffic jams identification problem

Thus, as can be seen, in both above-described cases the quality of our appli-

cation directly depends on our ability to perform efficient range queries on trees.
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1.5. Execution model

We consider the standard concurrent system model with a set of n processes
2 {pi}ni=1 that work asynchronously and each of which executes its own sequence

of operations.

Process communicate with each other by executing operations on objects, lo-

cated in the shared memory. Basic shared objects (called registers) provide atomic

read/write operations. Moreover, they can provide atomic read-modify-

write operations, like compare-and-swap [38], fetch-and-add [40],

test-and-set [42].

Amongst all read-modify-write operations, the most relevant for us

is compare-and-swap (or compare-and-set, or CAS). This operation has

three arguments: register, the expected value and the new value. CAS atomically

checks, whether the value of the register equals to the expected value. If so, CAS

sets the value of the register equal to the new value and returns true. Otherwise, it

lefts the register value unmodified and returns false. The CAS operation can be

specified in the following pseudocode (Listing 4):

1 fun cas(Register, expected_value, new_value):

2 atomically:

3 cur_value := Register

4 if cur_value = expected_value:

5 Register ← new_value

6 return true

7 else:

8 return false

Listing 4 – Pseudocode for the CAS operation

We can use basic shared objects to build more complex shared objects, rep-

resenting different concurrent data structures. For example, we can use a collection

of read/write/CAS registers to build a concurrent queue [27] or stack [35].

Moreover, each process pi has access to an arbitrary set of local objects, on

which only pi can execute operations. If an object Obj is local to process pi, only

the process pi has access to it and can execute operations on Obj (Fig. 13).

2Hereinafter terms ‘‘process’’ and ‘‘thread’’ are used interchangeably: in the context of this work they mean the

same.
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Figure 13 – Concurrent system model

We assume that the processes work asynchronously, each with its own speed,

without synchronizing neither their pace nor the number of operations executed.

Moreover, each process can be suspended indefinitely by the underlying (e.g., OS)

scheduler.

1.6. Concurrent correctness criteria

Consider an execution of a program, where two operations:

Set.insert(5) and Set.contains(5) are performed concurrently.

Suppose the former request returns true (i.e., 5 was inserted to the set) and the

latter request returns false (i.e. 5 did not exist in the set). How can one tell,

whether the code works correctly or not?

More formally, consider a concurrent implementation of a data type T . We

want to have a correctness criteria, that will tell us, whether this concurrent imple-

mentation is correct (in some sense) or not.
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Before we can get to the formulation of correctness criteria, we should give

additional definitions.

Definition 9. A low-level history (or an execution) is a finite or infinite se-

quence of primitive steps: invocations and responses of high-level operations, in-

vocations and responses of primitives on the shared registers (reads, writes, etc.).

We assume that executions are well-formed: no process invokes a new primitive,

or high-level operation before the previous primitive, or a high-level operation, re-

spectively, returns or takes steps outside its operation’s interval.

Definition 10. A high-level history (or simply a history) of execution α on

high-level object O is the subsequence of α consisting of all invocations and re-

sponses of operations on O.

Definition 11. Two high-level histories H and L are considered equivalent iff

three conditions are met:

— They are defined on the same object O;

— H and L consists of the same set of operations;

— All operations in L have the same input and the same output as the corre-

sponding operations in H;

Definition 12. High-level history L is said to be sequential if for any two op-

erations o1, o2 ∈ L either o1 precedes o2 or vice-versa, i.e. there are no concurrent

operations in L.

Multiple correctness conditions for concurrent executions exist. We outline

some of them, from the least to the most strict.

— Serializability, described in [31, 37]. History H is said to be serializable iff

there exists sequential history L, equivalent to H . As can be seen from the

definition, operations inH can be reordered arbitrary, we only care about the

equivalence of operation results.

A concurrent implementation of a data type is serializable iff each of its pos-

sible histories is serializable.

— Sequential consistency, described in [23]. To reason about the notion of se-

quential consistency, we should consider a set of processes {pi}ni=1, executing

operations from history H .

History H is said to be sequentially consistent iff there exists a sequential

history L, equivalent to the history H . Moreover, history L should satisfy
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one additional requirement: if operations o1 and o2 were executed by the same

process pi in H and o1 was executed before o2
3, o1 should precede o2 in L.

As follows from the definition, each sequentially consistent history is serial-

izable, since serializability only requires that an equivalent sequential history

L exists, while sequential consistency places additional requirements on L.

A concurrent implementation of a data type is sequentially consistent iff each

of its possible histories is sequentially consistent.

— Linearizability, described in [18]. To reason about the notion of linearizabil-

ity, we should consider →H (pronounced happens-before): partial order on

operations from a concurrent history H . We say, that o1 →H o2 | o1, o2,∈ H

(pronounced o1 happens-before o2) if o1 is completed before o2 begins. Such

operations can be causally related, i.e., o1 can be a cause of o2. If operations o1

and o2 are executed by the same process pi and o1 precedes o2 in pi execution,

o1 →H o2. The happens-before relation is discussed more formally in [25].

History H is said to be linearizable iff there exists a sequential history L,

equivalent to the history H . Moreover, execution L should satisfy one ad-

ditional requirement: if o1 →H o2, o1 should precede o2 in L. Thus,

o1 →H o2 ⇒ o1 →L o2 should hold.

As follows from the definition, each linearizable history is also sequentially

consistent (and, thus, serializable), since sequential consistency only requires

that ordering of operations from a single process should be preserved in L,

while linearizability requires, that ordering of all causally related operations

(including operations from a single process) should be preserved in L.

A concurrent implementation of a data type is linearizable iff each of its pos-

sible histories is linearizable.

1.7. Progress guarantees

Consider a simple lock-based concurrent algorithm (Listing 5):

1 fun do_something_concurrent():

2 Mutex.lock()

3 do_something()

4 Mutex.unlock()

Listing 5 – An example of a simple lock-based algorithm

Consider the following sequence of actions:

3Note, that for each pair (o1, o2) of operations, executed by a single process pi, either o1 precedes o2 or vise-versa,
since a single process always has sequential behaviour, even in a concurrent environment
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1. Processes P and R are willing to execute the operation

do_something_concurrent at the same time.

2. Process P manages to acquire the mutex first, process R has to wait for the

mutex to be released.

3. Process P is suspended by the operating system.

In that case, neither P nor R is able to execute the operation: P is suspended

by the OS and R has to wait until P finishes the operation execution and releases the

mutex (which may take arbitrary long, given that P is suspended). Therefore, the

whole system does not achieve any progress at all.

To prevent such situations from happening, we should design algorithms so

that they guarantee progress even in the presence of scheduler-initiated suspends

and arbitrary processes speed.

Multiple progress guarantees have been studied and described in the literature.

We outline some of them from the most relaxed one to the most strict.

— Obstruction-freedom, described in [17]. This progress guarantee requires,

given that all system processes {pi}ni=1,i 6=L, except for the one — pL, are

suspended, pL can finish its execution within a bounded number of steps.

Note, that the lock-based algorithm, described in the beginning of the section,

is not obstruction-free. Indeed, even when all processes except R (thus, only

the process P) are suspended, R cannot finish its execution within a bounded

number of steps, because it is waiting for the mutex to be released.

— Lock-freedom, described, e.g. in [34]. This progress guarantee requires that at

least one non-suspended process should finish its execution within a bounded

number of steps.

Note that each lock-free algorithm is also obstruction-free. Indeed, suppose

that all processes, except for pL are suspended. Since the algorithm is lock-

free, at least one non-suspended process should finish its execution within a

bounded number of steps. After suspending all but one processes, we have

only one non-suspended process— pL. Therefore, pL will finish its execution

within a bounded number of steps, therefore, the algorithm is also obstruction-

free.

— Wait-freedom, described in [16]. This progress guarantee requires, that all

non-suspended processes should finish their execution within a bounded num-

ber of steps.
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Indeed, eachwait-free algorithm is also lock-free, since lock-freedom requires

at least one non-suspended process to finish its execution within a bounded

number of steps, while wait-freedom guarantees, that all non-suspended pro-

cesses will do so.

1.8. Existing solutions

1.8.1. Lock-based solutions

The easiest and themost obvious way to implement a concurrent data structure

is to protect a sequential data structure with a lock, or mutex (Fig. 14) to guarantee

mutual exclusion [24] to the protected data structure. However, such construction

is not lock-free (it is not even obstruction-free) and suffers from the stagnation, as

described in Section 1.7. Moreover, since a lock allows only one process to work

with the data structure at a time, the throughput of the resulting construction will be

very low and the resulting construction will not scale.

Figure 14 – Sequential data structure, protected with a lock

1.8.2. Linear-time solutions

A number of papers [2, 5] address the issue of executing lock-free range

queries on concurrent trees. However, the aforementioned papers address only the

collect(min, max) query, returning the list of keys, located within a range

[min; max]. All other range queries are proposed to be implemented on top

of the collect query. For example, the count query can be implemented as

count(min, max) = collect(min, max).length().
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This approach suffers from a major drawback: the collect query is exe-

cuted in time, proportional to the length of the resulting list. Thus, for wide ranges,

the query is executed inO(N) time, since for wide ranges the result contains almost

all the keys from the tree.

Thus, all range queries, implemented on top of the collect query, have

O(N) time complexity. However, this implementation is not asymptotically ef-

ficient: e,g, the count query can be executed in O(logN) time in a sequential

environment instead of O(N), as was shown in Section 1.3.

Therefore, despite being lock free, this method does not guarantee time ef-

ficiency, and thus cannot be used in environments, where low request latency is

required.

1.8.3. Solutions based on the Universal Construction

These solutions are based on persistent data structures [41]. Each modifying

operation (e.g. insert or remove) creates a new version of the data structure

without modifying the existing one. In order to reduce time and memory consump-

tion, for a lot of persistent data structures the new version shares most of its nodes

with the old version.

For example, persistent trees can be implemented using path-copying

method [26]. This method merely copies each node on the path from the modified

(e.g., inserted or removed) node to the root (Fig. 15), achieving O(logN) copied

nodes in balances trees.
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Figure 15 – An example of a persistent tree with path-copying. insert operation

creates new version of the data structure instead of modifying the existing one, the

new version shares most of its nodes with the old version

The basic idea of the Universal Construction, proposed first by Herlihy [16],

is to store pointer to the root of the current version of the persistent data structure in

the read/CAS register. Read-only queries (e.g. contains or count) on such

data structures can be implemented very easily, no matter how complex are they:

we just read the pointer to the latest version of the data structure and execute the

query on it. Since the data structure is persistent, other processes cannot modify the

fetched version, thus, it is completely safe to execute arbitrary read-only logic on the

fetched version. For example, the count query can be implemented the following

way (Listing 6):

1 fun count(Set, min, max):

2 /*

3 Other read-only operations (e.g. contains) can be

4 implemented the same way

5 */

6 cur_root := Set.Root_Pointer

7 result := sequential_count(cur_root, min, max)

8 return result

Listing 6 – Universal Construction-based implementation of a count query

Update queries (e.g. insert or remove) are a bit more complex and have

to go through the following steps:
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1. Fetch cur_root — the root of the current version of the data structure by

reading the root pointer.

2. Obtain new_root— the root of the new version by executing the modifica-

tion operation on the current version. Since the data is persistent, the current

version is left unmodified.

3. Use CAS(&Root_Pointer, cur_root, new_root) to atomically

change the current version to the new version. If the CAS returns true, it

means that we have successfully applied the modifying operation. Otherwise

(if the CAS returns false), we conclude that some other process has already

changed the version, performing its modification operation. In that case, we

retry the whole operation from the very beginning, i.e., from step (1).

For example, insert operation can be implemented the followingway (List-

ing 7):

1 fun insert(Set, key):

2 /*

3 Other modification operations (e.g. remove) can be

4 implemented the same way

5 */

6 while true:

7 cur_root := Set.Root_Pointer

8 new_root := persistent_insert(cur_root, key)

9 if CAS(&Set.Root_Pointer, cur_root, new_root):

10 return

11 /* Otherwise, retry the whole operation from the very beginning */

Listing 7 – Universal Construction-based implementation of the insert operation

This solution is lock-free, since each unsuccessful CAS indicates that some

other process has successfully executed its operation (and changed the root pointer

using CAS). The Universal Construction can even be implemented with a wait-free

progress guarantee, as shown in [16].

However, despite being lock-free (or even wait-free) this solution suffers from

a major drawback. Suppose we are executing multiple concurrent modification op-

erations. Only one of them can be finished successfully, while others have to retry

(Fig 16). To better understand the drawback, consider the following sequence of

actions:

1. Process P tries to execute the operation insert(2), fetches the current root

pointer (RP);
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2. Process Q tries to execute the operation remove(5), fetches the current root

pointer (RP);

3. Process P obtains the new version of the data structure (root pointer is RPP),

with key 2 inserted to the set;

4. Process Q obtains the new version of the data structure (root pointer is RPQ),

with key 5 removed from the set;

5. Process P successfully executes CAS(&Set.Root_Pointer, RP,

RPP);

6. Process Q tries to execute CAS(&Set.Root_Pointer, RP, RPQ) but

fails to do so, because Set.Root_Pointer now contains RPP. Process Q

has to retry the whole remove(5) operation from the beginning;

Figure 16 – Only one of multiple concurrent modifying operations can be executed

successfully, the others have to retry

Therefore, all modification operation are applied sequentially, one after an-

other, making the data structure effectively sequential for modifications. This

greatly reduces the throughput of the overall data structure and dramatically limits

the scalability. Thus, Universal Construction-based data structures cannot be used
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in situations, when concurrent updates must be processed concurrently, instead of

being processed one after another.

1.8.4. Solutions, based on augmented persistent trees

Sun, Ferizovic and Belloch [33] addressed the problem of executing range

queries on persistent trees. They proposed augmenting each node of a persistent

tree with an arbitrary value, that can be used to execute the range query faster (for

example, the count query can be executed efficiently if each node of the tree is

augmented with the size of its subtree).

However, the paper does not propose the method of executing concurrent op-

erations on augmented data structures — only the method to execute a large batch

of operations in parallel, e.g., an insertion of a batch of keys to the data structure (or

a removal of a batch of keys from the data structure) using fork-join parallelism to

speed up the execution.

Therefore, in some cases this method simply cannot be used — for example,

when updates do not come in large batches. In cases, when there is a large num-

ber of concurrent single-value updates instead of a small number of batch updates,

following sequentially, one after another, we cannot use augmented persistent trees

as-is.

We can use various combining techniques [1, 11] to form large batches of up-

dates from individual concurrent updates (Fig. 17). However, combining techniques

increase individual operation latency and thus they are not acceptable in settings,

where low operation latency is required.

Figure 17 – Forming batches of updates from individual concurrent updates

Conclusions on Chapter 1

In this chapter, we have performed a review of the subject area. We have re-

viewed the notion of a tree, the notion of range queries, along with the sequential
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time-efficient algorithm for execution of the count range query. We glanced over

some examples of how efficient range queries can be used in modern databases.

Also, we reminded the basics of concurrent computing: the notion of concurrency,

along with concurrent correctness criteria, and concurrent progress guarantees. Fi-

nally, we studied modern solutions to the problem of executing range queries on

concurrent trees and made sure, that all actual solutions suffer from various draw-

backs, which we ought to overcome in this work.
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CHAPTER 2. GENERAL DESCRIPTION OF THE ALGORITHM

2.1. Concurrent solution: the main invariant

The main problem with the sequential algorithm, described in Section 1.3, is

that in a concurrent environment it will be incorrect. Indeed, each modifying op-

eration (e.g. insert or remove) should modify not only the tree structure, but

the augmentation values (e.g., subtree sizes) too. Thus, augmentation values may

become inconsistent with the tree structure (Fig.18). In that case, the process exe-

cuting a count query is not able to execute it correctly, given such an inconsistent

view of the tree.

Figure 18 – Tree structure is inconsistent with the augmentation value: while both

leaves have already been removed from the tree the subtree size is still two.

Therefore, the main purpose of our concurrent solution is to get rid of such

situations by ensuring that all operations are executed in a particular order. We will

enforce a particular execution order by maintaining operation queue in each node.

Consider an arbitrary node v and its subtree vs. At vwe maintain operations

queue, that contains descriptors of operations to be applied to vs (Fig. 19). These

operations can, for example, insert a key to vs or remove a key from vs. We

maintain the following invariant: operations should be applied to vs in the order,

their descriptors were added to v queue.
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Figure 19 – Node v contains operations queue with descriptors of three operations:

Op1, Op2 and Op3. These three operations should be applied to vs in the order of

descriptors in the queue: first Op1, then Op2, and, finally, Op3

Note, that the aforementioned invariant can be applied to the root node too:

indeed, since the whole tree is just the root’s subtree, operations should be applied to

the tree in the order their descriptors were added to the root operation queue. Thus,

the order, in which operation descriptors are added to the root operation queue, is

exactly the linearization order, in which the operations should seem to be applied

to the tree.

Thus, we may use the operation queue at the root node to allocate timestamps

for operations. Timestamp allocationmechanism should provide the following guar-

antee: if descriptor of operation A was added to the root queue before descriptor

of operation B, then timestamp(A) < timestamp(B) should hold. In Sec-

tion 2.6.2, we will show how such timestamp allocation mechanism can be imple-

mented. Since, the order, in which operation descriptors are added to the root queue,

equals to the linearization order, operations should linearize in the order, determined

by their timestamps. For example, operation A should precede operation B in the

sequential execution L from the linearizability definition (that is described in Sec-

tion 1.6). Therefore, the following three orders will be the same:

— The linearization order L.
— The timestamp order: operationA precedes operationB in the timestamp order

if timestamp(A) < timestamp(B).

— The order, in which operation descriptors were added to the root queue.

As described in Section 2.2, system processes want to examine timestamps

of different operations during the operation execution. To allow them do so, we
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include the operation timestamp in the operation descriptor and store it in the

descriptor.Timestamp field.

2.2. Operation execution: overview

At first, we start with unbalanced trees. One possible balancing strategy via

subtree rebuilding is discussed in Section 2.7, while studying other concurrent bal-

ancing strategies we leave for the future work.

The execution of an operation Op by a process P (we call process P the initia-

tor process) begins with inserting the descriptor of Op into the root queue and ob-

taining the operation timestamp. In Section 2.6.2, we describe, how the root queue

with lock-free timestamp allocation may be implemented.

After that, the initiator process starts traversing the tree downwards, from the

root to the appropriate lower node, i.e. to the node, at which the operation (e.g.,

insertion of a new data item, or removal/modification of an existing one) should be

performed (Fig. 20).
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Figure 20 – Execution of operation insert(31) in an external binary search tree

consists of traversing the tree from the root downwards to the leaf, where key 31

should be inserted.

Definition 13. In each visited node v some actions should be performed, in

accordance with the meaning of the operation Op being executed. For example, size

of v subtree or pointers to v children should be changed during insert or remove

operation. We call the process of performing these actions execution of operation

Op in node v.

As stated in Section 2.1, operations should be applied to v subtree in the order

operation descriptors are inserted to v queue. Thus, if the descriptor of Op is not
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located at the head of v queue the initiator process P will have to wait for the ability

to begin executing Op in node v (Fig. 21). The execution of Op in node v cannot

begin until execution of all preceding operations in node v is finished.

Figure 21 – Process P has to wait for ability to begin executing Op in node v, since

only the operation D0, corresponding to the descriptor at the head of v queue, can

be executed in v.

The algorithms seems to be blocking, but that is where the helpingmechanism

comes to the rescue. Instead of simply waiting for the Op descriptor to move to

the head of the queue, P helps executing in node v the operation from the head of

v queue — D0 in the example above. Thus, even if the initiator process of D0 is

suspended, the system still achieves progress.

As discussed later, while helping to execute operations D0,D1, . . . in node

v the process P removes their descriptors from the head of v queue and inserts

them to the appropriate child queues. Thus, while helping other processes execute

their operations in v, P moves Op descriptor closer to the head of v queue. Once P

helps all preceding operations to finish their execution in node v, it can finally begin

executing Op in v.

The process of executing an operation Op in a node v consists of the following

actions:

— Determine the set of child nodes C, in which Op execution should continue.

For example, execution of the count query on an external binary search tree

may continue in either single child or both children: consider the explanations

in Section 1.3 — the execution continues in both children iff node v is a fork
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node and in a single child (either left or right) otherwise. In contrast, the

insert operation should always be continued in a single child, since any

key should be stored in exactly one leaf of the tree.

— For each child c from the set C:

1. Modify c state (e.g., c subtree size), if necessary;

2. Insert Op descriptor to c operations queue, thus allowing Op to continue

its execution at lower levels of the tree;

— Remove Op descriptor from the head of v queue.

Note, that in the process of executing operationOp in nodev the said operation

only modifies states of v children, not v itself. Thus, no operation can ever modify

the root state, since the root is not a child of some other node. We shall overcome

that by introducing the fictive root node (Fig. 22). The fictive root does not contain

any state and has only one child (no matter howmany children each tree node should

have according to the tree structure) — the real tree root. The only purpose of the

fictive root is to allow operations to modify the state of the real root. The state of the

real root can be modified by operation Op while Op is being executed in the fictive

root, since the real root is the child of the fictive root.

Figure 22 – The fictive root of the tree with no state and the only child: the real root
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In the latter sections we will describe, how an operation Op can be executed

in a node v: either by using CAS-N (Section 2.4) or without it (Section 2.5).

Since we allow processes help each other, operation Op, initiated by process

P, in any node v can be executed by some other (helper) process. Thus, we need to

provide a mechanism for the process P by which it distinguishes between the two

following situations:

— Operation Op has not yet been executed in node v. Thus, the descriptor of

Op is still located somewhere in v queue. In that case, P needs to continue

executing operations from the head of v queue in node v.

— Operation Op has already been executed in node v. In that case, P can proceed

to execute Op in lower nodes from the subtree of v.

We can use timestamps to distinguish between these two situations. We de-

scribe that usage of timestamps with formulating and proving timestamps increasing

property.

Theorem 14. In each queue, operation timestamps form a monotonically in-

creasing sequence. More formally, if at any moment we traverse any queue Q from

the head to the tail and obtain t1,t2, . . .tn —a sequence of timestamps of descrip-

tors, located in Q, then t1 < t2 < . . . < tn will hold.

Proof. We prove the theorem by the induction on the tree structure. As the

induction basis, we will show that the statement holds for the tree root. As the

induction step, we will prove that, given that the statement holds for some node

pv, the statement holds for v — an arbitrary child of pv. Thus, the statement is

guaranteed to hold for each tree node.

— As requested in Section 2.1 and as explained in Section 2.6.2, the root queue

provides timestamp allocation mechanism with the following guarantees: if

descriptor of operation A is inserted to the root queue before descriptor of

operation B, then timestamp(A) < timestamp(B) holds. Thus, the

induction base is proven.

— Consider non-root node v and its parent pv. According to the induction as-

sumption, the statement holds for pv. Thus, at pv queue descriptor times-

tamps form a monotonically increasing sequence: t1 < t2 < . . . < tn.

Consider descriptors Di and Dj (Fig. 23), such that:

– Both Di and Dj should continue their execution at v;

– timestamp(Di) = ti;
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– timestamp(Dj) = tj;

– Di is located closer to the head of pv queue than Dj (therefore, Di was

inserted to pv queue prior to Dj) — thus according to the induction

assumption ti < tj.

Figure 23 – Descriptor Di is located closed to the head of pv queue than Dj, both

Di and Dj will continue their execution in v subtree

In that case, according to the algorithm, the execution of Dj in pv cannot

begin until the the execution of Di in pv is finished. Since the execution of

Di in pv includes inserting Di into v queue, the execution of Dj in pv cannot

begin until Di is inserted into v queue. Thus, Di is inserted into v queue prior

to Dj, thus the timestamps increasing property holds for v.

As follows from that property, the initiator process P can easily learn, whether

its operation Op has been executed in node v by using the following algorithm:

1. Try to read head_descriptor— the descriptor, located at the head of v

queue.

2. If the queue is empty, we conclude that some other process has executed Op

in node v. Thus, P continues traversing the tree, trying to execute Op at other

nodes.

3. Otherwise, P examines the timestamp of the obtained descriptor. If

head_descriptor.Timestamp > Op.Timestamp, P yet again

concludes, that some other process has executed Op at node v.
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4. Otherwise (head_descriptor.Timestamp 6 Op.Timestamp)

Op is still located in v queue: either at the head (if

head_descriptor.Timestamp = Op.Timestamp) or some-

where closer to the tail (if head_descriptor.Timestamp <

Op.Timestamp). In that case, P executes the operation, denoted by

head_descriptor at node v.

Therefore, we can implement the algorithm of executing all operations, up to

Op.Timestamp, from v queue the following way (Listing 8):

1 fun execute_until_timestamp(ts, v):

2 while true:

3 /*

4 Queue.peek() returns the first descriptor in FIFO order

5 */

6 head_descriptor := v.Queue.peek()

7 if head_descriptor = nil:

8 return

9 if head_descriptor.Timestamp > ts:

10 return

11 /*

12 execute_in_node changes states of v children

13 (in accordance with the operation, denoted by head_descriptor),

14 pushes head_descriptor to child queues,

15 removes head_descriptor from v queue

16 */

17 execute_in_node(head_descriptor, v)

Listing 8 – The algorithm to execute all operations, up to the specified timestamp

ts, from v queue

Also, we should have a method to determine whether the operation execution

has been finished or not. The motivation to introduce such a method is the following

situation:

1. Process P starts executing operation Op.

2. P inserts descriptor of Op to the root queue.

3. P is suspended by the OS.

4. Other processes finish the execution of Op.

5. After being resumed by the OS, P should be able to learn, whether Op has

already been executed or not.

We shall implement this capability by storing result pointer in each operation

descriptor (Fig. 24). This pointer will point to a specific memory location that stores
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either the operation result (if the operation execution has been already finished —

in that case P can return that result to the caller) or nil (if the operation execution

has not been finished yet — in that case P should continue traversing the tree and

finish Op execution).

Figure 24 – A glance into a descriptor internals: each descriptor contains at least

operation type (e.g. insert, remove, count), operation arguments (e.g., a key

to insert or remove) and the result pointer

2.3. Ways to achieve parallelism

As was stated in Section 2.1, operations should be applied to the tree in the

order, their descriptors were added to the root descriptor queue. Therefore, one can

wonder: how canwe achieve parallelism, while linearizing all operations via the root

queue? It seems, that our proposed solution is not better than the solutions, based on

the Universal Construction (see Section 1.8.3 for discussion on drawbacks of such

solutions). Our scheme has one major advantage over the Universal Construction.

As we remember, in solutions, based on the Universal Construction, execution of

modifying operationO2 could be started only after the execution of modifying oper-

ation O1 has been finished — otherwise, one of these operations faces unsuccessful

CAS and has to retry. In contrast, in our solution, two successful modifying opera-

tions may be executed in parallel if they are executed on different subtrees (Fig. 25).
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Figure 25 – After being routed to different subtrees, modifying operations O1 and

O2 may be executed in parallel, in contrast to the Universal Construction-based

solutions
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Note that a particular execution order, determined by the queue, is enforced

only in the root node — in the root node we execute O1 before starting executing

O2. At lower tree levels, we do not enforce a particular execution order. This can

be achieved because at lower tree levels O1 and O2 do not conflict with each other

anymore, since they operate on different subtrees. Thus, our logical order (in which

O1 precedesO2) does not require us to enforce a particular physical execution order

on these operations, i.e., executing O1 before starting executing O2.

2.4. Executing an operation in a node via CAS-N

2.4.1. CAS-N definition and implementation

CAS-N is a powerful concurrent primitive that takes N registers, N expected

values, and N new values as an input. After that, it atomically checks, whether

∀i ∈ [1 . . . N ] : value of i-th register equals to the i-th expected value. If so, it

modifies values of all registers, so that the value of thei-th register becomes equal to

the i-th new value, and returns true. Otherwise — if ∃j ∈ [1 . . . N ] : value of j-

th register does not equal to j-th expected value— it leaves all registers unmodified

and returns false. The pseudocode of CAS-N is presented on Listing 9:

1 fun multi_cas(n: int, Registers: [n]Register,

2 expected_values: [n]Value, new_values: [n]Value):

3 atomically:

4 for i ← 1 .. n:

5 v := Registers[i]

6 if v 6= expected_values[i]:

7 return false

8 for i ← 1 .. n:

9 Registers[i] ← new_values[i]

10 return true

Listing 9 – Pseudocode for CAS-N operation

We can use Two-Phase Locking protocol, described e.g., in [3], to implement

CAS-N the following way (Listing 10):

1 fun multi_cas(n: int, Registers: [n]Register, Locks: [n]Mutex,

2 expected_values: [n]Value, new_values: [n]Value):

3 for i ← 1 .. n:

4 Locks[i].lock()

5 v := Registers[i]

6 if v 6= expected_values[i]:

7 for j ← 1 .. i:

8 Locks[j].unlock()

9 return false

10 for i ← 1 .. n:
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11 Registers[i] ← new_values[i]

12 Locks[i].unlock()

13 return true

Listing 10 – Two-phase lock-based implementation of CAS-N

This implementation is lock-based, thus, it does not guarantee even the

obstruction-freedom (see Section 1.7 for discussion on concurrent progress guar-

antees). Moreover, it is prone to deadlocks [3] — thus, the need for an implementa-

tion, not suffering from these drawbacks, arise. Harris et al. [15] described software

lock-free implementation of CAS-N. Feldman et al. [10] showed that there exists a

practical wait-free implementation ofCAS-N. For efficiency reasons, it is possible to

implement special cases of CAS-N (e.g., CAS-2 [39]) in a hardware, making them

wait-free and extremely efficient (e.g., since the hardware implementation does dot

require dynamic memory allocation).

2.4.2. Using CAS-N for operation execution

As was discussed in Section 2.2, execution of operation Op in node v consists

of:

— Modifying states of v children;

— Modifying v child queues — inserting Op descriptor into some of them;

— Modifying v queue — removing Op descriptor from its head;

We can do it atomically using CAS-N. To allow atomic modification

of queues with CAS-N, we shall employ persistent queues (Fig. 26). We

can simply store a pointer to the current version of node persistent queue

in node.Q_Ptr register. After that, we can use CAS(&node.Q_Ptr,

cur_queue, new_queue) or CAS-N to try to atomically modify the queue

(see Section 1.8.3 for explanation on how CAS can be used to modify persistent

data structures).
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Figure 26 – Using CAS to atomically modify persistent queues

Multiple persistent queues have been studied and described in the literature.

Bankers queue [30] is considered one of the fastest and the most memory-optimal.

Node state can be modified either: 1) the same way as queues — via stor-

ing the current state in the heap and modifying the pointer to it located in the tree

node (this method is described in more details in Section 2.5); 2) directly in the tree

node — each component of the state (e.g., subtree size) is located directly in the

tree node and modified inplace. In the last case, CAS-N should be applied to each

component of the state.

Therefore, we can useCAS-N to atomically modify all the necessary registers:

child queue pointers, v queue pointer, and child states (Fig. 27).
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Figure 27 – Using CAS-N to atomically modify child queues, parent queue, and

child states in a binary tree. Here we store the node state in the heap and store

S_Ptr— a pointer to the node state — in the node. In that case, CAS-5 is

sufficient to modify all the required registers: both child queues, both child states

and the parent queue

IfCAS-N returnstruewe conclude that we have successfully executedOp in

node v. Otherwise, the CAS-N may return false because of any of the following

two reasons (Fig 28):

1. Other process has executed in node v the operation we are trying to execute,

including removal of its descriptor from the head of v queue (Fig. 28a).

2. Other process has inserted new operation descriptor to v queue, without exe-

cuting in node v the operation we are trying to execute (Fig. 28b).

(a) CAS-N fails due to other process

executing Op1 in v
(b) CAS-N fails due to other process inserting

new descriptor into v queue

Figure 28 – Reasons for CAS-N to return false
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We can distinguish between these two situations by peeking descriptor from

the head of v queue. If that descriptor still denotes the operation, we are trying to

execute—we conclude, that situation (2) happened and try to execute that operation

in v one more time. Otherwise, we can conclude, that some other process executed

the operation, we are trying to execute, in node v, i.e., situation (1) happened. In

that case, we may proceed to execute the next operation from v queue or to traverse

the tree, depending on whether our initiated operation has been executed in v or not

(see Section 2.2 for details).

Thus, the algorithm executing operation op in node v using CAS-N can be

implemented the following way (Listing 11):

1 fun execute_in_node(op, v):

2 while true:

3 cur_v_queue := v.Queue_Ptr

4 if cur_v_queue.peek() 6= op:

5 /* another process has executed op in v */

6 return

7 new_v_queue := cur_v_queue.pop_persistent()

8

9 cas_registers := [&v.Queue_Ptr]

10 cas_expected_values := [cur_v_queue]

11 cas_new_values := [new_v_queue]

12

13 C ← /*

14 set of v children in which the execution of op should continue

15 */

16 for c in C:

17 cur_child_state := c.State_Ptr

18 new_child_state := op.get_modified_state(cur_child_state)

19 cas_registers.append(&c.State_Ptr)

20 cas_expected_values.append(cur_child_state)

21 cas_new_values.append(new_child_state)

22

23 cur_child_queue = c.Queue_Ptr

24 new_child_queue := cur_child_queue.push_persistent(op)

25 cas_registers.append(&c.Queue_Ptr)

26 cas_expected_values.append(cur_child_queue)

27 cas_new_values.append(new_child_queue)

28

29 cas_res := multi_cas(

30 n = cas_registers.length(),

31 Registers = cas_registers,

32 expected_values = cas_expected_values,

33 new_values = cas_new_values

34 )



50

35 if cas_res:

36 return

37 /*

38 Otherwise, try to execute op in v

39 from the very beginning one more time

40 */

Listing 11 – Algorithm for executing operation op in node v using CAS-N

The algorithm is lock-free since each retry means that some other descriptor

was inserted into v queue, i.e., another process executed some operation in v parent.

2.5. Execution of an operation in a node without CAS-N

Despite the fact that CAS-N provides the ability to execute an operation in

a node atomically with lock-freedom progress guarantees, this concurrent primitive

remains very inefficient due to indirections and a dynamicmemory allocation. Thus,

we want to design a method to execute operations in a node without using CAS-N.

The algorithm to execute operation Op in node v consists of the following

steps:

1. Determine the set of children C, in which execution of Op should continue.

2. Traverse the set C. For each child c from C:

2.1. Atomically read c state.

2.2. If c state has not been modified by Op yet, modify it. We explain how

to do it below.

2.3. InsertOp descriptor toc queue if it has not been yet inserted. We explain

in Section 2.6.3 how to do it.

3. If Op descriptor has not been yet removed from v queue, remove it. We

explain in Section 2.6.4 how to do it.

Note, that the removal of Op descriptor from the head of v queue should be

done after the insertion of Op descriptor to child queues and modification of child

states are finished. Otherwise, the execution of later operations in v may start be-

fore the execution of Op in v is finished, which may break the main invariant (Sec-

tion 2.1). Consider, for example, the following scenario:

1. Descriptors ofO1 andO2 are located in v queue and execution of bothO1 and

O2 should be continued in v.Right (Fig. 29a).

2. Process P reads O1 descriptor from the head of v queue and starts executing

O1 in v: removes O1 descriptor from the head of v queue before inserting it

to v.Right queue (Fig. 29b).
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3. P is suspended by the OS.

4. Process R reads O2 descriptor from the head of v queue and executes O2 in

v: removes it from the head of v queue and inserts it to v.Right queue

(Fig. 29c).

5. ProcessP finishes executingO1 inv: insertsO1 descriptor tov.Right queue

(Fig. 29d). Thus, the descriptors are placed in v.Right queue in the wrong

order and the main invariant is broken: O2 will be applied to v.Right sub-

tree before O1, despite O1 descriptor was inserted to v queue before O2 de-

scriptor.

(a) The initial tree structure

(b) Process P removes O1 descriptor from

the head of the parent queue before inserting

it to the child queue

(c) Process R executes O2 in v

(d) Process P finishes executing O1 in node

v

Figure 29 – The main invariant is broken if a descriptor is removed from the head

of the parent queue before being inserted to child queues

Note also, that actions (2) and (3) may be executed by multiple processes

concurrently. Consider the following scenario:
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1. Descriptor of operation Op is located at the head of v queue, execution of Op

should continue at v.Left;

2. Processes P and Q both read Op descriptor from the head of v queue;

3. P and Q both try to modify v.Left state;

4. P and Q both try to push Op descriptor to v.Left queue;

5. P and Q both try to remove Op descriptor from the head of v queue;

Thus, inserting the descriptor to child queues, modifying child states, and re-

moving the descriptor from the parent queue should happen exactly once, no matter

how many processes are working on the descriptor concurrently.

Exactly-once insertion to and removal from queues is handled by our imple-

mentation of concurrent queues. Queues provide two procedures:

— push_if inserts the descriptor to the tail of the queue only if it has not been

inserted yet, otherwise, the queue is left unmodified. The implementation of

this procedure is discussed in Section 2.6.3.

— pop_if removes the descriptor from the head of the queue only if it has not

been removed yet, otherwise, the queue is left unmodified. The implementa-

tion of this procedure is discussed in Section 2.6.4.

Therefore, in this chapter we explain on how to change the node state exactly

once and how to read it atomically.

The main problem with reading the state atomically is that it may consist of

multiple fields. To solve this problem, we do not store the state directly inside the

node (Fig. 30a) — instead, the immutable state is located somewhere in the heap

and the node will contain only one field S_Ptr— the pointer to the heap location

of the state (Fig. 30b).
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(a) Storing node state inside the node

(b) Storing node state in a separate memory
location, while storing the pointer to it inside

the node

Figure 30 – Different methods of storing the node state

The state, located in the heap, is considered immutable and is never modified.

To modify the node state, we simply do the following (Fig. 31):

1. Create the structure, corresponding to the modified state, with an arbitrary set

of fields changed.

2. Place the modified state somewhere in the heap.

3. Change the node.S_Ptr so than it points to the modified state.
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Figure 31 – The modification of the node state via the creation of a new state

structure and change of S_Ptr

To read the state atomically, we simply read the S_Ptr register. After that,

we can safely access any field from the state structure, pointed at by the fetched

pointer, without worrying that the state structure is being modified concurrently by

another process. Since the structure is immutable, it can never be modified by an-

other process.

Now, we return to the problem of modifying the state exactly once. In the

state we shall store one additional field: Ts_Mod — timestamp of the operation,

that was the last to modify the state. Thus, if the operation Op is willing to modify

node v state, we should first read the current v state and acquire the last modification

timestamp.

— If Ts_Mod > Op.Timestamp then v state has been already modified by

Op. In that case, we simply do not try to modify v state according to Op

anymore.

— Otherwise, we create a new state (with Ts_Mod = Op.Timestamp) and

try to change the state pointer using CAS(&v.S_Ptr, cur_state,

new_state). We then go to the next step, no matter what was the CAS

result. If the CAS returned true—we have successfully modified the state,

otherwise (if the CAS returned false) some other process has already mod-

ified the state according to Op.
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Thus, the state is modified in accordance with each executed operation exactly

once. Therefore, the algorithm can be implemented the following way (Listing 12):

1 fun execute_in_node(op, v):

2 C ← /* set of v children in which execution of op should continue */

3 for c in C:

4 cur_state := v.State_Ptr

5 if cur_state.Ts_Mod < op.Timestamp:

6 new_state := op.get_modified_state(cur_state)

7 new_state.Ts_Mod ← op.Timestamp

8 CAS(&v.State_Ptr, cur_state, new_state)

9 c.Queue.push_if(op)

10 v.Queue.pop_if(op)

Listing 12 – Algorithm for executing operation op in node v without using CAS-N

2.6. Operation queue implementation

2.6.1. Queue structure

We implement all the necessary operations on a slightly modified version of

the Michael-Scott queue [27].

Wemaintain the descriptor queue as a linked list of nodes. Each node contains

two fields (Listing 13, Fig. 32):

— Data, that stores the operation descriptor.

— Next, that stores a pointer to the next node in the queue, or nil if that node

is the last in the queue.

Figure 32 – Queue node structure

1 type QueueNode = struct {

2 Data: OperationDescriptor,

3 Next: QueueNode*

4 }

Listing 13 – Queue node structure
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For each queue we maintain two pointers: Tail, that points to the last node

of the queue, and Head, that points to the node before the first node of the queue

(Fig. 33). Note that the node at Head pointer does not store any data, residing in the

queue. This node is considered dummy and only the node at Head.Next pointer

contains the first real descriptor in the queue.

Figure 33 – Queue structure

An empty queue consists of a single dummy node, pointed at by both Head

and Tail pointers (Fig. 34).

Figure 34 – Empty queue structure

2.6.2. push with acquiring operation timestamp

As discussed in Section 2.1, the operation queue in the root node should pro-

vide timestamp allocation mechanism, with the following guarantees: if the descrip-

tor of operation A was added to the root queue before the descriptor of the operation

B, then timestamp(A) < timestamp(B) should hold.

Note, that the descriptor becomes visible to all the system processes at the

moment it is added to the root queue, and, as described in Section 2.2, the system

processes examine timestamps of all descriptors in order to execute their operations.



57

Thus, the timestamp should be written to the descriptor.Timestamp field

before the descriptor is added to the root queue.

As was stated in Section 2.6.1, we can use a slight modification of Michael-

Scott queue [27] to implement the timestanp alocationmechanism for the root queue.

The algorithm can be structured the following way:

1. Read cur_tail := Queue.Tail — the current queue tail to learn the

maximal allocated timestamp and start inserting the new descriptor to the tail

of the queue. At this moment, multiple possible situations can happen:

— The queue is not empty and the tail points to the latest added descriptor

(Fig. 35).

Figure 35 – The queue is not empty and the tail points to the latest added descriptor

Thus, that descriptor contains the maximal timestamp, allocated

by now and we can learn that timestamp by simply reading

cur_tail.Data.Timestamp

— The queue is empty, but at least one node has been added to it since the

beginning of the execution (Fig. 36). In that case, cur_tail points to

the node that was the last removed from the queue, as guaranteed by the

Michael-Scott queue structure [27].
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Figure 36 – The queue is empty but it was non-empty at least once

Therefore, the node, pointed at by cur_tail, is the last node added to

the queue, thus it contains the maximal allocated timestamp. Therefore,

as in the previous case, we can learn the maximal allocated timestamp

by reading cur_tail.Data.Timestamp.

— The queue is empty and not a single node has been inserted to it since the

beginning of the execution. In that case, the cur_tail points at the

dummy node, as guaranteed by the Michael-Scott queue structure [27]

and stated in Section 2.6.1 (Fig 37).

Figure 37 – The queue has always been empty

We may consider zero to be the maximal timestamp, allo-

cated at the beginning of the execution. Thus, we construct

a dummy node so that it contains zero as its timestamp (i.e.

Dummy_Node.Data.Timestamp = 0). Thus, yet again
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we we can learn the maximal allocated timestamp by reading

cur_tail.Data.Timestamp

— The queue is not empty and the tail does not point to the latest added de-

scriptor (Fig. 38). This can happen if another descriptor is being inserted

to the queue concurrently.

Figure 38 – The queue is not empty and the tail does not point to the latest added

descriptor

In that case, as described later, we retry the whole procedure from

the very beginning, i.e., from step (1). Thus, it does not mat-

ter, which timestamp we learn — for example, we may choose

cur_tail.Data.Timestamp to be the learned timestamp.

Therefore, in all possible cases we can learn the maximal allocated timestamp

by reading cur_tail.Data.Timestamp.

2. After learning the maximal allocated timestamp, we set

new_descriptor.Timestamp equal to the the learned maximal

timestamp incremented by one. Note, that this write operation is not

concurrent with any read or write operation on new_descriptor.

Indeed, writing new_descriptor.Timestamp is performed only by

the initiator process on the new_descriptor before it is inserted to the

queue, and thus before the new_descriptor becomes visible to other

processes.

3. We try to add the new descriptor to the tail of the queue the same way

we insert elements to the Michael-Scott queue: we simply try to perform

CAS(&cur_tail.Next, nil, new_node). We can have two pos-

sible outcomes of that CAS:

— If the CAS returns false, then some other process successfully inserted

its descriptor to the tail of the queue thus modifying cur_tail.Next.

In that case, we help the successful process finish its insertion. We be-
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gin with reading other_process_tail := cur_tail.Next,

after that we try to move the queue tail forward by executing

CAS(&Queue.Tail, cur_tail, other_process_tail)

(Fig. 39).

Figure 39 – Moving the queue tail forward

As any CAS, that CAS can be either 1) successful — in that case we

have helped the other process and moved the queue tail forward; 2) un-

successful— in that case, some other process helped before us. In either

case, we simply retry the whole procedure from the from step (1).

— If CAS returns true, we added the descriptor to the tail of the queue.

In that case, as in the previous one, we should move the queue tail for-

ward by CAS(&Queue.Tail, cur_tail, new_node). After

that, we simply finish the insertion, no matter is the second CAS suc-

cessful (if so, we moved Queue.Tail forward) or not (in that case,

some other process moved it to help us, as described above).

The algorithm can be implemented the following way (Listing 14):

1 /*

2 Executed by the initiator process at the

3 beginning of the operation execution

4 */

5 fun push_acquire_timestamp(Root_Queue, descriptor):

6 new_node := new QueueNode(Data = descriptor, Next = nil)

7 while true:

8 cur_tail := Root_Queue.Tail

9 max_timestamp := cur_tail.Data.Timestamp

10 descriptor.Timestamp ← max_timestamp + 1

11 if CAS(&cur_tail.Next, nil, new_node):

12 CAS(&Root_Queue.Tail, cur_tail, new_node)

13 return
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14 else:

15 other_process_tail := cur_tail.Next

16 CAS(&Root_Queue.Tail, cur_tail, other_process_tail)

17 /* Retry the whole operation from the very beginning */

Listing 14 – Implementation of the push procedure with acquiring operation

timestamp

2.6.3. push_if implementation

As discussed in Section 2.5, non-root queues should provide push_if op-

eration that inserts a descriptor into the queue if it was not inserted yet (otherwise,

the queue should be left unmodified). Just like in the previous case, the procedure is

based on the Michael-Scott queue insertion algorithm [27] and can be implemented

the following way:

1. We learn the current queue tail by reading cur_tail := Queue.Tail;

2. We learn the maximal operation timestamp, that has ever been inserted

to the queue. We do it the same way as in Section 2.6.2 — by reading

cur_queue.Data.Timestamp value.

3. If that timestamp is greater than or equal to descriptor.Timestamp, we

can conclude that the descriptor was already inserted to the queue. Thus, we

can simply finish the operation, leaving the queue unmodified.

As was stated in Section 2.6.2, we can learn the timestamp not from the last

node, but from the penultimate node (Fig. 40).

Figure 40 – The queue tail does not point to the latest added descriptor

Nevertheless, our conclusion remains the same: if at least one descriptor

in the queue has Timestamp > descriptor.Timestamp (even if

the said descriptor is located in the penultimate queue node), it means that

descriptor has already been inserted to the queue and we can simply fin-

ish the insertion.
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4. Otherwise, we try to insert the descriptor to the tail of the queue the same

way, we did in Section 2.6.2. Note, that if the acquired cur_tail pointer

was pointing to the penultimate node, we shall simply retry the insertion from

the very beginning.

Therefore, the algorithm can be implemented the following way (Listing 15):

1 fun push_if(Non_Root_Queue, descriptor):

2 new_node := new QueueNode(Data = descriptor, Next = nil)

3 while true:

4 cur_tail := Non_Root_Queue.Tail

5 if cur_tail.Data.Timestamp > descriptor.Timestamp:

6 return

7 elif CAS(&cur_tail.Next, nil, new_node):

8 CAS(&Non_Root_Queue.Tail, cur_tail, new_node)

9 return

10 else:

11 other_process_tail := cur_tail.Next

12 CAS(&Non_Root_Queue.Tail, cur_tail, other_process_tail)

13 /* Retry the whole operation from the very beginning */

Listing 15 – Implementation of the push_if procedure

2.6.4. pop_if implementation

As discussed in Section 2.5, the operation queue in any node should provide

pop_if operation, that tries to remove descriptor with the specified timestamp TS

from the head of the queue. If descriptor D with timestamp TS is still located at the

head of the queue, it is removed (Fig. 41a). Otherwise, the queue is left unmodified

(Fig. 41b) — in this case, we assume that D was removed by some other process.

We assume that at some moment D was located at the head of the queue (it may still

be located at the head of the queue or it may be already removed), i.e., we never try

to remove a descriptor from the middle of the queue (Fig. 41c).
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(a) pop_if: removing the descriptor from
the head of the queue

(b) pop_if: the descriptor has already
been removed from the head of the queue,

the queue is not modified

(c) pop_if: cannot try to remove a
descriptor that was never located at the head

of the queue

Figure 41 – Execution of pop_if procedure for different queues

Yet again, we can use slightly modified version of Michael-Scott queue [27]

to implement such a procedure in the following way:

1. Acquire head and tail nodes by reading cur_head := Queue.Head and

cur_tail := Queue.Tail, respectively. According to the Michael-

Scott queue structure [27] the head node is a dummy node, that does not con-

tain any data. Instead, the first descriptor is located at the node, pointed at by

cur_head.Next (Fig. 42).
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Figure 42 – The head node is a dummy node that does not store any data

2. If cur_head and cur_tail point to a single node, queue may be

empty. In that case, to distinguish empty queue from non-empty, we read

cur_tail.Next. Two possible situations can happen:

— cur_tail.Next = nil (Fig. 43). In that case, the queue is empty

and we finish the procedure, leaving the queue unmodified — we can-

not remove the node from an empty queue. We can conclude that the

descriptor was already removed by another process.

Figure 43 – The queue is empty

— cur_tail.Next 6= nil (Fig. 44). In that case,the queue is not

empty since new descriptor is being concurrently inserted to the queue.

We should help finish the insertion by trying to move Queue.Tail

forward the same way that was described in Section 2.6.2.



65

Figure 44 – The queue is not empty, we move the queue tail forward

After that, we simply retry the the pop_if procedure from the very

beginning, i.e., from step (1).

3. If cur_head and cur_tail point to different nodes, we continue execut-

ing the operation. We begin with reading first_timestamp — times-

tamp of the first descriptor of the queue. The said timestamp can be acquired

in next_head := cur_head.Next node (Fig. 45).

Figure 45 – Acquiring first_timestamp

— If first_timestamp > TS (e.g., is TS = 4), we can conclude

that the descriptor with timestamp TS has already been removed by an-

other process. Thus, we simply finish the pop_if procedure leaving

the queue unmodified.

— Otherwise, first_timestamp = TS. Note that

first_timestamp cannot be less than TS since, as was stated
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above, we never try to remove a node, that has never been located at

the head of the queue.

In that case, we try to move the queue head forward by execut-

ing CAS(&Queue.Head, cur_head, next_head). If the CAS

succeeds, we conclude that we have removed the requested descrip-

tor from the queue and finish the operation. Otherwise, we conclude

that some other process removed the requested descriptor and modified

Queue.Head. In that case, we yet again simply finish the execution

of the procedure.

Therefore, pop_if can be implemented in the following way (Listing 16):

1 fun pop_if(Queue, timestamp):

2 while true:

3 cur_head := Queue.Head

4 cur_tail := Queue.Tail

5 if cur_head = cur_tail:

6 next_tail := cur_tail.Next

7 if next_tail = nil:

8 return

9 else:

10 CAS(&Queue.Tail, cur_tail, next_tail)

11 /* Retry the operation from the very beginning */

12 else:

13 next_head := cur_head.Next

14 first_timestamp := next_head.Data.Timestamp

15 if first_timestamp = timestamp:

16 CAS(&Queue.Head, cur_head, next_head)

17 return

Listing 16 – Implementation of the pop_if procedure

2.6.5. Queues progress guarantees and implementation details

Note that all the queue operations described above are lock-free, just like in

the original queue by Michael and Scott [27]. Indeed, the repetition of each proce-

dure from the very beginning indicates that other process successfully executed its

procedure, thus modifying the queue.

Of course, we can take other queue algorithms as a basis for our solu-

tion, not only the one proposed by Michael and Scott. For example, we can

use fetch-and-add queue, proposed by Yang et al. [36] or practical wait-

free queue, proposed by Kogan and Petrank [22]: pop_if, push_if, and
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push_acquire_timestamp implementation principles remain the same. We

use Michael-Scott queue only due to the simplicity of its implementation.

2.7. One possible tree balancing strategy

Until now, we considered only unbalanced trees. However, using unbalanced

trees may result in height ∈ ω(logN). Since most of the queries (e.g., insert,

remove or contains) are executed on a tree in Θ(height) time, using unbal-

anced trees may result in these queries being executed in non-optimal ω(logN)

time. Therefore, we must design an algorithm to keep the tree balanced. One possi-

ble balancing strategy is based on subtree rebuilding and is similar to the balancing

strategy proposed in [6]. The idea of this approach can be formulated the following

way: when the number of modifications, applied to a particular subtree, exceeds a

threshold, we completely rebuild that subtree, making it perfectly balanced (Fig 46).
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Figure 46 – Tree balancing via subtree rebuilding: when the number of

modifications, applied to a subtree, exceeds a threshold, we rebuild the whole

subtree
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For each tree node we maintain Mod_Cnt — the number of modifications,

applied to the subtree of this node. We store Mod_Cnt in the node state. Moreover,

for each node we store an immutable number Init_Sz— initial size of its subtree,

i.e., the number of data items in that node subtree at the moment of node creation

(node can be created when a new data item is inserted to the tree or when the subtree,

where the node is located, is rebuilt). We rebuild the node subtree when Mod_Cnt

> K · Init_Sz, where K is a predefined constant.

We check whether the subtree of node v needs rebuilding (and perform the

rebuilding itself) only before inserting an operation descriptor to v queue and chang-

ing v state. Therefore, we can perform v subtree rebuilding only during execution

of some operation in v parent.

Consider node v, its parent pv and operation Op, that is being executed in

pv and that should continue its execution in v subtree (and, therefore, its descriptor

should be inserted to v queue). Before inserting Op to v queue and changing v state,

we check whether Mod_Cnt in v will exceed the threshold after applying Op to v

subtree (Fig. 47).

Figure 47 – We check whether the subtree of v should be rebuilt or not

The algorithm for the check whether the subtree of v should be rebuilt or not,

is the following:

1. If Op is not a modifying operation (i.e. Op is a read-only operation), e.g.,

contains or count, we should not rebuild v subtree, since Op does not

increase the number of modifications after being applied to v subtree.

2. Otherwise, atomically read v state.
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3. If Ts_Mod > Op.Timestamp, then v state has already been modified by

Op. Thus, Op has already been counted in the number of modifications, ap-

plied to v subtree and we do not need to rebuild v subtree.

4. Otherwise, check Mod_Cnt. If Mod_Cnt + 1 < K · init_sz, then
the application of Op does not lead to Mod_Cnt exceeding the threshold

(and, thus, to v subtree being rebuilt). Therefore, we should only increment

Mod_Cnt. The increment of Mod_Cnt should be performed atomically with

all other state changes and should be performed as discussed in Section 2.5.

5. Otherwise, v subtree should be rebuilt.

Note, that v subtree can contain unfinished operations: their descriptors still

reside in queues in v subtree (Fig. 48).

Figure 48 – Unfinished operations in the subtree, that should be rebuilt

We should finish all such unfinished operations before rebuilding the subtree.

To do so, we traverse v subtree and in each node c ∈ subtree(v) execute all

operations, residing in c queue.

After that, we traverse v subtree, that contains no more unfinished operations,

and collect all the data items (e.g. keys or key-value pairs) stored in it. After col-

lecting them, we build a balanced subtree, containing all these data items (Fig. 49).
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Figure 49 – Subtree rebuilding consists of collecting all data items (keys, in this

example) in the old unbalanced subtree and building a new, balanced one

Each node of the new subtree should be initialized with Mod_Cnt = 0 and

contain correct Init_Sz. We should set Ts_Mod of each node in the rebuilt sub-

tree so that Op and all later operations (with timestamp > Op.Timestamp)

can still modify the new subtree, but all the preceding operations (with timestamp

< Op.Timestamp) cannot. Thus, we set Ts_Mod = Op.Timestamp - 1.

After that, we take v’ — the root of the new subtree and try to modify the

pointer that pointed at v, so that it starts to point at v’. For example, if v was the

left child of pv, we execute CAS(&pv.Left, v, v’); if v was the right child

of pv, we execute CAS(&pv.Right, v, v’).

Regardless of the return value of that CAS, we resume the execution of Op in

pv: we modify v’ state, insert Op descriptor to v’ queue (here v’ is the root of the

rebuilt subtree) and remove Op descriptor from pv queue. Indeed, if CAS returned

true, we conclude that we have successfully completed the rebuilding and can

proceed with the execution of Op in pv. Otherwise, if CAS returned false, we

conclude that the rebuilding was completed by some other process and it already

modified the necessary child pointer. Yet again, in that case we proceed with the

execution of Op in pv.

Note that new descriptors cannot appear in v subtree until the rebuild is com-

pleted, since new descriptors cannot be inserted to v queue until the execution of

Op in pv is finished, according to the main invariant (Fig. 50). Since the execution

of Op in pv includes rebuilding v subtree, all the later descriptors are inserted to the

rebuilt subtree.
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Figure 50 – New descriptors cannot appear in v subtree during the rebuilding

procedure

Conclusions on Chapter 2

In this chapter we described the algorithm in general terms, without applying it

to any particular data structure. We outlined the problems that we may face trying to

apply the sequential algorithm for asymptotically efficient range queries execution

in a concurrent setting. We introduced our solution to the aforementioned problems

in queue ordering mechanism, providing operations linearization. We described the

overall process of executing an operation on a tree, while also explaining the details

of executing an operation in a single node. We studied both the CAS-N-based so-

lution and the solution without using CAS-N, that relies on an explained concurrent

queue implementation. Finally, we studied one possible tree balancing strategy (the

one, based on subtree rebuilding), while leaving other balancing strategies for the

future work.
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CHAPTER 3. BINARY SEARCH TREE, SUPPORTING THE COUNT

RANGE QUERY

3.1. Tree structure

As stated in Section 1.3, we implement thecount query on an external binary

search tree. We have three types of nodes in the tree (Listing. 17):

— KeyNode is a leaf node containing exactly one key.

— EmptyNode a leaf node with no key.

— InternalNode. Each internal node has exactly two children (left and

right). Internal nodes do not store keys directly, they store only the in-

formation required for the query routing. In our case, each internal node

stores Right_Subtree_Min value, as discussed in Section 1.3. All keys

less than Right_Subtree_Min are stored in the left subtree, while all

keys greater than or equal to Right_Subtree_Min are stored in the right

subtree. Each internal node maintains the state: 1) Ts_Mod, and 2) cur-

rent subtree size (see Section 2.5 for discussion on state maintenance algo-

rithm). Moreover, each internal node stores Mod_Cnt and immutable value

Init_Sz (see Section 2.7 for details on the rebuilding algorithm).

1 type KeyNode = struct {

2 Key: KeyType

3 }

4

5 type EmptyNode = struct {}

6

7 type InternalNodeState = struct {

8 Ts_Mod: Timestamp,

9 Mod_Cnt: uint,

10 Size: uint

11 }

12

13 type InternalNode = struct {

14 S_Ptr: InternalNodeState*,

15 Left: Node*,

16 Right: Node*,

17 Right_Subtree_Min: KeyType

18 }

Listing 17 – Tree nodes definition

3.2. insert and remove operations

Execution of a scalar (insert, remove, contains) operation on a

key k begins with traversing the tree downwards, from the root to the appro-
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priate leaf, where key k should exist. In each visited internal node if k <

node.Right_Subtree_Min, we continue the traversal in node.Left, oth-

erwise — in node.Right.

As stated in Section 1.3, while executing insert operation we increase by

one the subtree size of each visited node on the path from the root to the appropriate

leaf. Similarly, while executing remove operation we decrease by one the subtree

size of each visited node on the path from the root to the appropriate leaf. See

Section 2.5 for an explanation of how the state of the node can be changed.

Consider an external binary search tree that contains key 7 (Fig. 51).

Figure 51 – External binary search tree that contains key 7

Suppose we are going to insert key 7 at this tree. If we increase by one the

subtree size of each traversed inner node, we end up with incorrect subtree sizes:

subtree sizes of visited inner nodes become greater than they should be, since 7

already existed in the tree (Fig. 52).
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Figure 52 – insert(7) to the external binary search tree containing key 7

We face similar problem when someone removing a key k, that does not exist

in the tree: subtree sizes of visited inner nodes become less than they should be.

Thus, we should not execute insert(k) operation if key k already exists

in the tree. Also, we should not execute remove(k) operation if key k does not

exist in the tree.

The initiator process, after inserting the descriptor of insert(k) or

remove(k), should check whether key k exist in the tree (Fig. 53). We describe

how to implement this check in Section 3.3.
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Figure 53 – Check whether key k exist in the tree

After determining the key existence, the initiator process makes a decision

whether its initiated operation should be executed or not:

— insert(k) operation should be executed if key k does not exist in the set.

— remove(k) operation should be executed if key k exists in the set.

After making a decision, the initiator process stores it in

descriptor.Status field. descriptor.Status should be set to

true if the operation should be executed and false, otherwise.

Note that for each insert or remove descriptor from the fictive root queue

the check is done in parallel by the process that initiated that operation.

Suppose Op is the operation, corresponding to the descriptor from the head of

the fictive root queue. The process of executing Op in the fictive root node differs

a bit from an ordinary execution process in a node:

1. If Op is contains or count operation, it should be propagated directly to

the real root queue without extra checks;

2. Otherwise (if Op is insert or remove), we check Op.Status field;

3. If Op.Status has not been set yet (i.e. it equals to nil), we conclude

that the initiator process has not yet checked whether the key exists in the

tree. Thus, it is not known yet whether Op should be executed or not. In

that case, we help the initiator process make the decision: we determine

whether Op.Key exist in the tree and try to set Op.Status ourselves, if
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Op.Status is not set yet (other helper processes or the initiator process

may set it before us).

4. After the Op.Status is set (either by us, or by other helper process or by the

initiator process) we can finish the execution of Op in the fictive root node:

— IfOp.Status = true, we should executeOp in the fictive root node

in an ordinary way: rebuild the tree if necessary (see Section 2.7 for

details), modify the state of the real root, insert Op descriptor to the real

root queue and remove Op from the fictive root queue.

— Otherwise, Op should not be executed at all, since it does not affect the

tree (because an insertion of an existing key and a removal of a non-

existing one do not modify the tree). Thus, Op descriptor should simply

be removed from the fictive root queue.

When executing insert(k) operation, we may end up in one of the two

possible situations (Fig. 54):

— After traversing the tree, we encounter an EmptyNode leaf. In that case, we

simply replace that leaf with new KeyNode, storing key k (Fig. 54a).

— After traversing the tree, we encounter a KeyNode leaf, storing key k’ 6=
k. In that case, we simply replace that leaf with a new subtree, consisting of

three nodes (Fig. 54b). The root of this subtree is an InternalNode. Its left

child is a KeyNode that stores the least of two keys, k and k’. Thus, the left

child stores a key min(k, k’). Similarly, the right child is a KeyNode

that stores the largest of two keys, k and k’. Thus, the right child stores

a key max(k, k’). Since the right subtree of the InnerNode contains

only max(k, k’) key, we set Right_Subtree_Min = max(k, k’)

in the root of the new subtree.
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(a) Execution of insert(k)
operation on an EmptyNode leaf.

(b) Execution of insert(k) operation on a

KeyNode leaf.

Figure 54 – Execution of insert(k) operation on different leaves

When executing remove(k) operation, we find the KeyNode leaf, storing

key k. After that, we replace that KeyNode with an EmptyNode (Fig. 55).

Figure 55 – Execution of remove(k) operation

Our remove implementation can create some amount of empty nodes in the

tree: these nodes do not store any data and just waste space. However, the rebuilding

procedure will get rid of them and the rebuilt subtree will consist only of KeyNode

leaves and internal nodes.
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If these tree transformations are implemented improperly, stalled processes

may break the tree structure. Consider the tree, consisting of an inner nodev and two

its leaf children, storing keys 3 and 5. Suppose descriptor of operation remove(5)

is located at the head of v queue. The second descriptor in v queue corresponds to

the operation insert(5) (Fig 56a). Trivially, after executing remove(5) and

insert(5) after that the tree should remain unmodified.

Consider the following sequence of actions:

1. Process P reads remove(5) descriptor from the head of v queue (Fig 56b).

2. Process P is suspended by the OS.

3. Process R reads remove(5) descriptor from the head of v queue and exe-

cutes the operation, replacing v right child with EmptyNode (Fig 56c).

4. Process R reads insert(5) descriptor from the head of v queue and exe-

cutes the operation, replacing v right child with KeyNode{ Key = 5 }

(Fig 56d).

5. Process P is resumed by the OS.

6. Process P executes remove(5) in v, replacing v right child with

EmptyNode (Fig 56e).
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(a) Initial tree structure
(b) P reads remove(5) descriptor from

the head of v queue

(c) R executes remove(5) (d) R executes insert(5)

(e) Stalled process P replaces v right child

with EmptyNode

Figure 56 – Stalled processes can break the tree structure

Therefore, after the execution of remove(5) and insert(5) the tree is

modified, instead of remaining unmodified.

We can solve this problem by augmenting each tree node with

Creation_Ts— timestamp of the operation, that created that node. If operation

Op wants to replace node v with some other node (e.g., replace EmptyNode with

KeyNode), Op first checks whether v.Creation_Ts > Op.Timestamp

holds. If so, v was created by Op or some later operation and Op should not replace

v. Otherwise, we try to replace v using CAS(&child_ptr, v, new_node).
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No matter what was the result of the CAS, we may finish the execution of Op.

Indeed, if the CAS returns true, we conclude that we have replaced the node

successfully. Otherwise, we conclude that some other process has replaced the

node while helping Op.

3.3. Determining the existence of a key

Suppose descriptor of operation Op, that is either insert(k) or

remove(k), is located in the fictive root queue and we need to check, whether

key k exist in the tree, to determine, whether Op should be executed or not.

Simply checking whether the tree contains KeyNode { Key = k } is not

sufficient (Fig. 57). Indeed, consider a tree, where key k does not exist physically:

there is no node, storing key k in the tree. However, descriptor of insert(k)

exists in the queue of some tree node. Moreover, timestamp of insert(k) is less

than Op.Timestamp (Fig. 57a). Thus, Op should consider key k as existing in

the tree, since that insert(k) operation should linearize before Op, according to

its timestamp.

Similarly, even if key k is physically stored in some tree leaf, it may not

exist in the tree logically, if descriptor of remove(k) with timestamp less than

Op.Timestamp exist somewhere in the tree (Fig. 57b).

(a) Key 5 does not exist in the tree

physically. However, from Op point of

view, it exists in the tree logically.

(b) Key 5 exists in the tree physically.

However, from Op point of view, it does not

exist in the tree logically.

Figure 57 – A simple check whether the tree contains KeyNode { Key = k }

is insufficient
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We may formulate the algorithm to check whether key k logically exists in

the tree at timestamp Op.Timestamp the following way:

1. Collect all descriptors, corresponding to operations insert(k) and

remove(k) with timestamps less than Op.Timestamp.

2. If we have not collected anything, traverse the tree, looking for key k.

— If we have reached EmptyNode, then key k does not exist in the tree.

— If we have reached KeyNode, storing key k’ 6= k, then key k does

not exist in the tree.

— Otherwise (we have reached KeyNode, storing key k), then key k exist

in the tree.

3. Otherwise we consider descriptor D— the collected descriptor with the max-

imal timestamp.

— If D corresponds to insert(k) operation, we conclude that the key

k exists in the tree. Indeed, operation D may either be: 1) executed

successfully — thus, key k is inserted to the tree by that operation;

2) discarded, because key k already exists in the tree. In either case,

key k exists in the tree after applying the operation with timestamp

D.Timestamp and there is no remove(k) operation with timestamp

from the semi-interval [D.Timestamp; Op.Timestamp). Thus,

from Op point of view the key k still exist in the tree.

— If D corresponds to remove(k) operation, we conclude that the key k

does not exist in the tree (can be proven similarly to the previous case).

The main question is: where we can find descriptors of operations

insert(k) and remove(k)? The answer is quite simple: remember, that the

process, executing such an operation on key k, visit only nodes on the path from

the fictive root to the leaf, that would contain key k, if it existed in the tree. Thus,

we should look for descriptors of insert(k) and remove(k) only in queues of

such nodes.

Suppose in the queue of a node v we have found a descriptor D, denoting ei-

ther insert(k) or remove(k) operation. In that case, there is no need to look

for insert(k) and remove(k) descriptors in v subtree. Indeed, descriptors are

propagated downwards in the order, determined by their timestamps. Thus, times-

tamps of descriptors, found in v subtree, will be less than D.Timestamp. Since

we need to consider only the highest-timestamped descriptor in order to determine
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the existence of key k, we need not to consider descriptors, timestamps of which are

guaranteed to be less than D.Timestamp.

Note, that each considered queue should be traversed till the very tail. In-

deed, suppose we find descriptor D, denoting either insert(k) or remove(k)

operation in v queue. The very same v queue could contain higher-timestamped de-

scriptor ofremove(k) orinsert(k), that would change our opinion onwhether

key k exists in the set. Such higher-timestamped descriptor may be located closer

to the tail of v queue, thus we should keep traversing v queue even after we have

found first insert(k) or remove(k) descriptor.

However, suppose in v queue we find descriptor D with D.Timestamp >

Op.Timestamp. All further (located closer to the tail) descriptors from v queue

will have even greater timestamp. Since we should consider only descriptors, times-

tamps of which are less than Op.Timestamp we do not need to consider any fur-

ther descriptor from v queue. Thus, we may finish traversing v queue as soon as we

encounter descriptor D with D.Timestamp > Op.Timestamp.

Note, that if in the traversal process we encounter either:

— Node with Creation_Ts > Op.Timestamp;

— Inner node with Mod_Ts > Op.Timestamp;

— Descriptor D, such that D.Timestamp > Op.Timestamp, if D is located

not in the fictive root queue;

we conclude that the decision, whether Op should be executed or not, was

already done, since at least one descriptor with Timestamp > Op.Timestamp

was propagated downwards from the fictive root node. We can learn the decision,

whether Op should be executed or not, by reading Op.Status field.

The algorithm to check the existence is shown on the following pseudocode

(Listing 18):

1 /*

2 Searches for descriptors of insert(k) and remove(k)

3 in the fictive root queue

4 */

5 fun process_topmost_queue(Root_Queue, ts, key):

6 result := nil

7 for descriptor ← Root_Queue:

8 if descriptor.Timestamp > ts:

9 break

10 case descriptor of

11 | InsertDescriptor { Key = key } →
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12 result ← true

13 | RemoveDescriptor { Key = key } →
14 result ← false

15 | _ →
16 continue

17 return result

18

19

20 /*

21 Searches for descriptors of insert(k) and remove(k)

22 in a queue, not located in the fictive root node

23 */

24 fun process_queue(Non_Root_Queue, ts, key):

25 result := nil

26 for descriptor ← Non_Root_Queue:

27 if descriptor.Timestamp > ts:

28 /*

29 Decision whether the operation Op should

30 be executed or not has already been made

31 by another process. We use special value

32 ANSWER_NOT_NEEDED to tell the caller

33 about this situation.

34 */

35 return ANSWER_NOT_NEEDED

36 case descriptor of

37 | InsertDescriptor { Key = key } →
38 result ← true

39 | RemoveDescriptor { Key = key } →
40 result ← false

41 | _ →
42 continue

43 return result

44

45 fun key_exists(Set, ts, key):

46 res := process_topmost_queue(Set.Root.Queue, ts, key)

47 if res 6= nil:

48 return res

49 cur_node := Set.Root.Child /* the real tree root */

50 while true:

51 case cur_node of

52 | EmptyNode →
53 if cur_node.Creation_Ts > ts:

54 return ANSWER_NOT_NEEDED

55 else:

56 return false

57 | KeyNode →
58 if cur_node.Creation_Ts > ts:

59 return ANSWER_NOT_NEEDED
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60 else:

61 return cur_node.Key = key

62 | InnerNode →
63 cur_state := cur_node.S_Ptr

64 if cur_state.Mod_Ts > ts:

65 return ANSWER_NOT_NEEDED

66 res := process_queue(cur_node.Queue, ts, key)

67 if res 6= nil:

68 /* res ∈ {ANSWER_NOT_NEEDED, true, false} */

69 return res

70 elif key < cur_node.Right_Subtree_Min:

71 cur_node ← cur_node.Left

72 else:

73 cur_node ← cur_node.Right

Listing 18 – Learning, whether key k exists in the tree

3.4. Executing the count query

3.4.1. Query execution algorithm

Now we explain how to implement the count query according to the algo-

rithm, described in Section 1.3.

The result of the count query is an integer. In a node v we do the following:

— Add some value to the result;

— Continue the execution in some of v children;

count_both_borders(node, min, max) is executed in the follow-

ing way:

— If node is a KeyNode, we check whether min 6 node.Key 6 max

holds. If so, we add 1 to the result, otherwise, we add 0 to the result.

— If node is an EmptyNode, we add 0 to the result.

— If min > node.Right_Subtree_Min, we add 0 to the result and con-

tinue the execution in node.Right.

— If max < node.Right_Subtree_Min, we add 0 to the result and con-

tinue the execution in node.Left.

— Otherwise, min < node.Right_Subtree_Min 6 max. In that case,

we add 0 to the result, execute count_left_border in node.Left and

execute count_right_border in node.Right.

count_left_border(node, min) is executed in the following way:
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— If node is a KeyNode, we check whether node.Key > min holds. If so,

we add 1 to the result, otherwise, we add 0 to the result.

— If node is an EmptyNode, we add 0 to the result.

— If min > node.Right_Subtree_Min, we add 0 to the result and con-

tinue the execution in node.Right.

— Otherwise, min < node.Right_Subtree_Min. In that case, we get

the size of the right subtree:

– If node.Right is an EmptyNode, its size is 0;

– If node.Right is a KeyNode, its size is 1;

– If node.Right is an inner node we can read its size from the current

state (node.Right.S_Ptr.Size);

After that, we add right subtree size to the result and continue the execution

in node.Left.

count_right_border(node, max) is executed the following way:

— If node is a KeyNode, we check whether node.Key 6 max holds. If so,

we add 1 to the result, otherwise, we add 0 to the result.

— If node is an EmptyNode, we add 0 to the result;

— If max < node.Right_Subtree_Min, we add 0 to the result and con-

tinue the execution in node.Left.

— Otherwise, max > node.Right_Subtree_Min. In that case, we add

the size of the left subtree (this size can be calculated similarly to the previous

case) to the result and continue the execution in node.Right.

The main question is: how can we add some value to the result, given that

multiple processes can try to do it concurrently? The main problem is yet again

adding the value to the result exactly once. Suppose processes P and R are both

executing the count query in node v:

— P determines, that x should be added to the result.

— R determines, that x should be added to the result.

— P adds x to the result.

— R adds x to the result.

Therefore, the value x is added to the result twice, therefore the result is in-

correct.
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We studied two solutions for that problem: the one based on CAS-2 opera-

tion [39] (see Section 3.4.2) and the one without using CAS-2 (see Section 3.4.3).

3.4.2. Using CAS-2

We augment each count descriptor with Used boolean field. Suppose

count descriptor D is located in node v. In that case, D.Used may store either:

— true, if the value from node v was already added to the result.

— false, if the value from node v was not added to the result yet.

We add the value x, corresponding to the node v, to the result the following

way:

1. Read cur_res— the current value of the result.

2. Read D.Used field. If it contains true, we conclude that some other process

has already added x to the result, thus, we may finish. Otherwise, we proceed

to the next step.

3. We try to atomically change D.Used to true and increment the re-

sult using CAS-2([&D.Used, &Result], [false, cur_res],

[true, cur_res + x]).

4. If the CAS-2 returns true, we successfully incremented the result and may

finish.

5. Otherwise, we retry the addition from step (1). Note, that the CAS-2 may

return false in the two possible situations:

— Another process has added the value x to the result. In this case,

D.Used has been set to true and we simply finish on step (2) after

the retry.

— Another process incremented the result, but the value x has not been

added to the result yet. In this case, we try to perform the addition one

more time.

When propagating descriptor D downwards, we do not insert D itself to child

queues: instead, we insert copy of D, with the Used field set to false, to child

queues. Indeed, the Used field should be set to false to allow adding values,

corresponding to child nodes, to the result.

Since we always create a copy of a count descriptor when propagating it

downwards, multiple descriptors may correspond to a single count operation.

In all such descriptors the result pointer must point to the same memory location
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(Fig. 58) to allow calculation of the result value based on multiple descriptors, cor-

responding to the same count operation.

Figure 58 – Multiple descriptors, corresponding to a single count operation,

should point to the same memory location of the result.

3.4.3. Without using CAS-2

As stated in Section 2.5, despite CAS-2 is a powerful concurrent primitive,

almost no CPUs supports it in the hardware, while software implementations of

CAS-2 usually suffer from poor performance due to heap allocations and additional

indirection. Thus, we found another way to execute count.

We augment each tree node with an identifier, stored in the Id field. Node

receives its identifier at the creation moment and the node identifier does not change

throughout the node lifetime.

Distinct nodes must have unequal identifiers, i.e., node identifiers must be

unique. We can achieve that property in multiple different ways, including:

— Use GUID or UUID [44] generation algorithm to generate node identifiers.

— Use global register Max_Id, supporting fetch-and-add [40] operation. Node

identifier can be acquired using new_node.Id := FAA(&Max_Id, 1)

operation.
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Both these approaches guarantee, that node identifiers are unique.

We may use node identifiers to execute count operations without using

CAS-2.

Instead of a single integer value, the count result will consist of two data

structures:

— Set Visited, filled with identifiers of nodes that we visited during the exe-

cution;

— Map Counted, filled with identifiers of nodes, for which the value to add to

the result is known, along with the values itself.

Before inserting a count descriptor to a node v queue, we add v.Id to the

Visited set.

Before removing a count descriptor from a nodev queue we try to addv.Id

along with a value x, corresponding to the node v, to the Counted map. If key

v.Id already exists in the Counted map, we left the Counted map unmodified,

without changing the value, associated with v.

We never modify the value, associated with node v, since stalled processes

can calculate the value incorrectly. Indeed, consider the following scenario:

1. Descriptor D, corresponding to a count operation with timestamp 42, is lo-

cated at the head of v queue;

2. Process P reads D from the head of v queue;

3. Process P is suspended by the OS;

4. Process R reads D from the head of v queue;

5. Process R determines that the size of v left subtree should be added to the

result;

6. Process R reads v.Left.S_Ptr.Size value (say, it equals to 5) and adds

key-value pair 〈 v.Id, 5 〉 to the Counted map;

7. A new key is inserted to v.Left subtree by insert operation with times-

tamp 43, making v.Left subtree size equal to 6;

8. Process P is resumed by the OS;

9. Process P reads v.Left.S_Ptr.Size value (now it equals to 6) and tries

to add key-value pair 〈 v.Id, 6 〉 to the Counted map.

On step (9) we should not modify the value, corresponding to the node v,

since the value 6 reflects the modification, performed by the insert operation
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with timestamp 43. The count operation has timestamp 42, thus the count result

should not include the key, inserted by that insert.

The Visited set and the Counted map must be concurrent since

multiple processes may modify them concurrently. However, they need

to support only single-key operations: insert for the Visited set and

insert_if_not_exists for the Counted map. Therefore, we can use al-

most any concurrent key-value data structure, e.g., hash tables [12, 32] or trees [7,

28].

We can learn the count result the following way:

1. Read the size of the Counted map.

2. Read the size of the Visited set.

3. If the latter size is greater than the former size, the answer for at least one node

is not known — thus, the answer for the count is not known yet.

4. Otherwise, the answer for all the required nodes is known. In that case, we

traverse the Counted map, summing all the values and obtaining the an-

swer. Note, that it is safe to traverse the Counted map now — indeed, the

Counted map cannot be modified concurrently, since the count query is

finished.

To allow reading sizes of Counted and Visited efficiently, the size of a

data structure (set or map) should be stored directly in the data structure.

Note, that we should read size of the Counted map before reading the size

of the Visited set. Otherwise, we may think that the count query is finished,

when in fact it is still being executed. Consider the following scenario (Visited

and Counted are initially empty):

1. Process R adds node v to the Visited set, Visited = {v.Id};

2. Process P reads the Visited set size and it equals to 1;

3. ProcessR adds nodeu to theVisited set, Visited = {v.Id, u.Id};

4. Process R adds key-value pair 〈 v.id, 5 〉 to the Counted map,

Counted = {v.Id: 5};

5. Process P reads the Counted map size and it equals to 1;

Since the Visited set size equals to the Counted map size, process P

concludes that the count query is finished. However, this conclusion is false, since

the result for the node u is not known yet.
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Conclusions on Chapter 3

In this Chapter, we have explained in details, how the general algorithm,

described in Chapter 2, can be applied to a particular data structure: external

binary search tree, supporting insert(k), remove(k), contains(k) and

count(min, max) operations. We have provided detailed descriptions of how

modifying operations are executed, including an explanation of how we determine,

whether a particular key exists in the tree or not. Also we provided an explanation

of how the count range query is executed: both with CAS-2 and without it.
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CHAPTER 4. DIFFERENT APPLICATIONS OF THE ALGORITHM

4.1. Binary search tree with collect range query

Range query collect(Set, min, max) = {x ∈ Set : min 6

x 6 max} returns all keys from the range [min; max]. We can implement

collect range query on an external binary search tree.

collect(node, min, max) is executed the following way:

— If node is a KeyNode we check, whether min 6 node.Key 6 max

holds. If so, we add node.Key to the result.

— If node is an EmptyNode, we do nothing.

— If max < node.Right_Subtree_Min, then all the required keys are

located in the left subtree. In this case, we continue the execution in

node.Left.

— If min > node.Right_Subtree_Min, then all the required keys are

located in the right subtree. In this case, we continue the execution in

node.Right.

— Otherwise, we continue the execution both in v.Left and v.Right.

We may calculate the result in a similar way to learning the count result (see

Section 3.4.3 for detailed explanation). The result yet again consists of two data

structures: the Visited set (it contains identifiers of all nodes to which queues we

inserted the collect descriptor) and the Processed map.

The Processed map contains node identifiers as keys. If node v is a

KeyNode and min 6 v.Key 6 max (i.e., if key v.Key should be added to

the result) v.Key corresponds to v.Id in the Processed map. Otherwise, nil

corresponds to v.Id in the Processed map.

The Visited set and the Processed map are filled the same way as in

Section 3.4.3: 1) we add v.Id to the Visited set before inserting the collect

descriptor to v queue; 2) we try to add 〈 v.Id, v.Key 〉 (or 〈 v.Id, nil

〉) pair to the Processed map before removing the collect descriptor from v

queue.

After the collect operation has been executed, we obtain the result in the

following way:

1. Initialize an empty array answer;

2. Iterate through key-value pairs from the Processed map. Suppose

〈 node_id, node_key 〉 is the current key-value pair;
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— If node_key = nil, we skip the current pair and proceed to the next

key-value pair;

— Otherwise, we add node_key to the answer;

3. Return answer to the caller after the iteration is finished;

4.2. Number of points in a rectangle

Consider a set of points on a plane {(xi,yi)}ni=1. We can formulate a 2D

count range query the following way: count(Set,xmin,xmax,ymin,ymax) =

|{(x, y) ∈ Set : xmin 6 x 6 xmax, ymin 6 y 6 ymax}| —
the number of points located in the rectangle bounded by lines

x = xmin, y = ymin, x = xmax, y = ymax (Fig. 59).

Figure 59 – 2D count query

We can employ quad trees [9] to execute 2D count queries in an asymptot-

ically optimal way. Our quad tree implementation is an external tree, consisting of

three types of nodes:

— PointNode is a leaf node that stores a single (x, y) point.

— EmptyNode is a leaf node that does not store any point.
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— InnerNode that does not store any points directly: instead, points are stored

in the subtree of an internal node, while the internal node itself is used for

query routing.

Consider an internal node v, subtree of which stores point set

PSv = {(xi,yi)}nv

i=1. Node v has two parameters: xm and ym. v has

four children:

– Subtree of the first child stores a subset of points

{(x, y) ∈ PSv : x < xm, y < ym};
– Subtree of the second child stores a subset of points

{(x, y) ∈ PSv : x < xm, y > ym};
– Subtree of the third child stores a subset of points

{(x, y) ∈ PSv : x > xm, y < ym};
– Subtree of the forth child stores a subset of points

{(x, y) ∈ PSv : x > xm, y > ym};

Figure 60 – Example of a quad tree

count(node,xmin,xmax,ymin,ymax) is executed the following way:

— If node is a PointNode, we check whether

xmin 6 node.X 6 xmax, ymin 6 node.Y 6 ymax holds. If so, we

add 1 to the result, otherwise we add 0 to the result.

— If node is an EmptyNode, we add 0 to the result.

— Otherwise, node is an InternalNode. In that case, we execute the query

similarly to the algorithm described in Section 3.4. We determine:

– The set of children, in which the execution should continue (Fig. 61a).

– The set of children, subtree sizes of which may be added to the result

without executing the query in them (Fig. 61b).
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and execute the query in an asymptotically optimal way. Detailed explanation

of the query execution algorithm goes beyond the scope of this work: it looks

very similar to the algorithm, described in Section 3.4, except that more cases

should be handled.

(a) The query execution should continue in
two children: B and D

(b) Size of C subtree may be added to the

result without executing the query in C

Figure 61 – Execution of 2D count range query in an internal node

Therefore, to execute 2D count queries in an asymptotically optimal way,

we should augment each inner node with its subtree size. The subtree size is main-

tained the same way as it was maintained in the binary search tree (see Section 3.2

for details).

4.3. Sorted key-value map with range add and range sum operations

Consider a sorted key-value map, storing a set of key-value entries

{〈Keyi,Valuei〉}ni=1. In addition to ordinary scalar operations (get a value by

a key, insert a new entry to the map, modify the value associated with a key, delete

an entry by a key, etc.) consider two range queries:

— range_sum(min, max) =
n∑

i=1

Valuei ·Imin6Keyi6max—calculates the

sum of all values whose keys are located in the range [min; max]. An

O(N) algorithm for executing this operation can be specified the following

way (Listing 19):

1

2 fun range_sum(Map, min, max):

3 result := 0

4 for 〈 key, value 〉 ← Map:

5 if min 6 key 6 max:

6 result ← result + value

7 return result

8

Listing 19 – An O(N) algorithm for executing range_sum operation
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— range_add(min, max, delta) increments by delta all values,

whose keys are located in the range [min; max]. An O(N) algorithm for

executing this operation can be specified the following way (Listing 20):

1

2 fun range_add(Map, min, max, delta):

3 for 〈 key, value 〉 ← Map:

4 if min 6 key 6 max:

5 value ← value + delta

6

Listing 20 – An O(N) algorithm for executing range_add operation

Both the range_sum and the range_add operations can be executed in

O(logN) time on an external binary search tree. Let us begin with the range_sum

operation.

We augment each InnerNode with a sum of all values in its subtree. The

rules of updating this augmentation are quite simple and remind the rules for updat-

ing the subtree size from Section 1.3:

— When inserting new entry 〈k, v〉 to the tree, increase by v subtree sums of

each node on the path from the root to the leaf, storing the new entry.

— When removing an entry 〈k, v〉 from the tree, decrease by v subtree sums

of each node on the path from the root to the leaf, storing that entry.

After that, we can execute range_sum query the same way, we executed

the count query (see Section 3.4 for details), only instead of calculating the sum

of subtree sizes we calculate the sum of subtree sums.

Now, we can explain how to execute the range_add operation. For that,

we augment each InnerNode with two more values:

— Sum_Deltas— the sum of all the delta values, that should be applied to

each key-value entry in that node subtree;

— Size— the number of key-value pairs, located in the subtree (the rules for

updating this augmentation are described in Section 1.3);

We traverse the tree the same way we did it for count and range_sum

queries. Suppose we execute the range_add(min, max, delta) operation

in a node v.

— If v is an EmptyNode, we do nothing.
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— If v is a KeyNode, we check, whether min 6 v.Key 6 max holds. If

so, we increase v.Value by delta (see Section 2.5 for detailed description

on how we change node state).

— Otherwise, v is an InnerNode. If we can conclude, that all the keys in v

subtree are located in the range [min; max] (see Section 1.3 for details),

we increase v.Sum_Deltas by delta (See Section 2.5 for the explanation

on how a node state can be changed). Otherwise, we continue the execution

in either one or both children.

Sum_Deltas augmentation should be taken into account when execut-

ing range_sum queries. If we traverse an inner node v while executing

the range_sum query we should take into account that each value in v sub-

tree should be increased by v.Sum_Deltas value. Since v subtree contains

v.Size values, the sum of all values in v subtree equals to v.Sum + v.Size

· v.Sum_Deltas. If we are executing range_sum(min, max) query in a

node v and can conclude, that all keys in v subtree are located in the range [min;

max] (see Section 1.3 for details), we increase the result by v.Sum + v.Size ·
v.Sum_Deltas.

Conclusions on Chapter 4

In this chapter we have shown, that the general algorithm, described in Chap-

ter 2, can be applied to a wide variety of range queries and a broad class of concurrent

trees. We have given a number of examples of how our algorithm can be applied to

efficiently implement different range queries on different concurrent trees. We have

glanced at the collect query on an external binary search tree; the 2D count

query on a quad tree; range_sum and range_add queries on an an external bi-

nary search tree. We have provided a brief description of how our algorithm can be

used in the aforementioned cases, letting us execute such range queries asymptoti-

cally optimally.
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CHAPTER 5. PRACTICAL RESULTS AND FUTUREWORK

5.1. Linearizability checking in polynomial time

The linearizability verification of a concurrent execution is known to be a very

difficult task. It was even shown by Gibbons et al. [13] that the checking, whether

a concurrent execution is linearizable or not, is an NP-complete task. However,

concurrent trees, implemented with our algorithm, allows for the polynomial-time

linearizability check.

Consider T— an instance of a concurrent tree implemented according to the

algorithm from this work. Consider a concurrent execution H in which a set of

processes {Pi}ni=1 execute a set of operations on T, {Oj}mj=1. For each operation O

its result, RH(O), in the execution H is known. The task is to determine: whether

the execution H is linearizable or not. We use the following algorithm:

1. For each operation Ok obtain its timestamp.

2. Sort the operations by timestamps {Otj}mj=1, such that

∀a < b : timestamp(Ota) < timestamp(Otb).

3. According to the main invariant (see Section 2.1 for details) the operations

should be applied to T in the order determined by their timestamps — thus,

the operations should seem to be applied to T in the {Otj}mj=1 order. Thus,

the only possible sequential execution L, equivalent toH (see Section 1.6 for

details), must consists of operations in the {Otj}mj=1 order.

4. Sequentially apply operations in the timestamps order to T. For each operation

O record RL(O)— the result of O in the sequential execution L.

5. For each operation, compare its result in the concurrent and in the sequential

executions. If ∀j | 1 6 j 6 m : RH(Otj) = RL(Otj), then the execution H

is linearizable. Otherwise — if ∃j | 1 6 j 6 m : RH(Otj) 6= RL(Otj) —

the execution H is not linearizable.

Therefore, the linearizability checking of the execution of concurrent opera-

tions on tree T, implemented according to the algorithm from this work, can be done

in the polynomial time.

The algorithm for linearizability checking in polynomial time may be imple-

mented the following way: (Listing 21):

1

2 fun lincheck(n_procs, ops_per_process, ops_generator):

3 Tree := new ConcurrentTree()

4
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5 /*

6 Worker processes will use Operations_Chan to report

7 executed operations along with their results

8 */

9 Operations_Chan := new Channel()

10

11 for i ← 1..n_procs:

12 process {

13 cur_proc_operations := []

14 for j ← 1..ops_per_process:

15 /*

16 gen_random_operation generates a random

17 operation to be executed on the tree instance

18 */

19 op := ops_generator.gen_random_operation()

20 res := Tree.execute(op)

21 cur_proc_operations.append(〈op,res〉)
22

23 /*

24 Report all executed operations along with

25 their results

26 */

27 Operations_Chan.send(cur_proc_operations)

28 }.start()

29

30 /*

31 Wait for all worker processes to finish their execution

32 and collect all executed operations along with their results

33 */

34 all_operations := []

35 for i ← 1..N_PROCS:

36 for 〈op,res〉 ← Operations_Chan.receive():

37 all_operations.append(〈op,res〉)
38

39 /* Sort all executed operations by their timestamp */

40 all_operations.sort_by { 〈op,_〉 → op.Timestamp }

41

42 /*

43 Do the linearizability checking: check each operation return the same

44 result in both sequential and concurrent executions

45 */

46 seq_tree := new ConcurrentTree()

47 for 〈op,res〉 ← all_operations:

48 seq_res := seq_tree.execute(op)

49 if seq_res 6= res:

50 /* The execution is not linearizable */

51 return false

52



100

53 /* The execution is linearizable */

54 return true

Listing 21 – The algorithm for linearizability checking of the execution of concurrent

operations on tree T, implemented according to the algorithm from this work

After we implemented a binary search tree, supporting the count query (see

Chapter 3 for details), we tested it for linearizability. For that, we ran more than ten

millions of concurrent executions, each consisting of a number of operations on an

instance of the tree. Each execution was reported to be linearizable.

5.2. Benchmark results

We ran benchmarks of the concurrent tree, supporting count range query,

to verify, that our solution scales better than the lock-based one and the one, based

on the Universal Construction. Benchmark results are presented on Fig. 62. As can

be seen from the results, our solution scales better and outperforms both lock-based

and Universal Construction-based solutions on 8 threads.

Figure 62 – The results of the benchmark of our solution against the lock-based

and Universal Construction-based ones
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5.3. Future work

5.3.1. Collaborative rebuilding

Suppose

— Descriptor of a modifying operation Op is located at the head of pv queue;

— v is pv child;

— Op should continue its execution in v;

— v subtree should be rebuilt by Op, since the number of modification, applied

to v subtree, will exceed the threshold after applying Op.

Suppose processes P and R at the same time:

1. Read Op descriptor from the head of pv queue;

2. Determine, that v subtree should be rebuilt after applying Op;

3. Traverse v subtree collecting IS— data items from it;

4. Build v’— an ideal subtree, consisting of data items IS;

5. Try to replace v with v’ using CAS(&child_ptr, v, v’);

Only a single process (either P or R, say P for convenience) performs a suc-

cessfulmodification at step (5)—another process (R) faces unsuccessfulCAS, there-

fore the CPU time spent by process R is wasted, since only the process P performed

the rebuilding.

To get rid of such CPU wasting, we can employ collaborative rebuilding. If

multiple processes see that v subtree should be rebuilt, these processes may rebuild

v subtree in parallel, so that each participating process does a fraction of the overall

work. Wemay adapt parallel tree traversal algorithm and parallel tree building algo-

rithm, described in [20], for this purpose. We may use one of the multitude existing

fork-join frameworks, such as Cilk [8] to implement these parallel algorithms in the

fork-join paradigm.

5.3.2. O(logN) tree balancing strategies

If the number of modifications, applied to the whole tree, exceeds a threshold,

we rebuilt the whole tree in O(N) time. Thus, some operations take an abnormally

long time to execute, since they should spend O(N) time to rebuild the whole tree

(in contrast to O(logN) time required to execute the operation without doing the

rebuild).
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We should study other tree balancing strategies in an effort to find a strategy

that guarantees, that each operation is executed in O(logN) time. We may study

concurrent balancing strategies starting with chromatic balancing, described in [29].

5.3.3. Executing insert(k) and remove(k) operation without checking,

whether key k exists in the tree

Suppose we executeinsert(k) (orremove(k)) operation without know-

ing, whether key k exists in the tree. Thus, we cannot increase (or decrease) subtree

size of each node on the execution path — indeed, we do not know, whether the

operation actually inserts new key to the tree (or removes an existing one from the

tree).

We can split v subtree size on two components: the integer number

Base_Size and a set of result pointers (see Section 2.2 for details on result point-

ers) of insert and remove operation, that are being executing in v subtree

(Fig. 63).

Figure 63 – Splitting node subtree size on Base_Size and a set of result pointers

Each insert operation, being executed in v subtree, may be completed ei-

ther

— Successfully (when a new key is inserted to the tree). In this case, the result

pointer for this insert operation points to true. In that case, v subtree

size should be increased by one.

— Unsuccessfully (when the key already exists in the tree, and, thus, no new

key is inserted to the tree). In this case, the result pointer for this insert

operation points tofalse. In that case, v subtree size should not bemodified.

Similarly, each remove operation, being executed in v subtree, may be com-

pleted either

— Successfully (when an existing key is removed from the tree). In this case,

the result pointer for this remove operation points to true. In that case, v

subtree size should be decreased by one.
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— Unsuccessfully (when the key does not exist in the tree, and thus no key is

removed from the tree). In this case, the result pointer for this remove oper-

ation will point to false. In that case, v subtree size should not be modified.

To get the current subtree size of a node v we perform the following:

1. Read v state, obtaining Base_Size and DS — the set of descriptors of

insert and remove operation, being executing in v subtree.

2. If there is at least one uncompleted operation in DS— help complete it.

3. After there are nomore uncompleted operations in DS, calculate inc_val—

the number of successful insert operations from DS.

4. And dec_val— the number of successful remove operations from DS.

5. The resulting size of v subtree equals to

Base_Size+ inc_val− dec_val.

We may reduce the size of the set DS by

— Removing result pointers of unsuccessful insert and remove operations

from DS (indeed, unsuccessful insert and remove operations do not

change v subtree size);

— Removing result pointers of successful insert operations from DS, mean-

while increasing Base_Size by one for each such removed result pointer;

— Removing result pointers of successful remove operations from DS, mean-

while decreasing Base_Size by one for each such removed result pointer.

This reduction procedure reminds the garbage collection [21] and can be done

either by helper processes, executing operations on a tree, or by dedicated back-

ground processes (garbage collectors).

In our current implementations insert(k) and remove(K) operations re-

quire two tree traversals: the first one to former whether key k exists in the tree and

the latter one to execute the operation, if it is to be be executed successfully (see Sec-

tion 3.2 for details). After implementing this optimization, insert and remove

operations will require only one tree traversal to be executed, thus reducing the op-

eration execution time.

5.3.4. Getting rid of EmptyNode structure

Empty node do not store keys, wasting memory for nothing. We may try

to modify the remove operation so that it does not replace key nodes with empty

nodes.
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One possible remove(k) execution strategy is the following: suppose node

v is a parent of KeyNode { Key = k }, pv is a parent of v and u is a sib-

ling of KeyNode { Key = k } (Fig. 64a). Instead of replacing KeyNode {

Key = k } with and EmptyNode, we may replace v with u: after that, u will

become a child of pv (Fig. 64b). Key k will thus be removed from the tree, and no

EmptyNode will be created.

(a) Initial tree structure
(b) Tree structure after the key is removed

from the tree

Figure 64 – Execution of remove(k) operation without creating an EmptyNode
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CONCLUSION

We have managed to design an algorithm for executing range queries on con-

current trees. Our solution satisfies all the desired properties:

— Lock-free progress guarantees;

— Asymptotic optimality of range queries;

— The ability to execute multiple concurrent modifying operation successfully;

while neither of the existing solutions satisfy all these properties.

Our solution is generic and can be applied to a wide variety of range queries

and to a broad class of trees. We shown the validity of the developed algorithm by

designing and implementing a concurrent external binary search tree supporting the

count range query. Also, we provided a brief glance on how our solution can be

used to implement other range queries on other types of trees. On top of that, we

described the algorithm to check the linearizability of the developed concurrent data

structures in polynomial time.
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