
	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ВЫПУСКНАЯ	КВАЛИФИКАЦИОННАЯ	РАБОТА
GRADUATION	THESIS

Ускорение	записи	на	жёсткие	диски	с	помощью	NVRAM	/	Acceleration	of	writes	to	hard
drives	with	NVRAM

Обучающийся	/	Student	Довжик	Лев	Игоревич	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M42381	
Направление	подготовки/	Subject	area	01.04.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Программирование	и	искусственный
интеллект	2021	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Магистр	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")

Обучающийся/Student 	 Документ
подписан
Довжик	Лев
Игоревич
14.05.2023

	

Довжик	Лев
Игоревич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
14.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

ЗАДАНИЕ	НА	ВЫПУСКНУЮ	КВАЛИФИКАЦИОННУЮ	РАБОТУ	/	
OBJECTIVES	FOR	A	GRADUATION	THESIS

Обучающийся	/	Student	Довжик	Лев	Игоревич	
Факультет/институт/кластер/	 Faculty/Institute/Cluster	 факультет	 информационных
технологий	и	программирования	
Группа/Group	M42381	
Направление	подготовки/	Subject	area	01.04.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Программирование	и	искусственный
интеллект	2021	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Магистр	
Тема	 ВКР/	 Thesis	 topic	 Ускорение	 записи	 на	 жёсткие	 диски	 с	 помощью	 NVRAM	 /
Acceleration	of	writes	to	hard	drives	with	NVRAM	
Руководитель	 ВКР/	 Thesis	 supervisor	 Аксенов	 Виталий	 Евгеньевич,	 PhD,	 науки,
Университет	 ИТМО,	 институт	 прикладных	 компьютерных	 наук,	 доцент
(квалификационная	категория	"ординарный	доцент")

Основные	вопросы,	подлежащие	разработке	/	Key	issues	to	be	analyzed
Research	objective:	Development	of	NVRAM	cache	for	acceleration	of	synchronous	writes	to
storage	devices

Research	tasks:
a)	Study	of	architectural	features	of	NVRAM	and	basic	principals	of	writing	programs	with	it?
b)	Develop	of	NVRAM	cache	for	acceleration	synchronous	writes	to	append-only	files
c)	Check	power	failure	tolerance	and	benchmark	latency	of	developed	cache

Форма	представления	материалов	ВКР	/	Format(s)	of	thesis	materials:	
Source	code,	presentation,	thesis	paper

Дата	выдачи	задания	/	Assignment	issued	on:	10.02.2023

Срок	представления	готовой	ВКР	/	Deadline	for	final	edition	of	the	thesis	24.05.2023

Характеристика	темы	ВКР	/	Description	of	thesis	subject	(topic)

Тема	в	области	фундаментальных	исследований	/	Subject	of	fundamental	research:	нет	/
not	
Тема	в	области	прикладных	исследований	/	Subject	of	applied	research:	да	/	yes

СОГЛАСОВАНО	/	AGREED:	

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
14.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись) 	 	

Задание	принял	к
исполнению/	Objectives
assumed	BY

	 Документ
подписан
Довжик	Лев
Игоревич
14.05.2023

	

Довжик	Лев
Игоревич

	 	 (эл.	подпись) 	 	

Руководитель	ОП/	Head
of	educational	program

	 Документ
подписан
Парфенов
Владимир
Глебович
17.05.2023

	

Парфенов
Владимир
Глебович

	 	 (эл.	подпись) 	 	

	 	 	
Министерство	науки	и	высшего	образования	Российской	Федерации

ФЕДЕРАЛЬНОЕ	ГОСУДАРСТВЕННОЕ	АВТОНОМНОЕ	ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ	ВЫСШЕГО	ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ	ИССЛЕДОВАТЕЛЬСКИЙ	УНИВЕРСИТЕТ	ИТМО
ITMO	University

АННОТАЦИЯ
ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ	

SUMMARY	OF	A	GRADUATION	THESIS

Обучающийся	/	Student	Довжик	Лев	Игоревич	
Факультет/институт/кластер/	Faculty/Institute/Cluster	факультет	информационных
технологий	и	программирования	
Группа/Group	M42381	
Направление	подготовки/	Subject	area	01.04.02	Прикладная	математика	и	информатика	
Образовательная	программа	/	Educational	program	Программирование	и	искусственный
интеллект	2021	
Язык	реализации	ОП	/	Language	of	the	educational	program	Русский	
Статус	ОП	/	Status	of	educational	program	
Квалификация/	Degree	level	Магистр	
Тема	ВКР/	Thesis	topic	Ускорение	записи	на	жёсткие	диски	с	помощью	NVRAM	/
Acceleration	of	writes	to	hard	drives	with	NVRAM	
Руководитель	ВКР/	Thesis	supervisor	Аксенов	Виталий	Евгеньевич,	PhD,	науки,
Университет	ИТМО,	институт	прикладных	компьютерных	наук,	доцент
(квалификационная	категория	"ординарный	доцент")	

ХАРАКТЕРИСТИКА	ВЫПУСКНОЙ	КВАЛИФИКАЦИОННОЙ	РАБОТЫ
DESCRIPTION	OF	THE	GRADUATION	THESIS

Цель	исследования	/	Research	goal	
Development	of	NVRAM	cache	for	acceleration	of	synchronous	writes	to	storage	devices	
Задачи,	решаемые	в	ВКР	/	Research	tasks	
1)	Study	of	architectural	features	of	NVRAM	and	basic	principals	of	writing	programs	with	it	2)
Develop	of	NVRAM	cache	for	acceleration	synchronous	writes	to	append-only	files	3)	Check
power	failure	tolerance	and	benchmark	latency	of	developed	cache	
Краткая	характеристика	полученных	результатов	/	Short	summary	of	results/findings	
Successfully	managed	to	develop	cache	for	append-only	files	using	NVRAM,	that	accelerates
synchronous	writes	and	recovers	data	after	power	failure	

Обучающийся/Student 	 Документ
подписан
Довжик	Лев
Игоревич
14.05.2023

	

Довжик	Лев
Игоревич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

Руководитель	ВКР/
Thesis	supervisor

	 Документ
подписан
Аксенов
Виталий
Евгеньевич
14.05.2023

	

Аксенов
Виталий
Евгеньевич

	 	 (эл.	подпись/	signature) 	 (Фамилия	И.О./	name
and	surname)

4

CONTENTS
INTRODUCTION. 5
1. Review of a subject area . 7

1.1. NVRAM. 7
1.1.1. The architecture of NVRAM . 8
1.1.2. NVRAM modes . 10

1.2. Interaction with hardware . 15
1.2.1. Device drivers . 15
1.2.2. Operating system . 15
1.2.3. System calls . 18
1.2.4. File system . 21

1.3. Databases . 25
1.3.1. Transactions. 28

Conclusions on Chapter 1 . 29
2. General description of the library . 31

2.1. Features and limitations. 31
2.2. Technologies used . 32

2.2.1. libpmem . 32
2.2.2. syscall_intercept . 34

2.3. Library implementation . 37
2.3.1. General design . 37
2.3.2. Parameters passing . 38
2.3.3. Intersection subtleties . 39
2.3.4. Initial interception . 41
2.3.5. Intercepted syscalls . 41
2.3.6. Handler architecture . 48

Conclusions on Chapter 2 . 54
3. Analysis of library . 56

3.1. Performance . 56
3.2. Correctness . 64
Conclusions on Chapter 3 . 67

CONCLUSION . 68
REFERENCES . 69
APPENDIX A. Comparing libpmem to Linux mmap. 72

5

INTRODUCTION
In recent years, the demand for high-performance computing systems has in-

creased rapidly, with applications ranging from scientific simulations to data ana-
lytics. One critical aspect of such systems is the ability to efficiently handle large
amounts of data, especially when it comes to a persistent storage. Synchronous
writes to disk are an essential feature for many applications that require durability
and consistency, but they can be a significant bottleneck in terms of performance.

Non-volatile random-access memory (NVRAM) is a promising technology
that bridges the gap between volatile main memory and non-volatile storage.
NVRAMprovides the performance close to one of dynamic random access-memory
(DRAM) used as main memory while also retaining data in case of a power failure
or system crash, making it an ideal candidate for use in high-performance computing
systems. By leveraging the capabilities of NVRAM, it may be possible to acceler-
ate synchronous writes to disk, thereby improving the performance of applications
that rely on them. This is especially relevant for append-only files, which are used
as foundation of modern database management systems in form of database jour-
nal. This journal is responsible for durability of data stored in database and other
its transactional properties. It also often limits latency of the write queries to the
database.

However, NVRAM has two main disadvantages: firstly, its cost per GIB is
very much close to the cost of ordinary volatile dynamic random-access memory,
which makes it difficult to just replace standard storage devices with it, and, sec-
ondly, its capacity. Despite it being larger than the amount of dynamic random-
access memory one could install in their platform, is still very limited compared to
hard disk drives or even solid state drives.

Last aspect is the ability to easily integrate NVRAM-based solutions to
your system. Despite the fact, that there are already solutions such as for example
libpmemlog [15], which address issues mentioned in previous paragraph, they
require significant changes in source code of programs that are run on systems
with NVRAM. But it is often not easy to introduce such drastic changes in ones
applications and redeploy them. It even gets worse when you don’t have an
access to source code of programs you use, because they are distributed as binary
executables or libraries and maintainers are rarely eager to support unconventional
hardware. However, for an end user it is reasonable to expect same level of

6

simplicity such as by just replacing all hard disk drives with solid state drives,
otherwise, an adoption of this technology onmass scale becomes quite questionable.

Therefore, the following goals need to be achieved in order to complete the
work:
— Get familiar with NVRAM and its architectural features.
— Get familiar with programming concepts used to develop application for

NVRAM.
— Develop a library for caching synchronous writes to append-only with follow-

ing properties:
– No changes to end users’ applications are needed to use this library.
– Library is suitable to be used in multi-threaded environment.
– No explicitly persisted data is lost in case of power failure.

— Test performance and safety guaranties of developed library

This thesis is structured as follows:
— The first chapter contains a review of the subject area. We describe an ar-

chitecture of NVRAM and different modes it can operate in. We review how
applications interact with hardware and which abstractions are used to do so in
an application to storage devices. Lastly, we examine basic principals used in
database management systems in order to archive consistency and durability
to look for possible applications of this work

— The second chapter contains a detailed description of a developed library with
explanation of its guaranties and limitations.

— The third chapter contains the details of how to test the library on real world
application and its durability guaranties.

7

CHAPTER 1. REVIEW OF A SUBJECT AREA
1.1. NVRAM

Non-volatile random-access memory (NVRAM, also known as PMEM —
persistent memory) is a type of memory technology that combines the speed of
volatile random-access memory (RAM) with the persistence of non-volatile storage.
This feature makes it a promising candidate for use in high-performance computing
systems that require both high-speed data access and data durability. The specifics
of NVRAM are the following:
— Unlike traditional volatile memory, which loses its contents when power is

lost, NVRAM can retain data even when the power is turned off, which can
be used to recover system after unexpected failure.

— NVRAM supports fast random-access to individual bytes of NVRAM similar
to volatile random-access memory. This allows to develop more efficient al-
gorithm than require persistence compared to approaches used with classical
storage devices, because it is much more easier to place and keep consistent
complicated data structures.

— Despite memory itself being non-volatile it is paired with volatile memory
such as process registers or even its own caches that used in order to boost its
performance, for example, for repeated reads of unchanged data. This means
that the results of recent computations (which are often stored in process reg-
isters) or data which not fully flushed from cache will be lost. In order to
prevent loss of cached data NVRAM allows to explicitly drain all caches to a
non-volatile storage.

— NVRAM flushes its data in cache lines and guaranties that such writes will be
atomic. It means that either the whole cache line is written to non-volatile or
nothing is written. You cannot write half or quarter of a cache line. However,
the writing a bigger amount of data is non-atomic and out of order, so if a
power failure occurs before all data is written you can find any subset of a
written data on NVRAM after the recovery.

— Current NVRAM implementations performance does not scale with its
capacity the same way it happens with solid state drives, which means there
is a very tangible limit of how much NVRAM could be put into system
before it starts perform on par with classical storage devices.

8

Its advantages in mixed read/write random workloads, that are more typical
for device with emphases on its random access, are shown in [23] and could be seen
on figure 1:

Figure 1 – Mixed random reads/writes performance benchmarks

1.1.1. The architecture of NVRAM
The architecture of NVRAM can vary depending on the specific technology

used. One common type of NVRAM is based on a combination of DRAM and flash
memory. In this architecture, the NVRAM module includes both DRAM chips and
a flash memory chip. The DRAM chips are used as a cache for frequently accessed
data, while the flash memory is used as a persistent store for less frequently accessed
data. When data is written to the NVRAM module, it is first written to the DRAM
cache, and then asynchronously written to the flash memory to ensure persistence.
This type of NVRAM could be connected to computer via DDR bus or PCIe dus
depending on particular implementation.

9

Figure 2 – General architecture of flash based NVRAM

Another type of NVRAM is based on a technology called Phase ChangeMem-
ory (PCM). PCM is a type of non-volatile memory that uses the change in the state
of a material between a crystalline and amorphous state to store data. PCM-based
NVRAMmodules work by storing data in a matrix of cells that can be switched be-
tween crystalline and amorphous states by applying electrical pulses. Like DRAM-
based NVRAM, PCM-based NVRAMcan offer high-speed access to data while also
providing persistence. PCM-based devices support 100 million write cycles which
leads to much slower degradation compared to flash-based devices where one sector
can withstand about 5 thousand write and require sophisticated logic in controllers
in order to perform wear leaving spread writes across many physical sectors [26].
Additionally, the resistivity of a memory element in PCM is more stable compared
to flash memory, that “leaks” its charge over time, which leads to data corruption
and loss, and is expected to hold data intact for 300 years at the normal working
temperature, however, the main drawback is its sensitivity to temperature which af-

10

fects the manufacturing process [4]. The most known example of this technology is
Intel Optane.

Figure 3 – Scheme of Intel Optane in DIMM form factor

1.1.2. NVRAM modes
Generally, there are two main modes in which NVRAM can operate. They

differ in how system views NVRAM and which durability guaranties are being pro-
vided. Different parts of NVRAM could be configured in different modes. In this
case, NVRAM is considered to be in mixed mode, but we can view them as an inde-
pendent disk partitions, that allow different file systems to be configured on them.

1.1.2.1. Two level mode
This mode is also called memory mode and it is the simplest mode which

does not require any changes in software being run on the machine or any additional
prior knowledge. In this mode, NVRAM is visible to the system as ordinary random
accessmemory and any present DRAM is hidden inside and used as cache. NVRAM
itself in this mode becomes volatile and is used as cheaper but less effective system
memory.

11

Figure 4 – Scheme of NVRAM configured in one level mode

Application that high data locality that are run in this mode can perform as
fast as if they were run only on regular DRAM, however, now it is much more
cheaper for them to reach such level of performance or in some case it was even
impossible due to limited capacity of DRAM modules. Most notable examples of
such application are in-memory databases like Redis.

1.1.2.2. One level mode
In contrast with two levels, one level offers opposite features:

— NVRAM is seen as independent memory device .
— NVRAM becomes non-volatile in this mode with regard to volatile caches

mentioned before.
However this mode itself is divided in two sub-modes, depending on infor-

mation how device itself was mounted: with direct access (DAX) or not.
If device is mounted without direct access it is visible as regular block devices

with following properties:
— Block is a minimum addressing unit. So, even if you want to read a few bytes

you have to read the whole block, which size is typically around 4 kilobytes.
— Operating system can cache this block in DRAM, so data accessed within

one page will be loaded from NVRAM only once and after will be read from
DRAM.

12

Figure 5 – Scheme of NVRAM configured in two level mode without DAX

For the end user, this sub-mode allows to view NVRAM just as essentially
“fast solid state drive”. It also requires no changes in end users applications. It is
considered particularly effective in workloads, that consist of sequential reads of
big amounts of data, where it could perform up to seven times faster than classical
storage systems.

However, this sub-mode doesn’t not allow to take advantage of ability to ad-
dress individual bytes. On contrary, viewing NVRAM as a block device introduces
an additional overhead. A lot of application rely on atomicity of block writes, which
means they rely on the fact that either the whole block is written or not without any
in-between states known as torn blocks. Traditional storage devices typically pro-
vide protection against torn sectors in hardware, using stored energy in capacitors to
complete in-flight block writes, or perhaps in firmware. But with NVRAMwe have
atomicity guarantee only for one cache line, so extra steps are required in order to
expose NVRAM as a block device.

This is done by a special data structure— block transaction table (BTT) (static
layout shown on figure 6). BBT’s principle of work is described in more detail
in [13], but in short it divides all available space in arenas of 512 gigabytes where
global block address is mapped to internal block via indirection tables called BTT
Maps and all writes actually happens in “allocating” manner in free blocks stored
accessed via BTT Flog and only after they this blocks are redirected in BTT Maps.

13

Figure 6 – BTT static layout

And only when NVRAM is configured in DAX sub-mode it truly opens all
its capabilities providing the following properties:
— It is fully byte-addressable and supports fast random access
— Write atomicity is guarantied on the cache-line (64 bytes) level,
— It is possible to map NVRAM directly to process memory, bypassing the ker-

nel ans its caches, which provides shortest code path to NVRAM allowing
writing and reading directly from NVRAM. For instance on x86_64 it is pos-
sible to read from it via ordinary MOV instructions and persistently writing to it
by flushing cache-line using specialised CLFLUSHOPT, CLWB or PCOMMIT
instructions
However, to work with NVRAM as storage device it is required to use special

file systems, that are aware of all nuances of NVRAM that differ it from classical
non-volatile storages. Most notable being absence of sector write atomicity which
most of the file systems rely on. Fortunately, some commonly used modern file
systems such as ext4 and xfs have already implemented support for NVRAM in
their latest revisions. However, it is to be noted that NVRAM aware file systems

14

only guarantee consistency of its metadata is preserved without relying on sector
write atomicity but no guaranties about writes of user data with sector atomicity
is given, which application often may indirectly rely on. All of this specifics are
schematically shown in figure 7:

Figure 7 – Difference at the software level between block access (a) and direct
access (b)

Last notable feature of the direct access is the ability to use NVRAM without
non-volatility guaranty. In this case, there is no file system and NVRAM uses its
internal caches are used more aggressively. This allows to view NVRAM as a addi-
tional slower RAMwith more storage capacity. However this requires programmers
to manually decide on which memory to allocate data allowing more precise con-
trol and implementing more specific logic of splitting data on “hot” and ”cold“ in
any given case. Many operating systems show NVRAM in this configuration as
additional NUMA node, which makes it easier to implement allocator for memory
management.

15

1.2. Interaction with hardware
1.2.1. Device drivers

In today’s world, electronic devices have become an integral part of our daily
lives. These devices are composed of various hardware components, each with its
own set of specifications and functionality. In order for software applications to
interact with these hardware components, device drivers are essential. From a de-
veloper’s perspective, device drivers serve as an interface between the hardware and
the software, enabling software applications to communicate with specific hardware
devices.

Without device drivers, software applications would not be able to interact
with the hardware components of electronic devices, rendering them useless. For
example, without a keyboard driver, software applications would not be able to re-
ceive input from the keyboard. Similarly, without a display driver, software appli-
cations would not be able to display output on the screen.

Device drivers are essential for creating software applications that can interact
with specific hardware components. They provide a possibility for software appli-
cations to access the hardware, enabling the creation of complex and powerful ap-
plications. In addition, the device drivers ensure that software applications can run
reliably and efficiently on electronic devices, providing a seamless user experience.
The device drivers allow higher level programs to operate much more comprehensi-
ble abstraction such as block device, printer or network card without need to take in
consideration which vendor produced particular device or what model does it have.

1.2.2. Operating system
However, having the device drivers is not enough to effectively develop any

kind of sophisticated programs in reasonable time. Despite allowing to view lots
of different hardware as generalized kinds such as a keyboard device or a network
adaptor those abstractions are still very low-level and force programmers to take in
consideration a lot of nuances related to specific hardware that is used in system.

In order to address this issue, another level of abstraction is introduced —
an operating system. It provides a higher-level, more abstracted interface that sim-
plifies the programming process and allows for the creation of complex software
applications, schematically shown in figure 8.

16

Figure 8 – Scheme of abstraction in modern system

An operating system provides a standardized API for accessing hardware re-
sources, which simplifies programming by abstracting away the low-level details of
device driver programming. This means that programmers can write code that is
independent of the specific hardware details, making it easier to write code that is
portable and can run on a wide range of devices.

However, this is not the only function of the operating system. This is only
the part of its core component — kernel. The kernel provides most basic level con-
trol of all available hardware resources and performs various functions which allow
execution of user programs:
— Scheduling: modern operating systems allow multiple programs to be run

simultaneously on one system. However, numbers of programs drastically
exceeds number of available cores on CPU. In order to make it seem like
all this programs are run at the same time kernel allows each program to be
executed for a fraction of time and then saves its state and starts executing
different program.

— Memory management: all programs require some memory in order to rep-
resent their state and data, that they are working with. Memory on CPU also
known as registers does not satisfy this needs, so systems use volatile and fast
random access memory to do so. However, we can not give all available to
one process because there are dozen of other processes waiting to be scheduled

17

and also require memory to be able to function. We also can’t just divide all
memory evenly between programs being executed because different programs
require different amount of memory and also number of process changes over-
time. This problems require advanced and dynamic memory management,
which is performed by kernel.

— Isolation: most programs are written in assumption that they are the only
ones being executed on the system and will continuously run until they are
terminated. But as we see from previous points it is far from truth. However,
this is a very practical model that allows a development of application without
worrying about influence from other programs that are executed in the sys-
tem. So, the kernel provides this “illusion” by carefully keeping track of what
memory belong to which program and prevents programs from corrupting or
even accessing each others data.

— Inter process communication (IPC): despite each process existing in isola-
tion from each other sometimes there is a necessity for them to communicate
with each even if it is heavily limited, which kernel provides. It is done in
a very careful manner in order not to break isolation too much, which will
inevitably lead to data corruption. However, even legit actions can lead to
errors if concurrence is not took into the consideration because modern CPUs
allow truly parallel execution of commands which can lead to data races.

— Security: different actions have different influence on the system. For in-
stance multiplying two integer numbers on CPU is generally considered a
harmless action and does not have much effect on a system, but writing some
data to storage devices could easily lead to data corruption or even data loss
if not performed correctly. Even legit programs can perform actions which
potentially can damage the system because of errors in their logic and that is
not to mention programs which are intentionally designed to be malicious. In
order to address these issues the kernel distinguishes which operations are al-
lowed and which are not for particular programs introducing concepts as user,
privileges, security rings and so on.

— Networking: not all programs are written in order to work within one system.
Quite often they are working in conjunction with programs that are executed
on other systems, but in order to do so they somehow need to communicate
with each other. Devices such as network adapters allow to do so by transfer

18

data by wires or wordlessly using radio waves. However, in order to correctly
send or receive data by these adaptors we need to decide what data belongs
to each program, how to prioritise between them due to limited capacity of
adapters internal memory and how much of system memory is used to buffer
this data. All this is handled by kernel networking subsystems allowing pro-
grams to operate more simple abstractions such as Berkeley sockets [24].

— Storage: all functions mentioned above handle only volatile aspects of ker-
nel functions. But it is also essential to store some information persistently
which means this data must be kept intact even if there is no power on the
system. Kernel itself has to be saved in such manner in order to allow system
to function after it is restarted. Different storage devices such as hard drives
and solid state drives allow to store data in a non-volatile manner, however
they provide low-level functions of reading and writing sectors of flat data.
Any complicated structures, transfering data between memory and storages,
high level abstractions such a file systems that are used by most programs are
provides by the kernel.
Those are not the only but just most notable functions that are provided by the

kernel. An operating system itself performs many other functions apart from the ba-
sic systemmaintenance such as providing the stable public application programming
interface (API) and an application binary interface (ABI) in order to keep source
code and compiled binary programs portable from on system to another, handling
real-time interruptions in order to respond to different input devices, giving ability
to communications with output devices such as speakers and monitors in order to
produce pictures and sounds that are comprehensible by humans and also provid-
ing user interface in order to be operated by users in form of either command-line
interface where command are typed one by one from text input devices or graph-
ical interface where some kind of graphical environment is used to allow users to
interact with electronic devices through graphical icons and audio indicator which
mostly uses input from a mouse rather then a keyboard.

1.2.3. System calls
Most programs that are written outside the development of operating system

itself are written for the operating system itself rather than for any hardware com-
ponents. In order to do anything apart from simply performing memory reads or

19

arithmetical calculations programs “ask” operating to do it for them with the help of
system calls.

In an operating system, a system call is a mechanism that allows user-level
processes to request services from the kernel or other privileged components of the
system. Its role in the communication with the kernel is schematically shown on
figure 9:

Figure 9 – The execution of processes in OS which interact with hardware

When a user-level process wants to perform an operation that requires privi-
leged access, such as reading from or writing to a file, allocatingmemory, or creating
a new process, it makes a system call. The system call transfers control from the
user-level process to the kernel, which then performs the requested operation on
behalf of the process.

20

System calls are typically implemented as functions provided by the operating
system’s application programming interface. The process invokes the system call
by calling the appropriate function with the required parameters. The kernel then
performs the requested operation and returns the result to the calling process.

Each system call has a unique identifier, known as a system call number or
syscall number. The syscall number is used by the kernel to determine which system
call the process is requesting.

Examples of commonly used system calls include:
— open: to open a file;
— read: to read data from a file;
— write: to write data to a file;
— fork: to create a new process;
— exec: to replace the current process with a new one;
— exit: to terminate the current process.

System calls are a fundamental part of an operating system’s functionality and
provide a way for user-level processes to access privileged services and resources
in a controlled manner, which includes but not limits to:
— Checking privileges: Not every user in the system is allowed to do every-

thing. For instance, some users may not be allowed to access networking as a
security precaution, or changing vital system properties such enabling over-
committing — allowing processes to allocate more memory than available in
the hardware is given only to a user with high privileges.

— Input validation: Even if user is allowed to interact with some part of a sys-
tem there can still be error in input information caused bymistake or malicious
intent which can cause different kinds of corruptions in system. For instance,
an user might try to perform a write operation to read-only device, write −1

or bytes to a hard drive or trying to pass pointer to memory that is not aligned
properly.

— Error handling: Correct privileges and input parameters does not guaranty
success of required operation. For example, there may be errors or underly-
ing hardware such as corrupted data on hard drives and depending of nature
of this corruption operation may be retried in some form of a recovery mode
or maybe just device bus is overflown at the moment and we should wait and

21

retry operation. In addition to recovering from errors inside the system there
is also a need to propagate it to the caller in a way that the caller understands
it severity and reacts accordingly. For instance, if a current process was just
interrupted during system call execution by scheduler or real-time signal and
this call returned this error indicated such interruption, user process can sim-
ply retry operation instead of propagating error further.

— Scheduling optimisation: Not all actions may take predictable time in order
to be completed. For instance, reading an input from a keyboard or a network
adapter takes indefinite amount of time because we do not known when user
will press the button or new data will arrive from network. So, instead of
actively waiting for data to be ready to be passed to program we tell sched-
uler to stop executing current process and replace it with some other process
waiting to be executed. But in order to respond quickly we register handler
to keyboard interruption, so when the data finally arrives we will be able to
continue the execution of the original process right on. This situation is very
similar to what we just described is illustrated on figure 9.
All this allows to view programs that are executed on the system as a stream of

arithmetical operations and reads and writes from memory with occasional system
call in-between which allows communication with other hardware.

1.2.4. File system
As mentioned above, one of the main functions of any operating system is

the possiblity to work with non-volatile memory also known as storage devices.
Devices themselves provide very primitive API allowing to view them as contiguous
array of data with some predefined minimum addressable unit. Without additional
information there is no way to tell where some piece ends and where the next one
begins, there is even no way to tell where the data is located to begin this or even
tell if this part of device contains some useful information or just is vacant to put
data on it.

In order to address this issues operating system provides a file system — a
method used by operating systems to organize and store files and directories on a
storage device, such as a hard disk drive or solid-state drive. It provides a hierarchi-
cal structure for organizing files and directories, as well as a set of rules for accessing
and managing them. A file system covers several aspects in order to provide such
functionality:

22

— Space management: It involves managing the available space on a storage
device and allocating that space to files and directories. Without proper space
management, it can be difficult to efficiently store and access files, and storage
devices can become cluttered and disorganized. It includes several tasks:

– Block allocation: File systems divide the storage device into fixed-size
blocks and allocate one or more blocks to each file. This allows the file
system to store files contiguously or non-contiguously.

– Free space management: File systems keep track of the free space on
the storage device, which is used to allocate space for new files.

– Fragmentation: As files are created, modified, and deleted, the storage
device can become fragmented, meaning there are alternating used and
unused areas of various sizes. This may lead to a situation when there
is no contiguous space for allocating file data, so it has to be stored in
scattered pieces. For some devices such as hard drives this can signif-
icantly impact performs because even sequential data access in reality
would result in random seeks along the device.

– Compression: Some file systems support compression that can reduce
the amount of space required to store files. This can be useful for storage
devices with the limited capacity.

– Quotas: File systems can also implement quotas that limit the amount
of space that can be used by individual users or groups. This can help
prevent users from consuming too much space on the storage device.

— File organization: File systems provide a way to organize files and direc-
tories into a hierarchical structure, typically using a tree-like structure. This
is achieved by using directories. Directory is a special entity in file system
which does not contain any user data but rather lists all files and other folders,
that a present in it.

— Multiple devices: Most computers support connecting multiple storage de-
vices to them, not mentioning that one devices could be divided in multiple
“subdevices”, called partitions. Different devices can be configured with dif-
ferent attributes or even different disk layouts entirely. However, user ap-
plications expect to be able to access all storage media. There are different
techniques to do so. Windows does this with letter drives by assigning unique
letter for each connected device. Linux take approach of virtual file systems

23

[16] — a programming abstraction that allows applications to interact with
the underlying file system in a standardized way, regardless of the specific
file system implementation as if everything was places in one file system.

— Data integrity: On the key aspects of working with a non-volatile memory
is inability to easily restart everything from scratch. Even after rebooting the
system everything that you wrote will be present on the device. However, this
is not safe in the presence of hardware errors or an unexpected power failures
which may occur at any moment. This requires to keep file system consistent
at any given time and carefully choosing algorithms and data structures de-
pending of guaranties provided by device. Techniques such as checksums of
even using error corrections coding and journaling are often used to achieve
this goal.

— Access control: File systems typically provide access control mechanisms to
restrict access to files and directories based on user permissions. This can
help protect sensitive data and ensure that only authorized users can access
specific files.

— Performance: Apart from the usability and the consistency, it is obviously
required from a file system to be as fast as possible. Different file systemsmay
have different performance characteristics such as one is optimized for big
files (for example, for a video media storage), others focus on huge amounts
of smalls files (electronic mail services significantly rely on them). However
there are common techniques that help to boost performance:

– Caching: It is performed by saving most popular or recent pages with
the data from a device to a fast volatile memory of the system. So, when
this data is accessed next time for a read, we just return it from memory
right away, and for a write we just modify page in memory and write it
to disk later in background.

– Smart scheduling: Another way to boost performance is to reorder
input/output operations when possible in order to send requests to
hardware more efficiently. This may involve batching read and write
requests in order to better utilise throughput of a device bus, or re-
ordering them in a more sequential manner which helps with hard disk
drives, because they perform much more better when data is accessed
sequentially due construction specifics. Sometimes, it is possible to

24

eliminate all the communication with the device when write and read
requests are in the same segments of data.

Apart form complex algorithms structures in systems volatile memory, all
those aspects are implemented with the help of a special bookkeeping information
associated with each entity within a file system — a metadata. The metadata con-
tains various service information and can vary from file system to file system. How-
ever, it commonly contains the following information:
— File size: it can be both in bytes and blocks depending on what do you want

to count;
— Time: it could be time when the file was created, modified, or last accessed;
— Permissions and ownership: information about who has permission to ac-

cess and modify each file, as well as who owns the file;
— File names: information about the names of files by which users locate them

in the file system;
— File location and organization: this metadata provides an information about

the physical location of each file on the storage device, as well as how the
files are organized within directories and subdirectories.
Most modern file systems store metadata and file data itself in separate places

which allows operating system to change actual data layout, for example, during
defragmentation, without blocking access to files for the running programs. In Unix-
style file systems those metadata structures are called inodes (index nodes) because
each inode has a unique index inode table, that describes structure of current file
system. However, for example, NTFS has similar concept with unique fileID inside
the master file table. Almost all file system operate with inode-like entities rather
than filenames after locating file in somemetadata table and they are the only unique
identifier of file in whole file system because entities like symlinks in Linux allow
different paths refer to same real file.

Last thing to mention about an application interaction with storage devices
through operation system is durability. As we can infer from information presented
above writing to a non-volatile storage does not often mean that the data is written in
a non-volatile manner. Best that you could expect is that your data will be eventually
placed on the storage media. One could suggest that we could perform writes that
bypass any kernel caches or we could wait for data to be send to storage device. And

25

there are ways to so such as opening files on Linux with O_DIRECT flag, however
this still does not guaranty that your data will be accessible after unexpected power
failure. This happens because devices themselves also “cheat” by having internal
caches of fast volatile memory which they use in order to speed up writes and reads
and report back to kernel as soon as data is written to those caches. In order to do
so they provide different commands in order to write data truly persistent such as
ability to flush caches or make write bypassing caches entirely.

To allow an application that rely on data being truly and safely written to stor-
ages get such guaranties operating systems provide special functions that take in
consideration all nuances motioned in previous paragraph: on Linux this function
it is called fsync, on Windows it is FlushFileBuffers. Those functions en-
sure that all changes to the specific file are written to non-volatile memory, so, they
could be visible even if system is unexpectedly rebooted right after this function
finishes its execution. However, it is important to note that those writes are much
slower compared to simply issuing write-like system call. Depending on particular
operating system, file system, device and how often those sync are issued it could
slow down performance up to 100 times.

1.3. Databases
One of most popular types of applications that heavily rely on file systems

are databases. A database is a collection of data that is organised and stored in a
structured way that allows for efficient retrieval and manipulation with the data.
The data can be of various types, such as text, numbers, images, videos, and more.
Despite a file system provides functions to store and organise data, its functionality
is limited compared to features provided by a specific database that includes such
things as:
— Advanced data integrity: not only databases may provide more complex

errors correction codes but also maintain more advanced data constraints. For
instance, with the help of database constraints it is possible for a phone book
to guarantee that each person has at least one telephone number and each
telephone number belongs only to one person.

— Advanced data Security: a database provides mechanisms to control access
to data, such as authentication and authorization. This helps to protect sensi-
tive data from unauthorized access.

26

— Data scalability: a database can handle very large volumes of data and sup-
port multiple users and applications accessing the data simultaneously. With
the help of network communication database can store data on multiple sys-
tems when this amount exceeds capabilities of one system allowing itself to
be easily scalable.

— Advanced data retrieval: it provides mechanisms to retrieve and analyze
data in various ways, such as advanced queries that filter entities by flexible
conditions that may even includes rules on data conjunctions, search entities
by their contents such as words in documents or even fuzzy search that allows
words to be misspelled, fast random access do data which is ordered by some
arbitrary key and many more way that make it easier to extract insights and
knowledge from the data.

— Atomicity: not every action in a file system is atomic, i.e., they either finish
successfully or make no changes. It is possible for them to be partially done
especially in the case of unexpected external errors. The simplest example is
writing a data to a file: in the case of a power failure unpredictable subset off
data will be persisted on storage.
There are different types of databases used depending on the specific data

models and access patterns:
— Relational Databases: relational databases are the most widely used type

of database. They store data in tables with columns and rows, and use SQL
(Structured Query Language) to manage and manipulate the data [2]. Ex-
amples of relational databases include MySQL, Oracle, and Microsoft SQL
Server.

— NoSQL Databases: NoSQL databases are non-relational databases that can
store unstructured, semi-structured, and structured data. They are designed
to handle big data and provide high scalability and availability. Examples of
NoSQL databases include MongoDB, Cassandra, and Couchbase.

— Object-oriented Databases: Object-oriented databases store data in objects
and classes, which are like templates for objects. This type of database is
designed to work well with object-oriented programming languages like Java
and C++. Examples of object-oriented databases include db4o and ObjectDB.

— Hierarchical Databases: Hierarchical databases store data in a tree-like
structure, where each record has a parent and child relationship. This type

27

of database is commonly used in mainframe systems and is not widely used
today.

— GraphDatabases: Graph databases store data in nodes and edges, which rep-
resent the relationships between the data. This type of database is commonly
used in social networks, recommendation engines, and other applications that
deal with complex relationships. Examples of graph databases include Neo4j
and OrientDB.

Figure 10 – Decomposition of database functions

However, a database itself is more of a concept or a public interface on proper-
ties of some applications. Real software that implements all those function is called
database management system (DBMS). It handles many different aspects which
compose databases and its responsibilities are schematically shown of figure 10.
There are many different tasks that are handled, but for now I focus only on one —
the transaction manager.

28

1.3.1. Transactions
As mentioned above one of the key features of databases is the advanced

atomicity for many different actions it performs. However, this only one of the
key properties of basic principal of interaction with database — transactions [5]. A
transaction in a database is a logical unit of work that is performed on the data stored
in the database. A transaction can be a single operation or a series of related opera-
tions that are performed as a single unit of work. Operations that must be executed
in a specific order to ensure the integrity of the data. The four key properties of a
transaction are commonly known as ACID:
— Atomicity: a transaction is atomic, which means that it is an all-or-nothing

proposition. Either all the operations in the transaction are completed suc-
cessfully, or none of them are. If any of the operations fail, the transaction is
rolled back, and the database is restored to its previous state.

— Consistency: a transaction ensures that the database remains in a consistent
state before and after the transaction is executed. This means that the trans-
action must maintain the integrity of the data, preserve any constraints, and
ensure that the data is valid.

— Isolation: a transaction is isolated from other transactions, which means that
the operations performed by one transaction are invisible to other transactions
until the transaction is committed. This ensures that the data is not corrupted
by concurrent access to the database.

— Durability: a transaction is durable, which means that once it is committed,
the changes made by the transaction are permanent and survive any subse-
quent failures, such as a power loss or system crashes.

For sake of this work, we only focus on handling the durability aspect of
transactions. This is done with the help of database journal. A database journal
or a database log is a file that contains a chronological record of all the transactions
that have occurred in a database system. Every time a transaction is performed in a
database, such as adding, deleting, or updating a record, the details of the transaction
are written to the database journal. This includes information such as the time of the
transaction, the type of operation performed, the data involved, and any relevant
metadata.

29

The database journal serves several important purposes. One of its primary
functions is to provide a reliable record of all transactions that can be used to recon-
struct the state of the database in the event of a failure. For example, if the system
crashes, the database can be restored to its previous state by replaying the trans-
actions in the journal that were not yet committed at the time of the failure. It is
worth noting that the database log is updated in append-only manner and is often
implement via append-only files. This drastically simplifies recovery routines of
database by providing an explicit linearization [3] of all concurrent transactions and
also decreases likelihood of data corruption during writes to a persistent storage.

Thus, DBMS performance noticeably depends on the performance of syn-
chronous writes provided by file system, because corruptions in other structures of
database could be corrected by recovery routines with help of transaction log. It is
not rare to see more relaxed durability guaranties where DBMS responds as soon as
write returns from kernel rather then when file content is synced. This allows to sig-
nificantly decrease respond time of write queries but makes it possible lose portion
of last updates in case of a system failure.

Conclusions on Chapter 1
In this chapter, I performed an analysis of the subject area, to be more precise:

— Firstly, I presented a novel device — non-volatile random access memory by
taking a look at its fundamental architecture, different working modes and
features and limitations.

— Secondly, I presented basic principals of how programs interact with different
devices installed in the system: they are executed on top operating system by
merely asking it to perform some communication with device drives, which
give very basic abstraction on top of specific hardware. In addition I took
a closer look at storage aspect of operating system — a file system and de-
scribed its functionality and basic principals and highlighted challenges of
truly durable modifications to it.

— Lastly, I discussed database management systems — applications that
heavily rely on file system capabilities and performance, especially in terms
of synchronous writes to append only files.

30

All this leads to the main goal of this project — exploring possibility of using
NVRAM to boost performance of synchronous writes to other non-volatile storage
devices without changing source code of applications, that use them.

31

CHAPTER 2. GENERAL DESCRIPTION OF THE LIBRARY
2.1. Features and limitations

The main purpose of our work is to provide a NVRAM-based cache that is
used to enhance the performance of synchronous writes to files. These are basic
features of my library:
— No changes are required in the source code of application in order to take

advantage of it.
— Both single-threaded and multi-threaded applications are supported.
— It tries to perform as much operations in user-space as possible in order to

minimize expensive context switches to kernel.
— Specifying what files should be cached based on their extension and location.
— Customisable cache size, so the user can scale available NVRAM space for

as many files as the user want
— Customisable cache location that eases maintenance of the device.

However, this library also imposes some limitations:
— Only append-only files are supported. Randomwrites require to mirror lots of

functions performed by operating system and may require creating full scale
file system from scratch, which is way out of scope of this project.

— Only one thread at a time can access files that are cached with our library.
However in reality despite often having dedicated IO-threads applications
rarely from different threads concurrently same files to say nothing of append-
only files and even then they mostly have some explicit synchronisation in
order to do so.

— Even within one thread file that is backed by cache could be opened only once
before closing. If you want to access file again youmust reopen it. Once again
it is rare to see one file to be opened multiple times for different purposes.
Most applications already close files before starting to use for different role.

— Library works only on Linux based systems with x86-64 architecture [10].
However, it is understandable how to extend its support to different architec-
tures: this requires few platform-dependant switches in few places almost the
same way Linux itself does it, but extending support to different operating
systems requires additional consideration due to differences in how system
calls are implemented there. Nevertheless, this does not affect the core prin-

32

cipals of how caching itself is performed, but rather complicates techniques
used to allow no changes on applications that use this library.

2.2. Technologies used
2.2.1. libpmem

Unless we want to deal with low-level API provided by device drivers it is
reasonable to use some kind of wrapper also known as library. Libpmem is a library
for programming persistent memory devices, also known as Non-Volatile Memory
(NVM). This library provides a set of APIs for developers to access and manage
persistent memory devices.

The library supports a range of persistent memory devices, including Intel
Optane DC Persistent Memory, which is a new class of memory that combines the
speed of DRAMwith the persistence of NVM. It also supports other types of NVM,
such as NVDIMMs, SSDswith integrated NVM, and PCI Express-based NVM [14].

The goal of libpmem is to provide a programming interface that allows de-
velopers to treat persistent memory devices as if they were volatile memory, while
still retaining the durability and persistence benefits of non-volatile memory. It al-
lows applications to directly read and write persistent memory, bypassing the file
system and operating system buffering if it was configured in an appropriate mode.
It provides API very similar to one that Linux provides for working with memory
mapped files. Consider examples provided in code snippets in listings A.1 and A.2:

a) Code on listing A.1 does the following:
1) opens a file located at PATH or creates it if does not exists;
2) ensures that it has enough space for LEN bytes of data;
3) maps file contents to special memory pages returning pointer ptr and

closes the original file descriptor;
4) writes string to ptr;
5) ensures that the written data is persisted by explicitly flushing changes

made to the in-core copy of a file;
6) deletes a mapping associated with ptr.

It also performs some basic error handling but for sake for simplicity I skip it.
b) Code on listing A.2 does following:

1) creates a mapping via pointer ptr for a file located at PATH ensuring
that such file exists and has enough space for LEN bytes of data;

2) Ensures that such file was located on NVRAM;

33

3) writes a string to ptr;
4) ensures that the written data is persisted;
5) deletes a mapping associated with ptr.

Once again basic error handling is performed but we do not focus on that.

From this descriptions, it easy to see that both programs perform almost iden-
tical tasks and even almost identical steps that vary how actions are grouped in one
function call. This is not a coincidence, libpmem was designed to be similar to
mmap [21] to extent. The code which worked with pointers provided by mmap
should continue to work with a pointer provided by functions from libpmem. In a
nutshell, libpmem provides low-level APIs that allow developers to allocate, deal-
locate, and manage memory on persistent memory devices, as well as read and write
data to and from these NVM devices. This API provides tools to ensure durability
aspect of your program. However, it does not pose a transactional property, so, the
atomicity and consistency aspects must be taken care of solely by programmer:
— pmem_map_file: creates read/write mapping for a given file, optionally en-

suring that it exists and resizing it. It allows creating such a mapping either
on NVRAM or classical storage device and reports where the mapping took
place. The mapping itself is performed internally by mmap, but it also takes
extra steps to make large page mappings more likely which speed up MMU
routines that locate physical page by virtual memory address.

— pmem_unmap: a function similar to munmap that deletes mappings cre-
ated pmem_map_file and causes further references to addresses within the
range to generate invalid memory reference.

— pmem_flush/pmem_drain: these functions allow to flush any processor
caches and device caches respectively. These functions are suitable only
for memory returned by pmem_map_file that was mapped to actual
NVRAM. If you want to perform both actions there is convenient wrapper
pmem_persist. Main difference of this functions compared to msync
is that these functions will, if possible, perform the flush directly from user
space, without calling into the OS. For example on the Intel platform it could
by archived by using instructions like CLWB and CLFLUSHOPT. Libpmem
checks the platform capabilities on start-up and chooses the best instructions

34

for each operation it supports.

These functions satisfy all the basic requirements in order to create more com-
plicate programs such as transactional object store as in libpmemobj or transac-
tional pmem-resident log file as in libpmemlog. However, in order to simplify
efficient copy of data to NVRAM this library also provides functions that are similar
to libc functions memcpy, memset, and memmove, that are called similarly with
prefix pmem_ and optionally provide properties of pmem_flush/pmem_drain.
This also done by using platform specific instructions, like non-temporal store in-
structions on Intel which bypass the processor caches.

2.2.2. syscall_intercept
Syscall interception is a technique used in operating system design and de-

velopment to intercept and modify system calls made by processes running on the
system. The idea is to intercept system calls before they are executed by the oper-
ating system kernel and to provide additional functionality or security checks.

The syscall_intercept library is a popular open-source implementation for a
syscall interception. It allows developers to intercept system calls on Linux systems
with x86_64 architecture and to modify their behavior in a variety of ways. De-
velopers can intercept system calls and redirect them to custom handlers, modify
system call arguments, and inject custom code into the execution path of the system
call. This allows developers to add custom functionality or security checks to the
system call [22].

API of this library mainly provide two functions:
— intercept_hook_point: a global function pointer to interception callback, that

must assigned in function with the constructor attribute in order to be ini-
tialised at start. This function must accept a number of syscall as its first
argument and six arguments of type long for possible syscall arguments. It
also takes argument with the pointer for result because return value of func-
tion itself signalises if user decided to intercept syscall or it should be passed
to kernel.

— syscall_no_intercept: a convenience function that takes syscall number and
an arbitrary number of syscall arguments that allows to issue a system call
that will not be intercepted. It is similar to standard libc function syscall

35

however return value should be handled differently.

One common use case for syscall interception is in the development of security
software, such as antivirus or intrusion detection systems. By intercepting system
calls, security software can monitor and analyze the behavior of processes on the
system and detect malicious activity.

Another use case for a syscall interception is in the development of debug-
ging tools. Developers can use syscall interception to track system call usage and
diagnose issues with applications.

Under the hood inteception is done by hotpatching libc binary that is already
loaded to the process memory. The library disassembles the text segment of the libc
loaded into the memory space of the process it is initialized in. It locates all syscall
instructions, and replaces each of them with a jump to a unique address. Since the
syscall instruction of the x86_64 ISA occupies only two bytes, the method involves
locating other bytes close to the syscall suitable for overwriting. The destination of
the jump (unique for each syscall) is a small routine that accomplishes the following
tasks:

a) Optionally executes any instruction that originally preceded the syscall in-
struction, and was overwritten to make space for the jump instruction.

b) Saves the current state of all registers to the stack.
c) Translates the arguments (in the registers) from the Linux x86_64 syscall call-

ing convention to the C ABI’s calling convention used on x86_64.
d) Calls a function written in C (which in turn calls the callback supplied by the

library user).
e) Loads the values from the stack back into the registers.
f) Jumps back to libc, to the instruction following the overwritten part .

To be precise, an original binary application could be modified it two differ-
ent ways. When syscall and surrounding instructions can be overwritten it just
places jump to special routine as shown on figure 11:

36

Figure 11 – Simple hotpatching

However, sometimes the instructions directly preceding or following the
syscall instruction can not be overwritten, leaving only the two bytes of the
syscall instruction for patching. In this case hotpatching library looks for a place
for the trampoline jump in the padding found to the end of each routine. Since the
start of all routines is aligned to 16 bytes, often there is a padding space between
the end of a symbol, and the start of the next symbol. On figure 12 that illustrates
hotpatching using a trampoline jump below, this padding is filled with seven byte
long nop instruction, so the next symbol can start at the address 3f410:

37

Figure 12 – Hotpatching using a trampoline jump

2.3. Library implementation
Now, I take a closer look on how this library is providing all the features, that

I mentioned in the beginning.

2.3.1. General design
To comply with the original requirement of demanding no changes in source

code of original applications this library bases it on intercepting system calls that
original application issues in order to interact with a file system. It performs the
following steps:

a) Intercepts syscall from original applications.
b) Analyses this syscall and if it is not related to file system passes it to kernel,

otherwise, proceed further.
c) Analyses if syscall is related to files, that are cached via this library. If not

once again passes syscall to kernel, otherwise, proceed further.
d) Mimics effects of original syscall and returns control back to original appli-

cation.

38

Already, it possible to see where reduced number of syscalls comes from:
due to optimisation in libpmem that allow interaction with NVRAM directly from
user-space it is possible that the whole interception will be performed in user-space
too.

2.3.2. Parameters passing
In order to control the behavior of our library we need to somehow pass cus-

tomisable parameters to it. For a regular application it is done via command-line
arguments, however, because we cannot change source of original application any
attempt to use this technique would mostly lead to errors in parsing routines of am
original application or even undesired changes in its behaviour.

So, in order to solve this problem we use a different tool — environment vari-
ables [25]. An environment variable is a dynamic value that can be set and accessed
by software running on a computer system. These variables are essentially key-
value pairs that provide a means for software applications and operating systems
to communicate with each other and share information. They do not change the
command-line that is consumed by the program, however, often can change pro-
gram’s behaviour as shown in listing 1:

Listing 1 – Invoking date utility with different TZ environment variable
dogzik@DESKTOP−LEV:~ $ TZ= ’ America / Los_Angeles ’ d a t e −− r f c − ema i l
Sun , 14 May 2023 09 : 32 : 07 −0700

dogzik@DESKTOP−LEV:~ $ TZ= ’ Europe / London ’ d a t e −− r f c − ema i l
Sun , 14 May 2023 17 : 32 : 23 +0100

Our library takes its arguments from the predefined environment variables that
are prefixed with string SUFFIX_CACHE_ in order to avoid clashes with other en-
vironment variables that are used by the system and/or applications. Such variables
include the following:
— SUFFIX_CACHE_EXTENSIONS_TO_FOLLOW: list of file extension

used to filter which files must be cached by this library and which not.
— SUFFIX_CACHE_SIZE: the number that tells how much data is used for

each files cache in bytes.
— SUFFIX_CACHE_PATH: the path to a location where cached would be

placed. This path must reference folder on NVRAM in order for library to
work.

39

— SUFFIX_LOAD_FACTOR: the threshold for cache’s load factor after which
automated flushing to underlying device starts which will be discussed later.

2.3.3. Intersection subtleties
The intersection in this library is made with the help of library

syscall_intercept. However, I have to address two main problems:
— multi-threading: we need to be able correctly intercept syscall that are made

concurrently from different threads of the application.
— reentrancy: sometimes we need to perform some syscall inside the handler

while already intercepting another syscall. Although library provides
possibility to issue syscalls without interception, this API is very low-level
and usage of convenient wrappers from libc is much more desirable.

In order to overcome these challenges I track current state of interception with
a special boolean flag — in_hook. Initially it is set to false, and during the
interception it is set to true before performing any actions. Main trick is that if
variable is declared as static. In C++, a static variable declared inside a function
is a variable that retains its value between function calls. Thismeans that the variable
is initialized only once, the first time the function is called, and retains its value
across subsequent calls [8]. Static variables in functions can be useful when you
want to retain some state information between function calls. For example, you
might want to keep track of the number of times a function has been called as shown
in listing 2 below:

Listing 2 – Static variable in C++
vo id myFunct ion () {

s t a t i c s t d : : s i z e _ t c a l l C o u n t = 0 ;
c a l l C o u n t ++;
s t d : : c ou t << ” Th i s f u n c t i o n has been c a l l e d ” << c a l l C o u n t <<

” t ime s . ” << s t d : : e nd l ;
}

So, when we start executing our intercept function: firstly, we check this
in_hook variable, and if it is set to true we return from the function immedi-
ately indicating that syscall should be passed to kernel.

However, this covers only the reentrancy aspect of our problems. In multi-
threaded applications we could encounter syscall from different threads during the

40

interception one from current which may lead to situation where we pass syscall
from a different thread to the kernel because we encounter in_hook in true de-
spite that in reality we need to intercept it in order to function correctly. Simplest
solution in this case would be protecting in_hook variable by some kind of lock
like for example std::mutex. This will ensure correctness of our interception,
however, it will introduce unnecessary dependencies and the waiting time during
the execution, that negatively affects the performance of the original application.

Looking closely, I saw that a decision about the interception is really indepen-
dent in each thread and we only care about reentrancy within one thread unless we
explicitly perform additional actions in another thread during interception. In this
case, we have the full control of a source code and knowledge of the internal logic
and can perform additional logic for this situation. However, in order to achieve
convenience in common case we can use different tool — thread_local. In
C++, thread_local is a storage class specifier that indicates that a variable is
local to a thread. This means that each thread has its own copy of the variable, and
changes made to the variable by one thread will not affect the value of this variable
in another thread. They are initialized once per thread, at the time the thread is cre-
ated, and when a thread is terminated, such variables are destroyed [9]. So, we mark
our variable with this specifier and final code is similar to code below:

Listing 3 – Final interception hook
1 i n t hook (long sy s ca l l _numbe r , l ong arg0 , l ong arg1 , l ong arg2 ,

l ong arg3 , l ong arg4 , l ong arg5 , l ong * r e s u l t) {
2 s t a t i c t h r e a d _ l o c a l in_hook = f a l s e ;
3 i f (in_hook) {
4 r e t u r n PASS_TO_KERNEL ;
5 }
6 in_hook = t r u e ;
7 i f (n e e d _ i n t e r c e p t (. . .)) {
8 * r e s u n t = d o _ i n t e r c e p t (. . .) ;
9 } e l s e {
10 in_hook = f a l s e ;
11 r e t u r n PASS_TO_KERNEL ;
12 }
13 in_hook = f a l s e ;
14 r e t u r n INTERCEPTED ;

Now, as shown on listing 3, each thread has its own state of interception.
So, when each thread encounters its first call to interception function it will ini-
tialise in_hook variable to false and proceed with interception passing check

41

shown on line 3. After this if thread decided not to proceed further by check eval-
uating need_intercept to false on line 7 it “unlocks” the hook on line 10, so
the following invocation of the hook in this thread is able to pass a check on line
3 too. Otherwise, if this thread proceeds further with the interception by calling
do_intercept on line 8 all syscalls within that function will be passed to kernel
because each check on line 3 will fail and lead to return on line 4, and after this we
once again “unlock” the hook on line 13 to allow next interceptions to proceed the
same way.

2.3.4. Initial interception
As shown previously, our interception hook is invoked on every syscall issued

from original application, however, in my library I am only interested in actions that
are related to a file system. So, it reasonable to perform initial filtering of intercepted
syscall by immediately passing to kernel syscalls that could no be related to file
system. As shown in chapter 1, every syscall has a unique number by which they
are identified in system and these numbers are available in the system header file
named sys/syscall.h by SYS_* constants. This allows to implement function
need_intercept on line 7 in listing 3 similar to the following way:

Listing 4 – Simlified implemetation of neen_intercept function
boo l n e e n _ i n t e r c e p t (l ong s y s c a l l _ numbe r) noexcep t {

sw i t c h (s y s c a l l _ numbe r) {
c a s e SYS_open :
c a s e SYS_close :
c a s e SYS_fsync :
c a s e SYS_wri te :
c a s e SYS_read :
c a s e SYS_lseek :

r e t u r n t r u e ;
d e f a u l t :

r e t u r n f a l s e ;
}

}

2.3.5. Intercepted syscalls
Now, that we filtered all uninteresting syscalls, we can focus onwhat we really

want to intercept — file system related ones. Generally, they could be divided in
several logical groups:

42

— Open syscalls: these syscalls produce a new file descriptor by creating new
handle to a file in the memory of current process;

— Close syscalls: these syscalls do the opposite and invalidate previously cre-
ated file descriptor by destroying handle that it refers to;

— Sync syscalls: these syscalls are used to explicitly persists changes to file,
that might be stuck in different buffers as discussed in chapter 1;

— Write syscalls: as name indicates this syscalls modify files by adding new
data to them or replacing the existing;

— Read syscalls: as name indicates this syscall fetches data from files. There
is also a guarantee that all data produced by writes that precede current read
will be visible to it even if this data is stuck in some buffer;

— Seek syscalls: these syscalls change position of current pointer inside handler
that is referenced by a file descriptor.
I discuss each group of syscalls separately and subsequently present the ar-

chitecture of the interception runtime.

2.3.5.1. Open syscalls
Mainly this syscalls are present by the following four:

— open: This system call is used to open a file or create a new file if it doesn’t
exist. It takes a filename and a set of flags as arguments, and returns a file de-
scriptor that represents the opened file. The file descriptor is an integer value
that can be used in subsequent operations, such as reading from or writing
to the file. The “open” system call operates relative to the current working
directory of the process.

— creat: This system call is equivalent to calling open with flags equal to
O_CREAT|O_WRONLY|O_TRUNC.

— openat: This system call is similar to open, but it provides a more flexible
way of opening files by allowing the specification of a directory file descriptor
as a starting point for the path resolution.

— openat2: This syscalls was recently introduced as an attempt to create a
universal way to open and create files with the potential for creating future
extension without creating new syscalls as it happened with openat.
However, it is not widely supported as of today and would not supported in
my library for now.

43

Basing on this information we could focus on implementing only openat.
The interception of others is done by just calling the interceptor of openat with
appropriate parameters. Therefore, I discuss only openat.

After receiving a request to open a file, we do the following:
a) we analyse original syscall parameters in order to determine if we need cache

each particular file or not;
b) we check that the file is either write-only or read-only because we do not

support mixed workloads for now;
c) for write only files we check that they are opened as append-only files;
d) If everything checks out we continue to process the file;

The first step is done by checking pathname argument of original syscall.
Unfortunately, here we once again encounter challenges related to multi-threaded
nature of original application. In order to filter files via their path we convert some of
library arguments to convenient filtering structure, however, this conversion requires
some parsing and memory allocations and it would be inefficient to do so every time
we want an open file. In order to optimise this, it is reasonable to create a filtering
function with a static instance of filter in it. However, what happens if another thread
calls this function before the initialisation is complete? We could also make this with
a tread_local variable as we previously did. However, in this case, every thread
has its own copy of this filter and perform its initialisation despite there is no need to
do so. Fortunately, for us, the C++ standard states that if multiple threads attempt to
initialize the same static local variable concurrently, the initialization occurs exactly
once. Moreover, the usual implementations of this feature use variants of the double-
checked locking pattern, which reduces the runtime overhead for already-initialized
local statics to a single non-atomic boolean comparison.

The second step is a simple check that ensures that flags arguments does
not include O_RDWR flag.

The third step also simply checks flags that ensures that they include either
O_TRUNC to create an empty file or O_APPEND that indicates that all writes to the
existing file is append-only.

If any of those checks fails we just call the original openat syscall and return
its result from the hook. Otherwise, we proceed with our interception. For write-
only files it goes as following:

44

a) we open an actual file in order to obtain file descriptor to return to the appli-
cation;

b) we create an internal handler that is used for the operation with this file;
c) we associate a file descriptor with an internal handler for future interceptions

and return the file descriptor to hook.

The first step is fairly simple call to the original openat with some basic
error handling and does not require many comments. The second step is discussed
later when I describe the handler. However, the third step requires an additional
discussion.

In order to create such association we need some map-like structure. And
right from the start we must take into consideration multi-threaded nature of original
application whichmight lead to situation where several such associations are created
concurrently. There two main options for this:
— Knowing that a file descriptor is just a number, it is reasonable to use a simple

array. In this case, a different request always accesses different elements of
this array due to the uniqueness of file descriptors, and knowing that only
one thread access each particular cached file at a time we conclude that there
would be no concurrency related problems, assuming that every elements hold
something like atomic pointer.

— We use ordinary map structure like std::unordered_map. It this
case concurrent requests become an issue and simplest solution would be
protecting this map by a lock.

Despite the first option requiring no locking it requires preallocating array
big enough too use any possible file descriptor as and index. In Linux, the maxi-
mum number of file descriptor is a configurable parameter, that could be changed at
any time and file descriptor itself having type int may lead to allocating too much
memory only for library’s internal structures. Adding to this possible multiple in-
stances of library being run simultaneously make this option much less favourable
as it initially seemed.

In addition, the standard C++ map collections are based on nodes which guar-
antees us a pointer and reference stability — references and pointers to either key or
data stored in the container are only invalidated by erasing that element. So, even

45

rehashing, which might happen after creating new association, does not invalidate a
pointer and references. This allows us to use more efficient read/writes locks, that
allow multiple readers to access protected code/data [7], because modification of
map content itself happens only when associations are created and removed which
happens much less often compared to access to files. It is also worth noting that the
same effect could be achieved by storing pointers to handlers allocated somewhere
on heap rather than inside map itself if we decided to use different map implementa-
tion, which for example may support more fine-graded locking or even be lock-free.

Read-only files follow similar logic, with one notable difference—we do not
create mappings for them. In order to know why we need to take a look at their
handling:

a) We open a file descriptor for them, however, we open them with O_WRONLY
and O_APPEND flags.

b) We create a handler for this file using a file descriptor from first step and
forcefully flush data to the original file.

c) We close the file descriptor from the first step.
d) We open the file again exactly how it was originally asked and return this

from the hook.

In this case, I ensure files consistency in order to be later accessed as usual
by the kernel, which may use more sophisticated caching techniques for the read
access. Our primary goal is to boost synchronous writes, so we do not introduce any
unnecessary complications for reads.

2.3.5.2. Close syscalls
There is only one syscall, that closes files— close. It takes one argument—

a file descriptor, so its interception follows a simple algorithm presented below:
a) locate a handler for given file descriptor in our map with a read lock;
b) if we find nothing, immediately call close on a given file descriptor and

return from the hook;
c) we use a handler to forcefully flush data to the original file;
d) we erase an association for the given file descriptor from the map with awrite

lock;
e) call close on the given file descriptor and return from the hook.

46

Close is one of few syscalls that requires an exclusive access to shared state,
so, we minimise the time that it spends in critical section with this level of access.

2.3.5.3. Sync syscalls
There are two main syscalls to ensuring the file durability — fsync and

fdatasync. The first one, as previously explained, ensures that all modified in-
core data of file is persisted on storage device, the second implies less strict guaran-
tee — it ensures that only the information related to user data inside file is durably
saved onto a storage device, however, some metadata such as the last access or
the modification time might not be correct if a power crash happens right after this
syscall [12].

However, on classical storage devices it takes only one write to save all meta-
data, so, in the case of append-only files that constantly change their size there is
not much difference in performance. This is also the reason why interception of this
syscall is done identical in our library and is done as following:

a) locate the handler for a given file descriptor in our map with the read lock
taken;

b) if we found something, we immediately return because those operations are
no-op due to the nature of our handler, that will be presented later

c) otherwise, we just pass the requested syscall directly to the kernel.

2.3.5.4. Write syscalls
Generally there two type of write syscall that we want to distinguish:

— Positioned: a syscall is prefixed with letter p like pwrite and takes explicit
offset from which write starts. It requires files, that are capable of seeking,
and do not change internal offset stored in file handler that is referenced by
the file descriptor;

— Unpositioned: this syscall on contrary uses starts writing from an internal
offset, that is stored inside OS file handler. After write is completed this
internal offset in incremented by the number of bytes written. The simplest
example would write syscall.

Because we support only append-only files we efficiently can intercept only
the second group of these syscalls. However, we cannot know beforehand which
syscalls would be used especially if the file was opened with O_TRUNC flags, so

47

it is possible after several appends positioned write was called. In order to provide
the best effort support we intercept such writes to files that might be cached in the
following way:

a) locate a handler for the given file descriptor in our map with the read lock
taken;

b) if we find nothing immediately call original syscall on the given file descriptor
and return from the hook;

c) we use the handler to forcefully flush data to original file;
d) we erase the association from the map for the given file descriptor with the

write lock taken;
e) we call the original syscall on the given file descriptor and return from the

hook.

However, when we intercept the positioned write syscall we finally get to the
original task of our libraty. Mainly there are two types of such syscalls:
— Scalar: these syscalls take one contiguous buffer of data of input and write

out some prefix of it to file referenced by given file descriptor.
— Vector: these syscalls take several buffers of data that might not be con-

tiguous in memory but considered to be so logically, and write them out,
guaranteeing that buffers are processed in array order, so each buffer data is
written to the disk when all previous buffer are written out.

It is easy to see, that the first type can be expressed with first and we do so and
focus only vector writes to file. The interception algorithm for them is quite similar
to what we have seen before:

a) locate a handler for given file descriptor in our map with read lock taken;
b) if we find nothing, we immediately call the original syscall on a given file

descriptor and return from the hook;
c) otherwise, we pass the vector of buffer to our handler and let it do its job.

2.3.5.5. Read and seek syscalls
Due to the fact that our library support only append-only files any seek breaks

this invariant and is not supported formally, however, it is possible that after sev-
eral appends to empty files application might unexpectedly seek, same applies with

48

unexpected reads because we do not store read-only files in our map when they are
opened, so in order to provide best effort we treat these syscalls the same way we
treat positioned writes: flush any present caches, remove association and proceed
with original syscall.

2.3.6. Handler architecture
2.3.6.1. General design

Because we deal with append-only files we use the cache to represent only
suffix of our file, so, the general model is shown on figure 13 below:

Figure 13 – General scheme of cache

On the surface level, we do two things: 1) append data to our cache, 2) flush
data from the cache to disk. However, taking in consideration ability to flush data
in the background and durable nature of memory, that we are working with, leads to
the list of challenges that are never present in DRAM caches. So, lets take a look at
main aspects of this cache.

2.3.6.2. Creation
The first problem that we encounters is a creation of the cache. There are two

main challenges here and both of them are somewhat related to the durable nature
of our cache:
— we have to allow caching for files that were already created and filled with

some user data prior to any use of our library;
— in contrast to DRAM caches, we do not start from empty state every time the

handler is created, we need to take into the consideration previous usages of
our library.

49

In order to overcome these challenges we need to solve the identification prob-
lem. We need to identify which portion of NVRAM is related to which file being
cached. This involves solving two main subtasks:
— In DRAM, this mapping is done with the help of pointers and allocators that

are reset every time program is rerun. In our case, this mapping must be
usable between different invocations, which for example prohibits use of file
descriptors;

— There various ways to open the same file which involve different paths and
usage of symlinks.

In order to solve this, we remember about the file identification inside a file
system — inodes. As previously discussed, each inode has its unique number that
file system internally uses while working with its files and this number and this
number is valid as long as file exists. However, this number is unique only within
one physical file system, so, we need to have id of device that contains this file
system [17]. In Linux, both these numbers can be obtained by a fstat system
call, that allows to obtain various metatdata about a file referred by the given file
descriptor. So, we use those numbers to compose filename that used by libpmem
to create mapping, which solves both our subtasks.

Second problem is to recover from the previous state: which part of NVRAM
is a valid suffix of user data and which is not. In order to do so we store special
header which contains following info:
— Flushed position that shows how much data we flushed to original file on

disk;
— Written position that shows howmuch data was written to this file according

to outside world;
— Cache size that show the amount of cache that was initially configured for

this file;
— Padding bytes in order extend our header to cache-line size, so its write to

NVRAM if always atomic.

When we create a new instance of the cache we firstly write this header, by
writing original file size to first two fileds. However, the presence of the file does not
guarantee correctness of its header, one of the reasons for this is fact, that libpmem

50

does not guarantee contents of newly created mapping, so in order to address this
issue we write additional cache-line sized byte string with unique, but always same
contents in order tomark correctly created files. This leads to the followingmetadata
structure of metadata:

Figure 14 – On-disk layout of metadata

So, after reading the header, we read the magic string in order to ensure cor-
rectness of the information in the header. If this check fails we treat this file as fresh
new and proceed to initialize it once again, otherwise, we truncate the file to the
flushed position in order to remove any junk data. After this integrity of metadata
is maintained by cache logic itself.

2.3.6.3. Writing
Generally, the writing in our handler consists of two actions: writing a new

user data to the logical end of our cache and writing a data to a file from the logical
beginning of our cache. It is also important to note that the second type of writing
might be performed asynchronously, which brings an additional complication to this
process. In order to do so we use an additional thread that handles writes to original
files and correctly updates metadata. However, this requires the synchronisation on
the access to the handler. We do it with a simple mutex associated with a cache
header.

In order to allow this queue-like access to our cache we implement it as a
cyclic-buffer with fixed side. This allows us to allocate NVRAM memory only
once and ability to add new data or removing some without any movement of data,
that is already in buffer. To be more specific:
— The amount of data in the buffer is calculated as the difference of

header.written_pos and header.flushed_pos. Based on the na-
ture of these positions we always assume that the first one is greater or equal
to the second.

— We use offset of data in the file in order to locate data in a buffer to
minimise persistent metadata size. This means that the data starts at

51

header.flushed_pos modulo header.cache_size and ends
at header.written_pos modulo header.cache_size possible
turning around the end of out mapping.

Main writing function take an input similar to writev syscall and iterates
over array of buffers by performing the same writing routine for each buffer. It can
be summarised in the following steps:

a) Get a copy of the header by reading the real one with the lock;
b) If the buffer does not have enough space for a new input we do following:

1) Explicitly flush all data to a disk;
2) Update flushed position for local copy of header.

c) Write input to the NVRAM cache;
d) Update the written position for a local copy of the header;
e) In case the buffer reaches critical capacity try to initiate a background flush

to the original file.

Due to the limitation on single-thread access to every cached file we can be
sure that our cache buffer is never overflow because the new data to it can be only
added inside this function and its natural precondition is having a buffer not to be
overflow too. We add new data only on step c and because of checks on previous
steps we can be sure that after this buffer is not overflown too, so after this function
buffer is never overflown too. The writing does following:

a) Write a prefix of the input that fits into the
space from local_header.written_pos modulo
local_header.cache_size till the end of buffer.

b) Optionally, write any leftover starting from beginning of the buffer.
c) Flush any caches for the written data to the device.
d) Increase written data position in header and persist it to NVRAM with the

lock taken.

It is worth noting that because wewrite data in order to persist after the write is
complete we use pmem_memcpy_nodrain allowing us when possible to bypass
any process caches, but do not drain hardware caches. There is no need to do so

52

before all writes are complete because only after writing all input data we update
our metadata.

Now, I take a closer look at step e. This step allows us to have synchronous
writes as fast as NVRAM as long as we are writing not too much data per unit of
time.

In order to issue tasks and communicate with our background thread we use a
future — construct that acts as a proxy for some concurrent computation [1]. It has
several function that are interesting for us:
— Validity check: allows to check without blocking if this future is related to

some concurrent computation;
— Getting result: allow to block on valid future and wait until computation

finishes and produces some result so we can fetch it;
— Checking result: allow to check without indefinite blocking if valid future

already holds ready result or not.

Our handler always holds one instance of the future that relates to the task
of flushing data to the original file and uses it to conditionally launch such task
if last steps of our writing routine decides to do so. To be precise, function
try_async_flush takes the current written position (w_pos) as input and does
the following:

a) Check if the future is valid and has not obtained result yet. If it is true this
means that there is already a flush happening and we do not need to do any-
thing, so, we return;

b) With the taken lock, we read an actual flushed position from the header to
local f_pos because concurrent flush might be completed at this point;

c) We check that there is any data to flush, and if not we return immediately
without doing anything;

d) After passing all the checks, we assign the handler’s future to a newly
launched task that will write data from f_pos to w_pos.

It is important to note, that try_async_flush function is the only place
where the handler’s future is accessed. This function itself is only called in functions
that are called when the original file is accessed, and by our library limitation it could
be done only by one thread until file is closed. Hence, there is no concurrent access

53

to the future itself which could be devastating because instances of future are not
designed to be thread safe themselves.

This flushing task itself is fairly simple:
a) Write a prefix of the data into the buffer between f_pos and w_pos that

resides before the end of our cyclic buffer;
b) Write leftover data in the buffer that resides starting at the beginning of cyclic

buffer;
c) Issue fsync for the underlying file;
d) With the lock taken, increase the flushed data position in header and persist

it to NVRAM.

One thing that we have to mentions is that the user data in NVRAM is ac-
cessed without any explicit synchronisation, because any new user data is written
to different segments of circular buffer and writes to our segments are explicitly or-
dered before this task by launching this task itself from thread that accessed original
file.

With all that said, an explicit flushing that might happen on the step c of the
writing routine can be expressed in the following simple code:

Listing 5 – Possible flushing function in handler
1 vo id w a i t _ f l u s h _ t a s k () {
2 i f (! f l u s h _ t a s k . v a l i d ()) {
3 r e t u r n ;
4 }
5 f l u s h _ t a s k . wa i t () ;
6 }
7
8 vo id f l u s h () {
9 w a i t _ f l u s h _ t a s k () ;
10 t r y _ a s y n c _ f l u s h (h e ade r . w r i t t e n _ p o s) ;
11 w a i t _ f l u s h _ t a s k () ;
12 }

One notable detail in listing 5 is that we access the header on line 10 in flush
without any protection by locks. It is justified because the only thread that could
concurrently access header is the thread that performs flush to original files, but we
explicitly waited for this thread to finish its task on previous line, so no concurrent
access is possible here. Also, there is a possibility that on line 10 we have already
flushed all data to the original file and there is no need to do anything. Fortunately,

54

it is already handled inside try_async_flush as mentioned on step c of expla-
nation of its logic.

The last topic to address related to writes is the performance concerns one
might have due to the lock inside our handler. We need it to correctly read and write
header which might be accessed by multiple threads, it is could be seen that every
time (with one exception commented above) we access it we protect ourselves by
this lock. However there are several factors showing that this shouldn’t noticeable
affect our performance:
— There are maximum 2 threads that might want access shared header concur-

rently, so the contention should be minimal.
— Our background thread accesses the header only once during the execution of

a flush task. Those tasks are either heavy and are issued only once in a while,
so contention on lock is even smaller.

— Every time, a thread accesses the header, under the lock, for a very short time
in order to perform fast actions such as reading or writing header and nothing
else. So, any real concurrent attempt to obtain the lock should be success
within the short time using spinlock fast-path used in most modern locks.

2.3.6.4. Releasing handler
Last thing to mention about our cache is how it could release control of a file

when the file is closed, so it could be used later. We perform the following actions:
a) Explicitly flush all cached changes to original file by calling flush which

was described below.
b) Remove anymapping to the file’s cache in NVRAMby callingpmem_unmap

from libpmem.
c) Remove file that represents persistent state of our cache which was created

by pmem_map_file.

Note that our handler does not close the file descriptor that refers to original
file because it could be later used by the original program and should be closed only
by this program.

Conclusions on Chapter 2
In the second chapter, I presented a detailed description of our library that uses

NVRAM to speed up synchronous writes to append-only files. To be more precise:

55

— I described the technologies used to work with NVRAM and intercepting pro-
gram’s communication with an operating system.

— I showed how we implemented such interceptions so no changes to source of
original code are required to take advantage of our cache.

— I presented a detailed description of a handler that is responsible for handling
access to a particular cached file which includes:

– a layout on disk;
– details of creating such cache even for already existing files;
– thorough description of howwe handle writes and release control, which
includes details on interaction with NVRAM, handling concurrency and
communication interception runtime.

56

CHAPTER 3. ANALYSIS OF LIBRARY
3.1. Performance

In order to set up some expectation for our approach, we compared syn-
chronous writes to NVRAM with writes to SSD. In order to do so we turned to
FIO. FIO stands for ”Flexible Input/Output,” and it is a benchmarking tool that is
commonly used tomeasure and evaluate the performance of storage devices and sys-
tems. FIO is designed to provide detailed and accurate information about various
aspects of I/O performance, including throughput, latency, and IOPS (Input/Output
Operations Per Second).

FIO is highly flexible and configurable, allowing users to define a wide range
of workload patterns and parameters to simulate different types of I/O operations.
It supports various I/O engines, including synchronous and asynchronous I/O, and
provides support for different types of I/O patterns such as sequential and random
I/O [11]. In our case we configured it to use classical writes in sequential manner
and syncing file after every write to make in synchronous. We present the following
result:

Figure 15 – Benchmarking sequential synchronous with FIO

57

As expected NVRAM dominates in terms of input/output operations per sec-
ond (IOPS) in workload that requires sequential access with high durability. How-
ever, this experiment only represents a synthetic application that utilises such a
workload. We want to test some real-world applications that would benefit from
our cache. As mentioned in chapter 1 one popular type of such applications would
be a database management system. This system provides the transnational property
to database queries, and one core component for doing so is a database journal. It is
used to provide the durability property and transactions which include the recovery
from unexpected crashes.

For this reason we chose LevelDB. LevelDB is an open-source key-value stor-
age library developed by Google. It provides a fast and efficient way to store and
retrieve data based on a unique key. LevelDB is written in C++ and offers a simple
and lightweight API, making it popular for embedding in various applications or
even building other databases on top of it [19]. Based on their official documenta-
tion we derived few key features:
— Memtable: LevelDB utilizes an in-memory structure called the Memtable

to handle write operations efficiently. The Memtable is an ordered, write-
optimized data structure implemented as a skip list or a red-black tree. It
holds recently written key-value pairs in memory and allows for fast write
operations.

— Immutable Log (Write-Ahead Log): LevelDB maintains an on-disk data
structure known as the Immutable Log or Write-Ahead Log (WAL). The Im-
mutable Log serves as a crash-recovery mechanism and keeps track of all
write operations. Every modification to the database is first written to the Im-
mutable Log before being applied to the Memtable. In the event of a crash or
restart, LevelDB can recover the database state by replaying the write opera-
tions from the Immutable Log.

— SSTables (Sorted String Tables): LevelDB stores data on disk in sorted,
immutable files called SSTables. An SSTable is a collection of key-value
pairs sorted by their keys and compressed for efficient storage. As the
Memtable reaches a certain size, it is flushed to disk as a new SSTable.
Multiple SSTables can coexist, and they are merged periodically to maintain
a compact and efficient database representation.

58

These features confirmed our initial assumptions of it being one on those ap-
plications that should benefit from our cache. LevelDB supports different durability
guaranties, however, I am interested only on modes with strongest guarantee — if
one received a response from database, his data will be present even the crash or
power failure happens right next moment. LevelDB provides several benchmarks
to test its performance, so we added them to the initial comparison and the results
are shown below:

Figure 16 – Synchronous benchmarks of FIO and LevelDB

Once again, as expected, NVRAM shows significantly better performance
compared to SSD. However, in this case we cannot be sure that it is attributed to
optimisation in workload that is related to database journal. On figure ??we entirely
place everything either on SSD or on NVRAM. It could be possible to that other
database structures on NVRAM receive huge benefit compared to SSD for it being
faster storage device by itself. However this claim is partially disproved by adding
to out benchmarks, that does not require explicitly persisting data to non-volatile

59

devices after each rather. In this case system returns from syscall as soon as it copies
data to its internal buffers in DRAM, which is shown below:

Figure 17 – Synchronous and asynchronous benchmarks of FIO and LevelDB

There are few things to note from the results shown on figure 17:
— Durable writes drastically decrease performance no matter what storage de-

vice you use, it must be carefully considered when designing guaranties to
your application.

— Despite being somewhere between DRAM and SSD NVRAM is still notable
slower when we do not care about the durability that much. Here, a system is
allowed to cache without waiting for it to be pushed to a device, which makes
DRAM contribution significant due to writes being small in size. However,
it is worth noting that it is not slower by orders of magnitudes which is true
when we compare DRAM and SSD.

— There is an observable difference in performance between real world appli-
cation and synthetic benchmarks even if both are significantly bounded by

60

capability of storage device.

However, to fully ensure that main gains come from boosting our original
workload of append-only synchronous writes we want to move only this files to
NVRAM. But we encounter one serious problem here: LevelDB places all its files
in one directory in a flat manner, meaning there is no hierarchy inside this directory
and all files are stored directly in it without any sub-directories, and names of files
are generated at runtime. So, there is no easy way to make LevelDB store logs on
separate devices.

In order to proceed further, some changes needed to be made to continue our
testing. Fortunately, LevelDB uses such thing as Enviroment: the Environment
object represents the operating system environment in which the LevelDB database
is running. It provides an abstraction for various operating system functionalities
such as file I/O, time, and random number generation. What is import in our case:
this object is used to list all files in database’s directory. Knowing this we do the
following to achieve our goal:
— We modified this handler interface to perform listing recursively and imple-

mented this in its implementations.
— We modified a function that creates name for log-files to allow it to accepts

optional name of sub-folder where we want to place it.
— We added new parameter to database settings that allow optionally specify

a sub-folder for logs and passed it everywhere to function mentioned in the
previous item.

— We added new command-line parameter to benchmarking tools, which
optionally sets this setting in database it creates to some predefined name.

With this modifications we were finally able to perform our measurement by
doing few preparation steps:
— We created empty directories for our databases ahead of time: two on SSD

and one on NVRAM.
— We created a special directory for log files on NVRAM.
— In one of our SSD directories we created symlink to directory from previous

so when log file in it is created it will be put on NVRAM.

61

After this we were able to add the third, hybrid, type of an installation to
our benchmarks and as expected database performance in synchronous mode was
mainly restricted by its log files writes to disk with insignificant influence of location
of all other files which is shown below:

Figure 18 – Synchronous benchmarks of LevelDB on SSD, NVRAM and hybrid
mode

With this confirmation of our claim we were finally able to have some reliable
baseline for our test.

Before we proceed further it is important to note that the performance of the
original benchmark and our library may change depending on their parameters. One
very influential parameters is unsurprisingly size of “write cache”, which may have
different meaning for our library and for LevelDB itself. However, one of the most
important factors is the relative size of cache compared to an original file. Firstly,
lets look at situation when our file is relatively small, but still holds enough data for
several megabytes of data. It is presented below on figure 19 and shows significant
boost in synchronous performance compared even to performance on NVRAM:

62

Figure 19 – Benchmarking with small cache compared to original file

This success might be attributed to several factors:
— We perform only one allocation onNVRAM,whichwe do initially by creating

our handler. All writes to NVRAM are performed to already preallocated
space, so there is no complicated search for free spaсe which happens when
new data is appended to a regular file;

— When wewrite to NVRAMwe attempt to do so directly from user-space with-
out switching to kernel, so there fewer context switches that might entirely
reschedule current process;

— Our cached logic is much simpler compared to fully fledged file system, so
naturally it is executed faster;

— Cache attempts to push all heavy operations with original file system to
background replacing it with relatively small synchronisation inside our
handler.

63

However, when we decrease the size of the database’s write buffer making
our cache comparable in the size to the database log file our performance boost
even further as shown below:

Figure 20 – Benchmarking with big cache compared to original file

One last thing to mention regarding the performance is that some persistent
cache are already present before in forms of lvmcache [20] or bcache [6]. However,
they work on the block level communicating with block devices. In our case, this re-
quired configuring NVRAM as a block device and initial tests show that despite pro-
viding boost compared to original SSD benchmark results were significantly slower
compared to NVRAM. This is probably the result of the fact that those solution
were not written with consideration of NVRAM features and were targeted for reg-
ular block devices, which require communication with kernel driver. In addition we
already know, that NVRAM performs worse in block device mode due to additional
bookkeeping required to provide such interface.

64

3.2. Correctness
Now, let us take a closer look on the algorithm inside our handler in order to

analyse its durability property. We have to keep in mind, that all functions but one
are called from one thread so we don’t have to worry about their interleaving and
this one function access shared state only under the lock.

At first, lets look at the creation of our handler which was discussed in section
2.3.6.2, its part that includes any persistent state could be summarised to following:

a) Open or create file on NVRAM and map it in memory to some pointer ptr;
b) If we asked to truncate (open empty file) do following:

1) Write file info to the header in memory;
2) Persistently copy the header to NVRAM;
3) Persistently copy the magic string to NVRAM;
4) Return to the caller.

c) Otherwise, read the magic string by the correct offset from ptr and match it
with the correct one.

d) If magic does not match cache file is not considered valid, so once again to
the following:
1) Write file info to the header in memory;
2) Persistently copy the header to NVRAM;
3) Persistently copy the magic string to NVRAM;
4) Return to caller.

e) Otherwise, read the header from ptr to memory.
f) Truncate the original file to the flushed position that we found in the header.
g) Return to the caller.

Lets list steps where we perform pesistent operations and analyse what hap-
pens if we crash here:
— Step a: If a crash happens after or during this step we either did nothing to

our persistent state or created some uninitialised file, that does not have magic
string on a needed position.

— Step b.2: This step is atomic, so we can crash only after its completion or
have no effect from this step. If this happens we either wrote header to some
junk file, so it would be discarded and reinitialised on step d, or we wrote new
header to the previously existed cache file effectively finishing the required
truncation.

65

— Step b.3: This step is also atomic. If the cache was newly created this makes
this cache file correct, otherwise, it works as a no-op for an already correct
cache file. So even if we restart on this file without truncation it will report
the current metadata for the empty file.

— Step d.2: This step is also atomic. Here we know that we deal with a junk
cache file. If we crash here a cache file will be still considered junk and will
be either truncated on step b rewritten again on step d.

— Step d.3: This step is also atomic. At this step the file contains correct meta-
data from previous step, so if we crash here we end up with the correct file
that passes check on step c.

— Step f: At this step, we already have the correct cache file so any data that we
truncate is considered uncommitted and we only do so, to allow future writes
to original file to start at the correct position in the file.
Now that we have a correct state on NVRAM and an original storage device

we can proceed further and start writing. There are several parts of it which were
described in section 2.3.6.3. We start with the flushing routine in the background
thread. By the precondition, it writes data that is already persisted to NVRAM that
will never be rewritten by the main thread. So, if the crash occurs anywhere before
we acquire the lock for the header we might only end up with some uncommitted
data in the original file that will be truncated during creation of the header on the
restart. After acquiring lock we do two actions:

a) Update a flushed position for the header in memory. This action is not per-
sisted and is protected by lock, so it does not affect the main thread or our
persistent state.

b) Persistently copy the header to NVRAM. This action is once again atomic,
so if we crash right after it before releasing lock it ends up with the correct
new metadata in NVRAM because before this action we ensured that this
data is persisted on disk.

So after we have a correct flush routine we should take a look at
try_async_flush that launches it. This function itself does not change the per-
sistent state but dictates how the flush routine will do it. Written position in the
header in DRAM can be changed only by main thread. Our current execution is
also in the main thread and relying on correctness of our caller we can be sure, that

66

written position there is correct and is not changed concurrently. We also know from
the correctness of the future, which is proved out of scope of this work, that there are
no concurrent flush tasks, so we acquire a lock to access the flushed position only to
synchronise with the changes that were done to it before by possible previous flush
task. This concludes that the flush task that we launch gets correct offsets and we
can move on.

The second write that happens by our handler is writing data to NVRAM.
By the precondition, it writes data that is logically right after the written position
in our handler and this position can not be changed in our background thread so it
always stays the same during this function. We also assume by the precondition that
logically there is enough place for this data. With this information crash analysis is
similar to our push routine. If any crash happens before we persist written data and
acquire the lock we will not even notice this because metadata did not change and
our cache file’s actual size never changes. After this we perform two actions similar
to the flush routine:

a) Update a written position for the header in memory. This action is not per-
sisted and is protected by the lock, so, it does not affect background thread or
our persistent state.

b) Persistently copy header to NVRAM. This action is once again atomic, so
if we crash right after it before releasing lock it will end up with correct
new metadata in NVRAM because before this action we ensured that data is
persisted on NVRAM.

A flush function is fairly simple it terms of crash safety. It is called from main
thread and so line 9 in listing 5 is as correct as the flush task is correct, because it
only waits for its completion. The next line is also as correct as the function it calls.
Here there are no concurrent changes to header it we are able to see its recent state
because we are synchronised by future on which we wait on previous line. And
finally the last to line 11 applies the same logic as for line 9.

Finally, lets take a look at a writing routine, that ties everything together.
Firstly, by copying the header under the lock we unsure that we are synchronised
with all changes that were made to it before and also that we see some previously
persisted state because we release the lock only after making persistent changes
to the header in memory. Because the only possible concurrent change after this

67

copy may be increasing flushed position we know that the free space in our cyclic
buffer may only increase by the time we decide to write data to NVRAM so all our
size check stay correct. After this, if there is not enough space we explicitly flush
buffer, which we already proved to be crash-safe, so after this action our flushed
position and written position remain, which allows us to change the local copy of
the flushed position. After this check, we know that there is enough data for our
write to NVRAM and we do so once again in crash-safe manner as discussed above,
which allows us to update the local copy of the written position which is identical
to one on the header in memory. Finally, we apply our heuristic by determining the
current cache load factor using local of header, which in worst case is greater than
the actual due to the possibly finished flush task at this point. However, this does
not affect crash-safety due to the correctness of try_async_flush that we call.

The practical correctness of the implementation of this algorithm in our library
was mainly checked by running tests for LevelDB, which include crash recovery of
the database. However, the single-threaded nature of out handler allow creating a
simple helper test routine that sequentially copies one file to another, that logs every
synced position and randomly kills [18] itself, so we can verify that we can read
correctly reopen this file and the synced content is identical to original.

Conclusions on Chapter 3
In this chapter, I presented detailed analysis of twomain aspects of out caching

library — performance and correctness. To be more precise:
— I showed its performance in real-world application — LevelDB, presenting

reasoning and benchmarking results that showed promising boost in the per-
formance for the synchronous mode of this database.

— I thoroughly analysed algorithm that is used in the file handler in our library
by carefully looking at each step and consequences if crash might occur om
this. We also gave some insight on practical testing for correctness of our
implementation.

68

CONCLUSION
I developed a NVRAM based cache for append-only files that allows to sig-

nificantly decrease the latency of such writes which lead to the improvements in the
performance of the writing application. We presented this cache in a form of library
with the following properties:
— No changes are required in the source code of the original application in order

to take the advantages of our library.
— Multi-threaded applications are supported with limitation that only one thread

at a time can access each cached file.
— Very small portions of NVRAM are required in order to gain benefit from

using this cache.
— Library attempts best effort recovery when application does not follow

indented workload to allow it to continue functioning without the crash or
corruption.

This library was tested on real-world database where it showed significant
performance benefits and proved its durability property. There are several ideas for
the future development including the following:
— Porting this library to different systems and/or architectures because the core

logic of cache handler does not depend on a particular environment;
— Supportingmore sophisticated workloads whichmix appending data with ran-

dom seeks through file;
— Allowing multiple concurrent readers to coexist with one writer.

69

REFERENCES
1 Baker Jr H. C., Hewitt C. The incremental garbage collection of processes

// ACM SIGART Bulletin. — 1977. — No. 64. — P. 55–59.

2 Codd E. F. A relational model of data for large shared data banks // M.D. com-
puting : computers in medical practice. — 1970. — Vol. 15 3. — P. 162–6.

3 Herlihy M. P., Wing J. M. Linearizability: A correctness condition for con-
current objects // ACM Transactions on Programming Languages and Systems
(TOPLAS). — 1990. — Vol. 12, no. 3. — P. 463–492.

4 Reliability study of phase-change nonvolatile memories / A. Pirovano [et al.]
// IEEE Transactions on Device and Materials Reliability. — 2004. — Vol. 4.
— P. 422–427.

5 The transaction concept: Virtues and limitations / J. Gray [et al.] // VLDB. Vol.
81. — 1981. — P. 144–154.

6 Wikipedia contributors. Bcache — Wikipedia, The Free Encyclopedia. —
2022. — URL: https://en.wikipedia.org/w/index.php?
title = Bcache & oldid = 1118192575 ; [Online; accessed 22-May-
2023].

7 Wikipedia contributors. Readers–writer lock — Wikipedia, The Free Ency-
clopedia [Электронный ресурс]. — 2023. — URL: https : / / en .
wikipedia . org / w / index . php ? title = Readers % E2 % 80 %
93writer_lock&oldid=1155524641 ; [Online; accessed 22-May-
2023].

8 Wikipedia contributors. Static variable — Wikipedia, The Free Encyclopedia
[Электронный ресурс]. — 2023. — URL: https://en.wikipedia.
org / w / index . php ? title = Static _ variable & oldid =
1142077360.

9 Wikipedia contributors. Thread-local storage — Wikipedia, The Free En-
cyclopedia [Электронный ресурс]. — 2023. — URL: https : / / en .
wikipedia . org / w / index . php ? title = Thread - local _
storage&oldid=1153280594.

70

10 Wikipedia contributors. X86-64 — Wikipedia, The Free Encyclopedia [Элек-
тронный ресурс]. — 2023. — URL: https://en.wikipedia.org/w/
index.php?title=X86-64&oldid=1156235183.

11 Axboe J. fio - Flexible I/O tester [Электронный ресурс]. — 2017. — URL:
https://fio.readthedocs.io/en/latest/fio_doc.html.

12 fsync(2) [Электронный ресурс]. — 2021. — URL: https://man7.org/
linux/man-pages/man2/fsync.2.html.

13 Group S. N. P. T. W. BTT - Block Translation Table [Электронный ресурс].
— 2023. — URL: https://www.kernel.org/doc/html/latest/
driver-api/nvdimm/btt.html.

14 Group S. N. P. T. W. libpmem - persistent memory support library [Электрон-
ный ресурс]. — 2023. — URL: https://pmem.io/pmdk/manpages/
linux/v1.13/libpmem/libpmem.7/.

15 Group S. N. P. T. W. libpmemlog – persistent memory resident log file [Элек-
тронный ресурс]. — 2023. — URL: https : / / pmem . io / pmdk /
manpages/linux/v1.3/libpmemlog.3/.

16 https://www.kernel.org/doc/html/latest/filesystems/vfs.html. Overview of the
Linux Virtual File System [Электронный ресурс].— 2023.—URL: https:
//www.kernel.org/doc/html/latest/filesystems/vfs.
html.

17 inode(7) [Электронный ресурс]. — 2021. — URL: https://man7.org/
linux/man-pages/man7/inode.7.html.

18 kill(1) [Электронный ресурс]. — 2022. — URL: https://man7.org/
linux/man-pages/man1/kill.1.html.

19 LevelDB [Электронный ресурс]. — 2021. — URL: https://github.
com/google/leveldb.

20 lvmcache(7) [Электронный ресурс]. — 2022. — URL: https://man7.
org/linux/man-pages/man7/inode.7.html.

21 mmap(2) [Электронный ресурс]. — 2021. — URL: http://man7.org/
linux/man-pages/man2/mmap.2.html.

71

22 syscall_intercept — Userspace syscall intercepting library [Электронный ре-
сурс]. — 2022. — URL: https://github.com/pmem/syscall_
intercept.

23 Tallis B. The Intel Optane SSD 900p 480GB Review: Diving Deeper Into
3D XPoint [Электронный ресурс]. — 2017. — URL: https://www.
anandtech.com/show/12136/the-intel-optane-ssd-900p-
480gb-review/7.

24 Wikipedia contributors. Berkeley sockets—Wikipedia, The Free Encyclopedia
[Электронный ресурс]. — 2023. — URL: https://en.wikipedia.
org / w / index . php ? title = Berkeley _ sockets & oldid =
1150446063.

25 Wikipedia contributors. Environment variable — Wikipedia, The Free En-
cyclopedia [Электронный ресурс]. — 2023. — URL: https : / / en .
wikipedia . org / w / index . php ? title = Environment _
variable&oldid=1154374071.

26 Wikipedia contributors. Phase-change memory — Wikipedia, The Free En-
cyclopedia [Электронный ресурс]. — 2023. — URL: https : / / en .
wikipedia . org / w / index . php ? title = Phase - change _
memory&oldid=1153076663.

72

APPENDIX A. COMPARING LIBPMEM TO LINUX MMAP

Listing A.1 – Example of using mmap to write string to persistent memory
i n c l u d e < s t d i o . h>
i n c l u d e < sy s /mman . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < sy s / s t a t . h>
i n c l u d e < f c n t l . h>
i n c l u d e < u n i s t d . h>

d e f i n e LEN 4096
d e f i n e PATH ” / f s / my f i l e ”

i n t main () {
i n t fd = open (PATH, O_WRONLY | O_CREAT, 0666) ;
i f (fd < 0) {

p r i n t f (” F i l e \”% s \ ” cou ld no t bee open \ n” , PATH) ;
r e t u r n 1 ;

}
i f (p o s i x _ f a l l o c a t e (fd , 0 , LEN) != 0) {

p r i n t f (” F a i l e d t o a l l o c a t e %d by t e s f o r f i l e \ n” , LEN) ;
c l o s e (fd) ;
r e t u r n 1 ;

}
cha r *p t r = mmap(NULL, LEN,

PROT_READ | PROT_WRITE , MAP_SHARED,
fd , 0) ;

i f (p t r == MAP_FAILED) {
p r i n t f (”Mapping F a i l e d \ n”) ;
c l o s e (fd) ;
r e t u r n 1 ;

}
c l o s e (fd) ;
c o n s t c h a r* s t r = ” Hel lo , p e r s i s t e n t memory \ n” ;
i n t l e n = s t r l e n (s t r) ;
s t r c p y (p t r , s t r) ;
msync (p t r , l en , MS_SYNC)
munmap (p t r , LEN) ;
r e t u r n 0 ;

}

73

Listing A.2 – Using pmem_map_file to write string to NVRAM
i n c l u d e < sy s / t y p e s . h>
i n c l u d e < sy s / s t a t . h>
i n c l u d e < f c n t l . h>
i n c l u d e < s t d i o . h>
i n c l u d e < e r r n o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < s t r i n g . h>
i n c l u d e <libpmem . h>

d e f i n e LEN 4096
d e f i n e PATH ” / pmem− f s / my f i l e ”

i n t main () { ;
s i z e _ t mapped_len ;
i n t is_pmem ;

cha r *pmemaddr = pmem_map_file (PATH, LEN, PMEM_FILE_CREATE ,
0666 , &mapped_len , &is_pmem)

i f (pmemaddr == NULL) {
p e r r o r (” pmem_map_file ”) ;
r e t u r n 1 ;

}
i f (! is_pmem) {

p r i n t f (” Expec ted pmem dev i c e \ n”) ;
pmem_unmap (pmemaddr , mapped_len) ;
r e t u r n 1

}
c o n s t ch a r* s t r = ” Hel lo , p e r s i s t e n t memory \ n” ;
i n t l e n = s t r l e n (s t r) ;
s t r c p y (pmemaddr , s t r) ;
pmem_per s i s t (pmemaddr , l e n) ;
pmem_unmap (pmemaddr , mapped_len) ;
r e t u r n 0 ;

}

