
Parallel Combining: Bene�ts of Explicit

Synchronization

Vitaly Aksenov, ITMO University
Petr Kuznetsov, Telecom ParisTech
Anatoly Shalyto, ITMO University

OPODIS 2018

Parallel Programs and Concurrent Data Structures

Parallel programs
input

...

output

Concurrent data structures

...

in
pu
t

ou
tp
ut

in
pu
t

... in
pu
t

...

ou
tp
ut

ou
tp
ut

Batched Data Structures

I Given a �batch� and a state produces a new state and a
vector of responses.

I Parallel batched data structures
I Static multithreading: PRAM, Bulk synchronous [Val90],

asynchronous PRAM [Gib89],
I Dynamic multi-threading: spawn, sync, parallel-for,

work-stealing

I Can we use the bene�ts of parallel batched data
structures?

Combining [Oyama et al., 1999], [Hendler et al.,

2010]

I Put request into publication list;

I Then, compete for a lock: if won � becomes a combiner,
otherwise, becomes a client;

I The combiner applies requests sequentially.

I Hierarchical Flat-Combining [Hendler et al., 2010]
I Two levels of combining.

Parallel Combining

I Put request into publication list;

I Then, compete for a lock: if won � becomes a combiner,
otherwise, becomes a client;

I The combiner and clients apply requests in parallel using
a parallel batched data structure.

Parallel Combining

execute(method, input):

req ← new Request()

request.method ← method

request.input ← input

req.status ← INITIAL

if C.addRequest(req):
A ← C.getRequests()
COMBINER_CODE

C.release()
else:

while req.status = INITIAL:

nop

CLIENT_CODE

return

Read-Optimized Data Structures

I Operations of two types:
I Read-only may proceed in parallel;
I Updates not always

I Combiner collects requests.
I Read-only are performed in parallel on clients;
I Updates are performed sequentially by the combiner.

Read-Optimized Data Structures

I The resulting concurrent data structures are linearizable.

Read-Optimized Data Structures. Example

I Dynamic graph [Holm et al., 2001]:
I Read-only: areConnected(u, v)
I Update: addEdge(u, v), removeEdge(u, v)

Dynamic graph. Experiments

0 20 40 60

0.1

0.2

0.3
T
re

e
w

or
kl

oa
d

Ratio: 50%

0 20 40 60

0.2

0.4

Ratio: 80%

0 20 40 60
0

1

2

3

Ratio: 100%

0 20 40 60

0.05

0.1

0.15

Number of Processes

T
re

es
w

or
kl

oa
d

0 20 40 60

0.1

0.2

0.3

Number of Processes
0 20 40 60

0

1

2

3

Number of Processes

T
hr

ou
gh

pu
t,

m
op

s/
s

PC Lock RW Lock FC

Priority queue

I Ordered set of values;

I Insert(v);

I ExtractMin().

I Challenge: �nd a parallel batched algorithm with
complexity that depends only on the batch size and the
size of the heap.

Binary heap

I Binary heap stored in array a[1,. . ., s]: node i has
children 2i and 2i + 1 with higher values.

I Algorithm [Gonnet and Munro, 1986]
I ExtractMin(): swap a[1] and a[s], then sift-down;
I Insert(v): traverse the path from the root to

a[s + 1].

Parallel Batched Binary Heap. ExtractMin

I Combiner with E extractMin requests:
I Locate E nodes with the smallest values using

Dijkstra-like algorithm;
I Swap the values with E latest values a[s - E + 1], . . .,

a[s];
I Initiate parallel sift-down on clients from the located

nodes;
I Done using hand-over-hand locking.

Parallel Batched Binary Heap. Insert

I Combiner with I insert requests:
I Target nodes: a[s + 1], . . .,

a[s + |I|];
I Locate |I| - 1 split nodes;
I Sort vs+1, . . . , vs+|I | values to insert;
I Initiate a traversal from the root to

target nodes, splitting set of values
to insert into two sets in split nodes.

Split nodes

Target nodes

U1

U2

U3

Parallel Batched Binary Heap

I The resulting concurrent binary heap is linearizable.

I Combiner and clients perform O(c + log s) RMRs in CC
and DSM models each and O(c · (log c + log s)) RMRs in
CC and DSM models in total.

Priority Queue. Experiments

0 20 40 60

0.5

1

Number of Processes

Size: 8 · 105

0 20 40 60

0.5

1

Number of Processes

Size: 8 · 106

T
hr

ou
gh

pu
t,

m
op

s/
s

PC Linden SL Lazy SL SkipQueue
JavaLib FC Binary FC Pairing

Conclusion

I It is possible to build e�cient concurrent data structures
from their parallel batched counterpart.

I We a�rm it by considering two data structures: dynamic
graph and priority queue.

I Which other data structures that can bene�t from parallel
combining?
I For example, dynamic tree.

Thank you for your attention

Questions?

Parallel Batched Binary Heap. Insert

7

1

8

3

6

A = {2, 4, 6, 8}
B = {}

Parallel Batched Binary Heap. Insert

7

1

8

3

6

A = {6, 8}
B = {}

A = {2, 4}
B = {}

Parallel Batched Binary Heap. Insert

6

1

8

2

6

A = {8}
B = {7}

A = {4}
B = {3}

Parallel Batched Binary Heap. Insert

6

1

8

2

6

A = {}
B = {7}

A = {4}
B = {3}

A = {8}
B = {}

Parallel Batched Binary Heap. Insert

6

1

3

2

6 7
A = {4}
B = {8} 8

Parallel Batched Binary Heap. Insert

6

1

3

2

6 7

A = {4}
B = {}

8

A = {}
B = {8}

Parallel Batched Binary Heap. Insert

6

1

3

2

6 7

4

8

8

