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Parallel Programs and Concurrent Data Structures
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Batched Data Structures

I Given a �batch� and a state produces a new state and a
vector of responses.

I Parallel batched data structures
I Static multithreading: PRAM, Bulk synchronous [Val90],

asynchronous PRAM [Gib89], ....
I Dynamic multi-threading: spawn, sync, parallel-for,

work-stealing

I Can we use the bene�ts of parallel batched data
structures?



Combining [Oyama et al., 1999], [Hendler et al.,

2010]

I Put request into publication list;

I Then, compete for a lock: if won � becomes a combiner,
otherwise, becomes a client;

I The combiner applies requests sequentially.

I Hierarchical Flat-Combining [Hendler et al., 2010]
I Two levels of combining.



Parallel Combining

I Put request into publication list;

I Then, compete for a lock: if won � becomes a combiner,
otherwise, becomes a client;

I The combiner and clients apply requests in parallel using
a parallel batched data structure.



Parallel Combining

execute(method, input):

req ← new Request()

request.method ← method

request.input ← input

req.status ← INITIAL

if C.addRequest(req):
A ← C.getRequests()
COMBINER_CODE

C.release()
else:

while req.status = INITIAL:

nop

CLIENT_CODE

return



Read-Optimized Data Structures

I Operations of two types:
I Read-only may proceed in parallel;
I Updates not always

I Combiner collects requests.
I Read-only are performed in parallel on clients;
I Updates are performed sequentially by the combiner.



Read-Optimized Data Structures

I The resulting concurrent data structures are linearizable.



Read-Optimized Data Structures. Example

I Dynamic graph [Holm et al., 2001]:
I Read-only: areConnected(u, v)
I Update: addEdge(u, v), removeEdge(u, v)



Dynamic graph. Experiments
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Priority queue

I Ordered set of values;

I Insert(v);

I ExtractMin().

I Challenge: �nd a parallel batched algorithm with
complexity that depends only on the batch size and the
size of the heap.



Binary heap

I Binary heap stored in array a[1,. . ., s]: node i has
children 2i and 2i + 1 with higher values.

I Algorithm [Gonnet and Munro, 1986]
I ExtractMin(): swap a[1] and a[s], then sift-down;
I Insert(v): traverse the path from the root to

a[s + 1].



Parallel Batched Binary Heap. ExtractMin

I Combiner with E extractMin requests:
I Locate E nodes with the smallest values using

Dijkstra-like algorithm;
I Swap the values with E latest values a[s - E + 1], . . .,

a[s];
I Initiate parallel sift-down on clients from the located

nodes;
I Done using hand-over-hand locking.



Parallel Batched Binary Heap. Insert

I Combiner with I insert requests:
I Target nodes: a[s + 1], . . .,

a[s + |I|];
I Locate |I| - 1 split nodes;
I Sort vs+1, . . . , vs+|I | values to insert;
I Initiate a traversal from the root to

target nodes, splitting set of values
to insert into two sets in split nodes.

Split nodes

Target nodes

U1

U2

U3



Parallel Batched Binary Heap

I The resulting concurrent binary heap is linearizable.

I Combiner and clients perform O(c + log s) RMRs in CC
and DSM models each and O(c · (log c + log s)) RMRs in
CC and DSM models in total.



Priority Queue. Experiments
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Conclusion

I It is possible to build e�cient concurrent data structures
from their parallel batched counterpart.

I We a�rm it by considering two data structures: dynamic
graph and priority queue.

I Which other data structures that can bene�t from parallel
combining?
I For example, dynamic tree.



Thank you for your attention

Questions?



Parallel Batched Binary Heap. Insert
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Parallel Batched Binary Heap. Insert
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Parallel Batched Binary Heap. Insert
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Parallel Batched Binary Heap. Insert
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Parallel Batched Binary Heap. Insert
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