
Memory-Friendly Lock-Free Bounded Queues

Vitaly Aksenov Nikita Koval
ITMO University, St. Petersburg, Russia JetBrains, St. Petersburg, Russia

aksenov.vitaly@gmail.com ndkoval@ya.ru

Bounded Queue
Bounded queue is a FIFO queue which is limited in capacity:
• offer(e) inserts the element e and returns true if the queue
is not full, returns false otherwise
• poll() retrieves and returns the first element if the queue is
not empty, returns null otherwise

Algorithm Assumptions
• All inserting elements should be distinct (many software sys-
tems use queues for unique tasks or identifiers)
• We have an unlimited supply of versioned null values, so
that we can use different null-s for different rounds
(can be achieved by stealing one bit from values)

These assumptions guarantee the lack of the ABA problem on
array cells updates.

Motivation
How to improve FIFO queues performance?
• Reduce the number of failed CAS
(e.g., by replacing them with FAA operations)
• Make the algorithm more memory-friendly

How to achieve memory-friendliness?
• For unbounded queues: allocate memory in chunks
(constructing a linked queue on them)
• For bounded queues: re-using a single pre-allocated array
with the corresponding size
• Use the fewest descriptors or metadata possible

Is there a lock-free bounded queue that uses O(1)
additional memory (no metadata or descriptors)?

Implementation

class BoundedQueue <T>(val CAPACITY: Int) {
val a: T[] = Array(CAPACITY) // a[i] = ⊥0

var offers: Long = 0L
var polls: Long = 0L

}

fun offer(e: T): Bool = while (true) {
o := offers
p := polls
// is ‘o‘ still the same?
if o != offers: continue
// is the queue full?
if o == p + CAPACITY: return false
// try to perform the offer
i := o % CAPACITY
round := o / CAPACITY
success := CAS(&a[i], ⊥round, e)
// increment the counter
CAS(&offers , o, o + 1)
if success: return true

}

fun poll (): T? = while (true) {
p := polls
o := offers
i := p % CAPACITY
e := a[i]
// is ‘p‘ still the same?
if p != polls: continue
// is the queue empty?
if p == o: return null
// is the element already taken?
nextRound = p / CAPACITY + 1
if e == ⊥nextRound {

CAS(&polls , p, p + 1) // helping
continue

}
// try to retrieve the element
success := CAS(&a[i], e, ⊥nextRound)
// increment the counter
CAS(&polls , p, p + 1)
if success: return e

}

Theoretical Result
Def. An implementation is value-preserving if inserting values
are subject only to reads, writes, and equality checks (including
the ones during CAS-s). Thus, bit stealing is not allowed.

Def. Consider the arbitrary reachable state. Let x1, . . . , xn be
the values that do not occur in the memory cells. Suppose we
sequentially perform offer(x1), . . . , offer(xn) and reach the
state M of the memory. An algorithm is argument-independent
if after changing offer(xi) to offer(v) all the memory cells
with xi in M now store v.
Theorem. If there are p processes working on value-preserving
and argument-independent queue, any obstruction-free algo-
rithm needs at least CAPACITY+O(p) memory cells.

Remarks

• The bound from the Theorem can be achieved with a lock-free
algorithm on re-usable descriptors.
• As well as null values, elements should be distinct only be-
tween different rounds and can coincide during the same one.
• If the presented algorithm can be improved so that it supports
indistinguishable either null or inserting values, it should be
simple (but impossible) to solve the second problem.

Acknowledgements
This work is partially supported by the Government of Russian
Federation (Grant 08-08).

aksenov.vitaly@gmail.com
ndkoval@ya.ru

