"::'::" Memory-Friendly Lock-Free Bounded Queues

ITMO UNIVERSITY

Vitaly Aksenov Nikita Koval
ITMO University, St. Petersburg, Russia JetBrains, St. Petersburg, Russia
aksenov.vitaly@gmail.com ndkovalQ@ya.ru
Bounded Queue
How to improve FIFO queues performance?’ Bounded queue 1s a FIFO queue which is limited in capacity:
e Reduce the number of tailed CAS e offer(e) Inserts the element e and returns true if the queue
(e.g., by replacing them with FAA operations) is not full, returns false otherwise
e Make the algorithm more memory-friendly e poll () retrieves and returns the first element if the queue is

. . . not empty, returns null otherwise
How to achieve memory-friendliness? B

e For unbounded queues: allocate memory in chunks
(constructing a linked queue on them)

Algorithm Assumptions

e All inserting elements should be distinct (many software sys-

e IFor bounded queues: re-using a single pre-allocated array | | |
tems use queues for unique tasks or identifiers)

with the corresponding size
e We have an unlimited supply of versioned null values, so

that we can use different null-s for different rounds
(can be achieved by stealing one bit from values)

e Use the fewest descriptors or metadata possible

Is there a lock-free bounded queue that uses O(1)
additional memory (no metadata or descriptors)?

These assumptions guarantee the lack of the ABA problem on
array cells updates.

Implementation
class BoundedQueue<T>(val CAPACITY: Int) { fun poll(): T? = while (true) {
val a: T[] = Array (CAPACITY) // al<] = 14 p := polls
var offers: Long = OL o := offers
var polls: Long = OL i := p % CAPACITY
+ e := alil
// 1s ‘p‘ still the same?
fun offer(e: T): Bool = while (true) { if p != polls: continue
o := offers // 18 the queue empty?
p := polls 1f p == o0: return null
// 1s ‘of still the same? // 1s the element already taken?
if o != offers: continue nextRound = p / CAPACITY + 1
// ©s the queue full? if e == |, crtRound 1
if o == p + CAPACITY: return false CAS (&polls, p, p + 1) // helping
// try to perform the offer continue
i := o % CAPACITY }
round := o / CAPACITY // try to retrieve the element
success := CAS(&alil, Llioung, €) success := CAS(&alil, e, |, cxtRound)
// increment the counter // increment the counter
CAS (&offers, o, o + 1) CAS (&polls, p, p + 1)
1f success: return true 1f success: return e

Theoretical Result Remarks

Def. An implementation is value-preserving it inserting values
are subject only to reads, writes, and equality checks (including
the ones during CAS-s). Thus, bit stealing is not allowed.

e The bound from the Theorem can be achieved with a lock-free
algorithm on re-usable descriptors.

e As well as null values, elements should be distinct only be-

Def. Consider the arbitrary reachable state. Let z1,...,x, be tween different rounds and can coincide during the same one.
the values that do not occur in the memory cells. Suppose we o If the presented algorithm can be improved so that it supports
sequentially perform offer(xz;),...,offer(z,) and reach the indistinguishable either null or inserting values, it should be
state M of the memory. An algorithm is argument-independent simple (but impossible) to solve the second problem.

if after changing offer(x;) to offer(v) all the memory cells
with x;, in M now store v.

Acknowledgements

Theorem. If there are p processes working on value-preserving | | | |
and argument-independent queue, any obstruction-free algo- This work is partially supported by the Government of Russian

rithm needs at least CAPACITY + O(p) memory cells. Federation (Grant 08-08).

aksenov.vitaly@gmail.com
ndkoval@ya.ru

