1. Introduction to statistics: variable types, basic distributions and hypotheses examples 
 2. Calculating data statistics: central and variance tendency measures, correlation 
 3. Data visualization: distribution visualization techniques, multidimensional data, heatmaps, Venn diagrams 
 4. Data visualization practice: visualizing experiment data, explanatory data analysis (EDA) 
 5. Testing mean equality one-sample hypotheses with simulations 
 6. Testing goodness of fit hypothesis with simulations 
 7. Testing independency hypothesis with simulations 
 8. Sampling methods, sources of bias 
 9. Distributions: Bernoulli, binomial, geometrical, uniform, normal, exponential, Poisson 
 10. Types of errors and power of tests 
 11. Multiple comparisons problem 
 12. Regression analysis: linear regression using least squares