Arina Buzdalova
Arina Buzdalova

PhD, ITMO University
Researcher at Computer Technologies Laboratory
Research projects:
- 2020 - now: Theoretical Foundation of Dynamic Parameter Selection for Randomized Optimization Heuristics (PI, supported by RFBR and CNRS)
- 2016 - 2018: Increasing Efficiency of Evolutionary Algorithms by Dynamical Selection of Auxiliary Objectives (PI, supported by RFBR)
- 2017 - 2020: Methods for Development of Efficient Evolutionary Algorithms (Co-I, supported by RSF)
- 2011 - 2012: Methods for Automated Test Generation Based on Evolutionary Algorithms (Co-I)
Interests: evolutionary computation, runtime analysis, multi-objectivization, reinforcement learning, search-based software engineering
Program committees: GECCO 2014-2021; FOGA 2019, 2021; Evo* 2019; PPSN 2018, 2020; ESANN 2015
Teaching: Data Structures and Algorithms, groups M3305-M3308 (2013 - 2017)
Links: Google Scholar page, DBLP
Colleagues:
Maxim Buzdalov,
Vladimir Mironovich,
Vladimir Ulyantsev,
Daniil Chivilikhin
Publications
Conference Papers
2021
- Antonov K., Buzdalova A., Buzdalov M., Doerr C. Blending Dynamic Programming with Monte Carlo Simulation for Bounding the Running Time of Evolutionary Algorithms. CEC 2021, best paper award
- supported by RFBR and CNRS, project number 20-51-15009
2020
- Buzdalova A., Doerr C., Rodionova A. Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm. PPSN 2020.
- supported by RFBR and CNRS, project number 20-51-15009
- Antonov K., Buzdalova A., Doerr C. Mutation Rate Control in the (1+lambda) Evolutionary Algorithm with a Self-adjusting Lower Bound. MOTOR 2020.
- supported by RFBR and CNRS, project number 20-51-15009
2019
- Rodionova A., Antonov K., Buzdalova A., Doerr C. Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates. GECCO 2019.
- Vinokurov D., Buzdalov M., Buzdalova A., Doerr B., Doerr C. Fixed-Target Analysis of (1+1) EA with Resampling. GECCO 2019.
- Ignashov I., Buzdalova A., Buzdalov M., Doerr C. Illustrating the Trade-Off between Time, Quality, and Success Probability in Heuristic Search. GECCO 2019.
- Muravyov S., Antipov D., Buzdalova A., Filchenkov A. Efficient Computation of Fitness Function for Evolutionary Clustering. Mendel 2019.
2018
- Antipov D., Buzdalova A., Stankevich A. Runtime Analysis of a Population-based Evolutionary Algorithm with Auxiliary Objectives Selected by Reinforcement Learning. GECCO 2018.
2017
- Bassin A., Buzdalova A. Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier. EvoCOP 2017.
- Petrova I., Buzdalova A. Reinforcement Learning Based Dynamic Selection of Auxiliary Objectives with Preserving of the Best Found Solution. GECCO 2017.
- supported by RFBR according to the research project No. 16-31-00380 mol_a
- Antipov D., Buzdalova A. Runtime Analysis of Random Local Search on Jump Function with Reinforcement Based Selection
of Auxiliary Objectives. CEC 2017.
- supported by RFBR according to the research project No. 16-31-00380 mol_a
2016
- Bulanova N., Buzdalova A., Buzdalov M. Fitness-Dependent Hybridization of Clonal Selection Algorithm and Random Local Search. GECCO 2016.
- Rost A., Petrova I., Buzdalova A. Adaptive Parameter Selection in Evolutionary Algorithms by Reinforcement Learning with Dynamic Discretization of Parameter Range. GECCO 2016
- Petrova I., Buzdalova A., Korneev G. Runtime Analysis of Random Local Search with Reinforcement Based Selection of Non-Stationary Auxiliary Objectives: Initial Study. Mendel 2016.
- supported by RFBR according to the research project No. 16-31-00380 mol_a
- Bulanova N., Buzdalova A., Parfenov V. Comparative Study of Methods for Combining Artificial Immune Systems and Random Local Search. Mendel 2016.
- Buzdalova A., Petrova I., Buzdalov M. Runtime Analysis of Different Approaches to Select Conflicting Auxiliary Objectives in the Generalized OneMax Problem. SSCI 2016.
- supported by RFBR according to the research project No. 16-31-00380 mol_a
2015
- Buzdalova A., Matveeva A., Korneev G. Selection of Auxiliary Objectives with Multi-Objective Reinforcement Learning. GECCO 2015.
- Petrova I., Buzdalova A. Selection of Auxiliary Objectives in the Travelling Salesman Problem using Reinforcement Learning. GECCO 2015.
- Buzdalova A., Bulanova N. Selection of Auxiliary Objectives in Artificial Immune Systems: Initial Explorations. Mendel 2015.
- Buzdalov M., Buzdalova A. Analysis of Q-Learning with Random Exploration for the Selection of Auxiliary Objectives in Random Local Search. CEC 2015.
- Buzdalov M., Buzdalova A. Can OneMax Help Optimizing LeadingOnes using the EA+RL Method? CEC 2015.
2014
- Buzdalova A., Buzdalov M. A New Algorithm for Adaptive Online Selection of Auxiliary Objectives. ICMLA 2014.
- Petrova I., Buzdalova A., Buzdalov M. Improved Selection of Auxiliary Objectives using Reinforcement Learning in Non-Stationary Environment. ICMLA 2014.
- Buzdalova A., Kononov V., Buzdalov M.
Selecting Evolutionary Operators using Reinforcement Learning: Initial Explorations. GECCO 2014.
- Buzdalov M., Petrova I., Buzdalova A.
NSGA-II Implementation Details May Influence Quality of Solutions for the Job-Shop Scheduling Problem. GECCO 2014.
- Buzdalov M., Buzdalova A.
OneMax Helps Optimizing XdivK: Theoretical Runtime Analysis for RMHC and EA+RL. GECCO 2014.
- Petrova I., Buzdalova A., Buzdalov M.
Selection of Extra Objectives using Reinforcement Learning in Non-Stationary Environment: Initial Explorations. Mendel 2014.
- Kravtsov N., Buzdalov M., Buzdalova A.
Worst-Case Execution Time Test Generation using Genetic Algorithms with Automated Construction and Online Selection of Objectives. Mendel 2014.
2013
- Buzdalov M., Buzdalova A., Shalyto A.
A First Step towards the Runtime Analysis of Evolutionary Algorithm Adjusted with Reinforcement Learning. ICMLA 2013.
- Petrova I., Buzdalova A., Buzdalov M.
Improved Helper-Objective Optimization Strategy for Job-Shop Scheduling Problem. ICMLA 2013.
- A. Buzdalova, M. Buzdalov, V. Parfenov.
Generation of Tests for Programming Challenge Tasks using Helper-Objectives. SSBSE 2013.
- M. Buzdalov, A. Buzdalova, I. Petrova.
Generation of Tests for Programming Challenge Tasks Using Multi-Objective Optimization. GECCO 2013.
- M. Buzdalov, A. Buzdalova.
Adaptive Selection of Helper-Objectives for Test Case Generation. CEC 2013.
2012
- A. Buzdalova and M. Buzdalov.
Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning. ICMLA 2012.
- A. Buzdalova and M. Buzdalov.
Adaptive Selection of Helper-Objectives with Reinforcement Learning. ICMLA 2012.
- A. Afanasyeva and M. Buzdalov.
Optimization with Auxiliary Criteria using Evolutionary Algorithms and Reinforcement Learning. MENDEL 2012.
2011
- A. Afanasyeva and M. Buzdalov.
Choosing Best Fitness Function with Reinforcement Learning. ICMLA 2011.
Talks at Conferences, Workshops and Seminars
- A. Buzdalova, C. Doerr, A. Rodionova, K. Antonov. Comparing Self-Adjusting (1+lambda) EAs under Large Dimensions: A Case Study. ImAppNIO Workshop, February 19, 2019.
- supported by COST Action, CA15140
- A. Buzdalova, I. Petrova, M. Buzdalov. Is it Necessary to Perform Multi-objective Optimization when Doing Multi-objectivization? Dagstuhl Seminar 17191, 2017.
- supported by RFBR according to the research project No. 16-31-00380 mol_a
- A. Buzdalova, M. Buzdalov. Selection of Auxiliary Objectives with Reinforcement Learning: Overview of Theoretical Results. Dagstuhl Seminar 15211, 2015.
- A. Buzdalova, M. Buzdalov. A Method of Auxiliary Objectives Selection using Reinforcement Learning: An Overview. PPSN 2014 [web article] [presentation]
- M. Buzdalov, A. Buzdalova. A First Step Towards the Runtime Analysis of Evolutionary Algorithm Adjusted with Reinforcement Learning. ThRaSH 2013.
Publications in Russian
Журнальные статьи
- Н. С. Буланова, А. С. Буздалова, А. А. Шалыто. Метод адаптивного выбора операторов мутации искусственных иммунных систем и локального поиска. Научно-технический вестник информационных технологий, механики и оптики, 2017, No 6 (17).
- И. А. Петрова, А. С. Буздалова, А. А. Шалыто. Теоретический анализ метода выбора переключающихся вспомогательных критериев на задаче XdivK. Научно-технический вестник информационных технологий, механики и оптики, 2017, No 3 (17).
- Выполнено при финансовой поддержке РФФИ в рамках научного проекта No. 16-31-00380 мол_а
- И. А. Петрова, А. С. Буздалова, А. А. Шалыто. Метод динамического выбора вспомогательных критериев в многокритериальных эволюционных алгоритмах. Научно-технический вестник информационных технологий, механики и оптики, 2016, No 3 (16).
- А. С. Буздалова, М. В. Буздалов. Метод повышения эффективности эволюционных
алгоритмов с помощью обучения с подкреплением. Научно-технический
вестник
информационных технологий, механики и оптики, 2012, No 5 (81).
- А.С. Афанасьева, М. В. Буздалов. Выбор функции приспособленности особей
генетического алгоритма с помощью обучения с подкреплением.
Научно-технический
вестник СПбГУ ИТМО, 2012, No 1 (77).
Публикации в трудах конференций
- И. А. Петрова, А. С. Буздалова. Теоретический анализ метода выбора вспомогательных критериев на задачах XdivK и
Generalized OneMax. СПИСОК 2017.
- Выполнено при финансовой поддержке РФФИ в рамках научного проекта No. 16-31-00380 мол_а
- А. С. Буздалова, И. А. Петрова, М. В. Буздалов. Анализ времени работы методов выбора вспомогательных критериев оптимизации на обобщенной задаче OneMax. СПИСОК 2016.
- Выполнено при финансовой поддержке РФФИ в рамках научного проекта No. 16-31-00380 мол_а
- М. В. Буздалов, А. С. Буздалова. Сравнительный анализ метода выбора вспомогательных критериев и метода спуска со случайными мутациями. СПИСОК 2014.
- И. А. Петрова, А. С. Буздалова, М. В. Буздалов. Повышение эффективности эволюционных алгоритмов при помощи обучения с подкреплением в нестационарной среде. СПИСОК 2014.
- А. С. Буздалова, М. В. Буздалов. Анализ метода EA+RL на примере задачи с одним вспомогательным критерием. ВКМУ 2014.
- А. С. Буздалова, М. В. Буздалов. Использование вспомогательных функций приспособленности для тестирования решений олимпиадных задач по
программированию. СПИСОК 2013.
- М. В. Буздалов, А. С. Буздалова. Оценка времени работы эволюционного алгоритма RMHC под управлением алгоритма Q-Learning на задаче OneMax с
мешающим критерием оптимизации. СПИСОК 2013.
- А. С. Буздалова, М. В. Буздалов. Применение
обучения с подкреплением к генерации тестов для
олимпиадных задач по программированию. ВКМУ 2013.
- А. С. Афанасьева. Выбор функции приспособленности особей эволюционного алгоритма с помощью
обучения с подкреплением. СПИСОК 2012.
- А. С. Афанасьева. Выбор функций приспособленности особей генетического алгоритма с помощью обучения с подкреплением. ВКМУ 2012.
Кандидатская диссертация
Магистерская диссертация
Бакалаврская работа